
J. King Saud Univ., Vol. 13, Comp. & Info. Sci., pp. 19-47 (A.H. 1421/2001)

19

CN-Nets for Modeling and Analyzing Neural Networks

Samir M. Koriem
 Department of Systems and Computer Engineering,

Faculty of Engineering, Al-Azhar University, Nasr City, Cairo, Egypt

(Received 24 February 1998; accepted for publication 9 February 2000)

Abstract. The concept of colored timed neural Petri nets (CTNPN or Shortly CN-net) which are isomorphic to
neural architectures is proposed. The CN-net technique incorporates the basic features of the neural net and the
modeling capabilities of both colored and timed Petri nets. The essential principles involved in the construction
of the CN-net are discussed in detail. The computation power of the CN-net model is demonstrated through the
“timed reachability graph” (TRG) that is developed from this model. The CN-net is designed to study the
structure properties of the artificial neural networks (ANNs) while the TRG is used for verifying the dynamic
behavior of these networks. Furthermore, the CN-net offers simple and readable model representation making
it easy to design fitting VLSI circuits for complex ANNs. Practical examples are given illustrating the way in
which the CN-net as a novel modeling technique can be employed to simulate the dynamic behavior and
parallel activities of the ANNs.

Keywords: Modeling; Neural networks; Specification; Colored and timed petri nets; Verification.

1. Introduction

The current interest in the development of artificial neural networks (ANNs) is largely
due to their brain-like organizational structure and learning ability. Although still in an
evolutionary stage, these networks have been used in a wide range of real-world
applications such as pattern classification, function approximation, automatic control and
optimization [1-3]. These networks have multiple layers of neurons that process
information (a neuron integrates the incoming weighted inputs by addition, then fires if
the result exceeds a threshold) in parallel, and act asynchronously in real-time through
feedforward and feedback interconnections.

In order to give an accurate description of the neural network, a model has to be
formulated which provides the structure and behavior of the neuron prior to VLSI
hardware realization. A strong candidate for modeling ANNs are Petri nets [4]

Samir M. Koriem

20

due to its graphical representation for describing and studying information processing
systems that are characterized as being parallel. Also the behavior of the modeled system
can be analyzed through the movement of tokens which are used in these nets to
simulate the dynamic and parallel activities within this system. As a mathematical tool, it
is possible to set state equations governing the behavior of the modeled system.

Many conventional ANN paradigms employ the McCullock-Pitts [1] model of the
biological neuron to build various feedforward and feedback architectures. Recently,
there has been some attempt to develop Petri net models for the biological neuron. These
models have directed towards increasing the understanding of the human brain behavior
[5], representing simple neural networks [6 - 8] and implementing digital logic circuits
for neural networks [9]. Unfortunately, these models are not able to provide a complete
picture for the structural and behavioral properties of the ANNs and do not propose
adequately methodology for studying and analyzing the specification and verification
aspects of the ANNs. Furthermore, we need a methodology able to accurately represent
many of the capabilities of the ANNs deemed necessary to transform the design of the
desired ANN to fit VLSI circuit. For these reasons, in this paper, we propose a “colored
timed neural Petri net” (CTNPN or shortly CN-net) as an effective modeling framework
for representing the complexity characteristics of the ANNs. The CN-net technique
combines the basic aspects of the neural architecture [10] with the modeling capabilities
of both colored [11 - 14] and timed [15 - 18] Petri nets.

The rest of this paper is organized as follows. The development of the CN-net

model is discussed with details in Section 2. The flexibility of the CN-net model and its
analysis methodology (including dynamic analysis and performance analysis) are
demonstrated through a simple practical example (XOR neural network) in Section 3. In
Section 4, we explain how the CN-net model can be used as a powerful analysis tool for
studying the feedforward neural network. This type of networks has been widely used in
the literature as a practical neural network for illustrating the dynamics of ANNs [3].
Section 5 concludes this paper.

2. Basic Features of the CN-Nets

In the ANNs [3], the ith neuron (NEi) consists of a processing element (PEi) with
synaptic input connections (i.e. communication paths), a threshold logic unit (TLUi), and
a single output (RESi) as shown in Fig. 1. In this figure, xj (j = 1, 2, ..., n) represents
the input data that is proceeded to the NEi and wj (j = 1, 2, ..., n) represents the
weighted data that is associated with the input data xj. The weighted data wj may be
positive or negative value according to the excitation or the inhibition operation that
should be performed on the NEi . The PEi performs the scalar product of an n-vector

CN-Nets for Modeling and Analysing . . .

21

input data X = x1, x2, ..., xn with an n-vector weighted data W = w1, w2, ..., wn. The
results are then passed through the TLUi to perform a thresholding of value i. The
input-output relationship of the NEi can then be expressed as follows: RESi = F(WT X -

i) = F(i - i), where T denotes the transpose, and i = WTX.

In order to model the dynamic behavior of each neuron in the ANNs, we propose
a colored timed neural Petri net (CN-net) as a novel modeling technique. In this section,
we begin with the mathematical description of the CN-net. Then, we explain in detail the
firing rules of our proposed technique.

2.1 Mathematical structure

CN-net = (PN, M, , G, H, , , OP, COM, SH)

In the following, we discuss the formal definitions of the CN-net parameters. We have
developed these parameters based on the modeling capabilities of colored PN [11, 12,
14], timed PN [15 - 17] and neural nets [2, 10].

Definition 1. An ordinary Petri net (PN) without any specific initial marking is a 3-
tuple PN = (P, T, A) where

P = {p1, p2, ..., pn} is a finite set of places;
T = {t1, t2, ..., tm} is a finite set of transitions;
A (P T) (T P) is a set of arcs (flow relation);
P T and P T = .

Definition 2. Let = {c | c is a color type} be a finite set of colors. The set is divided
into two sets of colors (p) and (t) such that = (p) (t). The set (p) describes the
colors associated with each place p P (token colors) of the underlying net. The set (t)
describes the colors associated with each transition t T (occurrence colors) of the same
net.

 The set (pi) is used to attach to each place p P a set of possible token colors
and their priorities.

(pi) = {<cpi1, pri1 >, <cpi2, pri2 >, ..., <cpiui, priui >};

ui = | (pi)|, i = 1, 2, ..., n

where ui represents the number of colored tokens in the place pi P. The notation
<cpiui, priui> denotes that the colored token cpiui (pi) of the priority priui (pi)
is able to enter (or leave) the place pi P.

Samir M. Koriem

22

 The set (tj) is used to attach to each transition tj T a set of possible
occurrence colors and their priorities.

(tj) = {< ctj1, pr j1 >, < ctj2, prj2 >, ... , < ctjvj, prjvj >};

vj = | (t j)|, j = 1, 2, ..., m

where vj represents the number of colors associated with a transition tj T. The
notation <ctjvj, prjvj > describes the occurrence color ctjvj (tj) of priority prjvj

(tj) at the transition tj T. It is interesting to note that the priority associated with
each color is used to organize the sequence of events that can occur at the transition
t T.

To clarify the relation between the color and its priority, in our CN-net models, the

colors red, green, blue, black, yellow, and white are denoted by the letters c6, c5, c4, c3, c2
and c1, respectively. These colors have the priorities (in descending order) 1, 2, 3, 4, 5
and 6, respectively. For example, the green color c5 and its priority 2 can be illustrated
by the notation <c5, 2>.

Definition 3. Let G(a): A() N+ be a colored multiplicity function which describes
the type and number of colors associated with each arc a A, where N+ being the set of
integers. G(a) can be defined on the set of arcs A as follows:

 GI (p, t): (p) (t) N+; GI (p, t) G(a) a A
The input multiplicity function GI (p, t) is used to label the arc from p P to t T.

 GO(t, p): (t) (p) N+; GO (t, p) G(a) a A
The output multiplicity function GO(t, p) is used to label the arc from t T to p P.

In general, the function G(a) is capable of deciding the colored tokens that should

be removed from the input place pin P of the transition tj and the colored tokens that
should be deposited in the output place pout P of the transition tj when it fires.

 When the multiple arcs have different types of colors, the G(a) function takes the
following formulas:

GDI (p, t) = GD(<cp1>, <cp2>, ..., <cpn>); a color cpn (p)
GDO (t, p) = GD(<ct1>, <ct2>, ..., <ctm>); a color ctm (t)

(e.g. GD(c1, c3, c5))

 When the multiple arcs have n similar types of colors, the G(a) function takes the
following formulas:

GSI (p, t) = GS(n <cp>); a color <cp> (p)

CN-Nets for Modeling and Analysing . . .

23

GSO (t, p) = GS(n <ct>); a color <ct> (t)
(e.g. GS(3 c2))

 The following G(a) formulas permit the use of one arc from p P to t T or
from t T to p P with a specific color:

G1I (p, t) = G1(<cp>); a color <cp> (p)
G1O (t, p) = G1(<ct>); a color <ct> (t)

(e.g. G1(c6))

 The following G(a) formulas allow the single arc to carry any type of color v :
GvI (p, t) = Gv(v); a color v (p)
GvO (t, p) = Gv(v); a color v (t)

(e.g. Gv(v); where v any type of color)

Definition 4. A marking of the CN-net model is a function M defined on P such that for
p P, M(p): (p) N+, where N+ being the set of integers. M(p) can also be represented
by an (n 1) vector [M(p1), M(p2), ..., M(pn)]T. The marking M(pi) of a place pi P is
generally represented by formal sum of colors, i.e., M(pi) = ui

k=1 nik <cpik, prik>,
where nik is the number of tokens of color <cpik, prik> in a place pi P. In other words,
the marking M(pi) gives the number of tokens of each color in the place pi P. For
example, M(p1) = (< c6, 1>, < c3, 4>) denotes the place p1 contains red and black colored
tokens.

Definition 5. Let A* = { a* A* | a* is an inhibitor arc} be a set of inhibitor arcs such
that A* A. Let Ph = { ph | (ph, t) A* } be a set of the inhibitor places, where A* (Ph

 T), ph Ph, and Ph P. Let H(ph <c >, t): A* (ph) (t) be an inhibitor
function. It describes each inhibitor arc H(ph <specific color type>, t) in the set A* .
When the inhibitor arc H(ph <c >, t) is labeled with a specific colored type c and
there is a token with the same colored type marking the corresponding inhibiting input
place ph Ph, then the transition t T does not fire. It is interesting to note that there is
no movement of tokens along the inhibitor arc H(ph <c >, t) when the transition t T
fires.

Definition 6. Let (p): p < , (p)> be a description function which describes the
colored tokens (p) that enter (or leave) the place p P. In the CN-net model, the
tokens are defined as tuples of attributes and colors separated by commas and enclosed
in angular brackets. The values of these attributes are modified by transitions, enabling
them to carry data. The attribute is used to describe the important processes of the
modeled neuron as follows:

 (p): p <xi, (p)>

Samir M. Koriem

24

The attribute token xi of the color <cp, pr> (p) is used to carry the input data xi
to the jth neuron (j = 1, 2,, n) over the communication path i (see Fig. 1).

 (p): p <wi, (p)>
The attribute token wi of the color <cp, pr> (p) is used to carry the weighted
data wi to the jth neuron (j = 1, 2,, n) over the communication path i. The
weighted data wi is related to the input data xi. Both the tokens xi and wi have the
same color.

 (p): p < j, (p)>
The attribute token j of the color <cp, pr> (p) is used to carry the threshold
value j of the jth neuron.

 (p): p <RESj, (p)>
The attribute token RESj of the color <cp, pr> (p) is used to carry the final
output result of the jth neuron.

 (p): p <DATAij, (p)>
The attribute token DATAij of the color <cp, pr> (p) is used to carry
information about the input data xk and its corresponding weighted data wk that are
required to pass to a neuron j from a neuron i. Based on this information, a neuron i
organizes its communication behavior with a neuron j.

 (p): p <sj, (p)>
The attribute token sj of the color <cp, pr> (p) represents the status of the jth
neuron. If the place pi P contains a token, then a neuron j is busy and cannot
receive data from its neighboring neurons.

Definition 7. Let : T (t) R+ be a firing time function. It assigns the time of
firing (t) to each occurrence color at a transition t T in the net, where R+ denotes the
set of non-negative deterministic numbers.

Definition 8. Let r(t, (t)) be a remaining firing time function. It assigns the remaining
time of firing r(t) to each independent firing (if any) of each occurrence color (t) at
a transition t T.

Definition 9. Let COM(t): T <COMij, , (t)> be a communication function. It
defines the necessary parameters for firing the “communication transition” Tcom T
when the color <ct, pr> (t) occurs. The transitions tsend, tend-rec Tcom are used to
model the communication behavior (sending or receiving data, respectively) between a
neuron i and a neuron j. Let be the communication time required for transmitting (or
receiving) data from a neuron i to a neuron j.

Definition 10. Let OP (t): T <(wi xi), , (t)> be a computation function. It defines
the necessary parameters for firing the “multiplication operation transition” Tmult T
due to the occurrence color <cp, pr> (t). The Tmult T models the neuron when

CN-Nets for Modeling and Analysing . . .

25

executing the multiplication operation (wi xi). Let be the processing time of this
multiplication operation.

Definition 11. Let OP+(t): T < j, , (t)> be a computation function. It defines the
necessary parameters for firing the “addition operation transition” Tadd T due to the
occurrence color <cp, pr> (t). The Tadd T models a neuron j when executing its
addition operation j = w1x1 + w2x2 + ...+ wnxn. Let be the processing time of this
addition operation. Note that when the summation operation incorporates data with
different types of colors, the computation result j takes the color of the highest priority.

Definition 12. Let SH(t): T <(j j), , (t)> be a computation function. It defines
the necessary parameters for firing the “threshold transition” Tshold T when the color <
ct, pr> (t) occurs. The Tshold T models a neuron j when executing its comparison
operation () between the values of j and j. Let be the processing time of this
comparison operation. The output result of this comparison operation <RESj, (p)> is
calculated as follows:

 If j < j, then the output place (pi) of the Tshold T will contain the token <zero,
(p)>.

 If j > j, then the output place (pi) of the Tshold T will contain the token <one,
(p)>.

2.2 Firing rules

The modeling power of CN-net lies in the color-priority attributes associated with
each place (p) and transition (t) in the net. In the CN-net, there exists a
functional dependency between the color-priority of the enabled transitions and the
color-priority of the tokens marking the input places of these transitions. Following is an
explanation of how the CN-net uses this functional dependency to organize its transition
firing rules.

Consider a colored token <cpix, prix> (pi) is marking the input place pi P of

the transition tj T. A transition tj can be enabled with respect to a color <ctjx, prjx>
(tj). A place pk P is the output place of a transition tj. The inhibitor place ph Ph is

connected to the transition tj. The firing of a transition tj is carried out through the
following two steps.

Step 1. A transition tj T is enabled with respect to a color <ctjx, prjx> (tj) in a
marking M iff

 M(pi <cpix, prix>) G1I(pi <cpix, prix>, tj <ctjx, prjx>); pi P, and

Samir M. Koriem

26

 H(ph, tj) = H(ph < >, tj <ctjx, prjx>) ; ph Ph (< > : empty)

The notation ph < > denotes that there is no token in the inhibitor place ph Ph.
The notation tj <ctjx, prjx> denotes that the transition tj is enabled with respect to a color
<ctjx, prjx>.

It is interesting to note that if H(ph, tj) = H(ph <cphx, prhx>, tj <ctjx, prjx>), then tj
is disabled. The notation ph <cphx, prhx> denotes that the inhibitor place ph Ph contains
the colored token <cphx, prhx> which is the same as the color associated with tj and the
colored token marked the place pi P.

Step 2. When a transition tj T (enabled in a marking M) fires with respect to a color
<ctjx, prjx> (tj), a new marking M is reached according to the following:

 M (pk <cpky, prky>) = M(pi <cpix, prix>) + G1I(pi <cpix, prix>,

 tj <ctjx, prjx>) - G1O(tj <ctjx, prjx>, pk <cpky,
prky>);

 pi P, <cpky, prky> (pk), <cpix, prix> (pi), <ctjx, prjx> (tj)

The first step of the firing rule of tj is needed to be generalized to incorporate the
following effects: (i) increasing the number of tokens in the place pi; (ii) inscriptions on
the arcs; and (iii) the priority level assigned to each colored token. For this purpose, we
illustrate the following cases for the marking M of the first step of tj firing rule.

Case A. Consider the place pi P contains two colored tokens with different priorities:
<cpix, prix>, <cpiy, priy> (pi), and prix priy. It is interesting to note that when the
number of tokens in the place pi P is more than one, a transition tj T can be enabled
iff the colors of these tokens are members of the color set associated with this transition.

A-1. To proceed these tokens one by one from a place pi P, the CN-net uses the arc

function GVI(pi, tj) = GVI(v). In this case, all the tokens in the place pi (simultaneously)
enable the transition tj and the one of the highest priority color fires this transition.

 M(pi <cpix, prix>, <cpiy, priy>) GVI (pi <v>, tj (<cpix, prix>, <cpiy, priy>)); (<cpix,

prix>, <cpiy, priy> v) and
 H(ph, tj) = H(ph < >, tj (<cpix, prix>, <cpiy, priy>)); ph Ph
 If H(ph, tj) = H(ph <cpix, prix>, tj (<cpix, prix>, <cpiy, priy>)),

then tj is only disabled for the color <cpix, prix>.

Once tj fires, the highest priority colored token <cpix, prix> is removed from a
place pi to a transition tj through the arc function GVI(v). In this case, the transition tj

CN-Nets for Modeling and Analysing . . .

27

uses the remaining time function r to keep track of its firing sequences for the other
colored tokens.

A-2. If the arc (pi, tj) is labeled with the function GDI(pi, tj), then, once the number of

colored tokens in a place pi P satisfy this function, the transition tj fires.

 M(pi <cpix, prix>, <cpiy, priy>) = GDI (pi (<cpix, prix>, <cpiy, priy>), tj (<cpix, prix>,
<cpiy, priy>)); and

 H(ph, tj) = H(ph < >, tj (<cpix, prix>, <cpiy, priy>)); ph Ph
 If H(ph, tj) = H(ph <cpix, prix>, tj (<cpix, prix>, <cpiy, priy>)),
 then tj is disabled.

Once a transition tj fires, the appropriate colored tokens specified by the function
GDI(<cpix, prix>, <cpiy, priy>) are removed from a place pi P.

Case B. Consider a place pi P contains two colored tokens with the same priorities:
<cpix, prix>, <cpix, prix> (pi).

B-1. To proceed these tokens one by one from a place pi P, the CN-net uses the arc
function G1I(pi, tj). In this case, all the tokens in the place pi P (simultaneously) enable
the transition tj and any of them fires the transition tj.

 M(pi <cpix, prix>, <cpiy, priy>) G1I (pi (<cpix, prix>, tj <cpix, prix>); and
 H(ph, tj) = H(ph < >, tj (<cpix, prix>); ph Ph
 If H(ph, tj) = H(ph <cpix, prix>, tj (<cpix, prix>), then tj cannot fire.

Once a transition tj fires, the appropriate token <cpix, prix> is removed from the

place pi P to the transition tj through the arc function G1I(<cpix>). To keep track of the
firing sequence of the other colored tokens, the transition tj uses the remaining time
function r.

B-2. To proceed all the similar tokens in the place pi P to the transition tj, the CN-net
inscripts the arc (pi, tj) with the function GSI(pi, tj).

 M(pi <cpix, prix>, <cpiy, priy>) = GSI (pi (2 <cpix, prix>, tj <cpix, prix>); and
 H(ph, tj) = H(ph < >, tj (<cpix, prix>); ph Ph

 If H(ph, tj) = H(ph <cpix, prix>, tj (<cpix, prix>)), then tj cannot fire.

For the purpose of modeling the neural networks, two types of transitions will be
defined in our CN-net: operation transitions and communication transitions. The former
ones model the computation behavior of each neuron (OP (t), OP+(t), SH(t); t T). The
later ones model the communication behavior between a neuron i and a neuron j

Samir M. Koriem

28

(COMij). The firing time of the operation transition or the communication transition is a
“deterministic time” (i.e. the tokens are removed from the input place at the beginning
of firing period, and they are deposited to the output places at the end of this period). In
some cases, we need to model activities with no time duration (i.e. is equal to zero).
We use this concept to model the logical behavior among the neurons. When takes
deterministic value, the transition is drawn as a thick bar. When takes zero value, the
transition is drawn as a thin bar. A transition with no time duration can fire as soon as it
is enabled and cannot remain enabled for any duration of time. Thus, if the marking M
comprises both types of transitions, only the transitions with no duration times can fire.

3. Analysis of the CN-Nets

In this section, we first explain how our proposed CN-net technique can be used for
modeling and analyzing the structure and behavior properties of the neural networks.
Finally, the performance analysis of the CN-net model is discussed.

3.1 Dynamic behavior

For better understanding the dynamics of the CN-net model, we start our
explanation by modeling the functioning of the basic elements of the single neuron
shown in Fig.1. The CN-net model for a single neuron is depicted in Fig. 2. The
meanings associated with the places and transitions of this model are summarized in
Table 1. To build a realistic model, we have assumed that the modeled neuron i (NEi)
communicates with its neighboring neurons NE1, NE2, and NE3. The NEi is within the
layer-2 and the other neurons are in the layer-1 as shown in Fig. 2. To allow the NEi to
excite or inhibit its neighboring neurons, we use the inhibitor arc H(i, Tend-reci). When
there is a token in the place i, the inhibitor arc prevents the NEi from receiving data
from the other neurons until this neuron completes its existing calculation. When the
place i is empty, the NEi performs its communication behavior with the neighboring
neurons.

Now, we need a methodology for verifying whether the developed CN-net model
is accurately representing both structure and dynamic behavior of the modeled neural
network. For this purpose, we should develop the “timed reachability graph” TRG for
the desired CN-net neural model.

Definition 13. The “timed reachability graph” TRG for the CN-net model is the set of
all states S of the CN-net model which can be reached from the initial state S1 S by
firing a finite number of transitions.

CN-Nets for Modeling and Analysing . . .

29

Fig. 1. A single artificial neuron i (NEi).

Fig. 2. A CN-Net single-neuron model.

Synaptic Connections

 : < c6, 1>
 : < c5, 2>
 : < c4, 3>

Layer 1

Layer 2

Layer 3

NE1

Neuron i
(NEi)

INP-NEi

i

c5
c6 c4

G(c4,c5,c6) c6
Tend-reci

G(c4,c5,c6)

v v
v Tmulti

Taddi

Tsholdi

MULT-RESi

ADD-RESi

OUT-RESi

G(c4,c5,c6)

Wi Xi

c6

c6
c6

G(c4,c5,c6) c6

Tsend3 Tsend2 Tsend1
NE2 NE3

RESi

c6

1

2

3

Neuron’s Processing
 Element (PEi)

Weight Values Undergoing
Training

Threshold Logic Unit
(TLUi)

Signal
Flow of
Neuron
Inputs

x1
x2

xn

w1
w2

wn

F(WTX)
1+

-1

F(WTX - i)

RESi (W,X)
(Final Result)

Samir M. Koriem

30

Table 1. Annotation of the places and transitions of the CN-Net single-neuron model shown in Fig. 2

Tsendj = tj (j=1,2,3): A NEj in the layer-1 transmits its output data (DATAji) to a NEi in the
layer-2.

INP-NEi = p1: A NEi receives data from its neighboring neurons: NE1, NE2, and NE3.
Tend-reci = t4: A NEi has completely received its required data from the neighboring neurons.
Xi = p2: A NEi recognizes its input data vector X =x1, x2, x3 from the data coming from

the neighboring neurons.
Wi = p3: A NEi recognizes its weighted data vector W = w1, w2, w3 from the data

coming from the neighboring neurons, where wj is the corresponding weight to
the jth input process xj.

i = p4: A threshold value of the NEi.
Tmulti = t5: A NEi executing its multiplication operation xj wj.
MULT-RESi = p5: The results of the multiplication operations.
Taddi

ADD-RESi

= t6 : A NEi executing its addition operation:
 x1 w1 x2 w2 x3 w3 = i.
= p6: The result of the addition operation.

Tsholdi = t7 : A NEi executing its comparison operation between i and i.
OUT-RESi = p7: An output result of the NEi.

Definition 14. A state Si TRG(S) is defined by three descriptive attributes MRKi, SETi
and INHi. Based on the function Mi, the attribute MRKi illustrates the distribution of
tokens in the various places of the current state Si. Based on the function Hi, the attribute
INHi illustrates the distribution of tokens in the inhibitor places and the inscriptions on
the inhibitor arcs that are shown in the current state Si. Attribute SETi indicates the status
of the enabled transitions in the current state Si. This attribute has three parameters TREM,
TNEW and TFIR. The parameter TREM indicates the transitions that have remaining firing
times. The parameter TNEW indicates the new enabled transitions in the current state Si.
The parameter TFIR tests the minimum time that is associated with all the enabled
transitions shown in both TREM and TNEW to select the actual firing transition(s) in the
current state Si.

In the initial state of the CN-net neural model shown in Fig. 2, a place INP-NEi
contains three colored tokens: <DATA1i, (c6,1)>, <DATA2i, (c5,2)>, and <DATA3i,
(c4,3)>. These tokens represent the different data arriving to the NEi from its neighboring
neurons NE1, NE2, and NE3. Given an initial state to our developed model, the TRG is
obtained by firing (executing) consequent enabling transitions according to the proposed
execution rules of the CN-net, as shown in Fig. 3. Execution is continued until there is
no more enabling transitions. The TRG shown in Fig. 3 is formally described as follows.
To simplify our explanation of this TRG, we give other names for the transitions and
places of the model of Fig. 2 as shown in Table 1.

S1 : MRK1 : (p1) = <DATA1i, (c6,1)>, <DATA2i, (c5,2)>, <DATA3i, (c4,3)>

 SET1 : TFIR : t4 = <(c6,1), (c5,2), (c4,3)>

CN-Nets for Modeling and Analysing . . .

31

S2 : MRK2 : (p2) = <x1, (c6,1)>, <x2, (c5,2)>, <x3, (c4,3)>,

 (p3) = <w1, (c6,1)>, <w2, (c5,2)>, <w3, (c4,3)>, (p4) = < i, (c6,1)>
 SET2 : TFIR : t5 = <(wi xi), 1, ((c6,1), (c5,2), (c4,3))>
 INH 2 : H(p4 <c6,1>, t4)

S3 : MRK3 : (p2) = <x2, (c5,2)>, <x3, (c4,3)>, (p4) = < i, (c6,1)>

 (p3) = <w2, (c5,2)>, <w3, (c4,3)>, (p5) = <w1 x1, (c6,1)>
 SET 3 : TFIR : t5 = <(wi xi), 1, ((c6,1), (c5,2), (c4,3))>
 INH 3 : H(p4 <c6,1>, t4)

S4 : MRK4 : (p2) = <x3, (c4,3)>, (p3) = <w3, (c4,3)>, (p4) = < i, (c6,1)>

 (p5) = <w1 x1, (c6,1)>, <w2 x2, (c5,2)>
 SET4 : TFIR : t5 = <(wi xi), 1, ((c6,1), (c5,2), (c4,3))>
 INH 4 : H(p4 <c6,1>, t4)

S5 : MRK5 : (p4) = < i, (c6,1)>,

(p5) = <w1 x1, (c6,1)>, <w2 x2, (c5,2)>, <w3 x3, (c4,3)>
 SET5 : TFIR : t6 = < i, 2, ((c6,1), (c5,2), (c4,3))>
 INH 5 : H(p4 <c6,1>, t4)

S6 : MRK6 : (p4) = < i, (c6,1)>, (p6) = < i, (c6,1)>

 SET6 : TFIR : t7 = <(i i), 3, (c6,1)>
 INH 6 : H(p4 <c6,1>, t4)

S7 : MRK7 : (p7) = <RESi, (c6,1)>

From the TRG shown in Fig. 3 and its formal description illustrated above,
various properties such as liveness, deadlock-free operations, execution transition
scenarios, time delays of transitions, and the movement of data at the various elements of
each neuron in the network can be studied. These properties help us to verify the
correctness of the dynamics of our CN-net model shown in Fig. 2. Furthermore, the
formaldescription of the TRG affords an easy and simple methodology for understanding
(also verifying) the learning algorithm that can be applied on the CN-net neural model.
The CN-net modeling technique is suitable for the supervised learning algorithm. It can
be extended to unsupervised learning or reinforcement learning algorithm [2] Based on
this evaluation, we will use the CN-net single-neuron model shown in Fig. 2 as a basic
module for constructing the whole model of the required neural network, as we will
explain in Section 4.

Samir M. Koriem

32

Fig. 3. The TRG of the CN-Net single-neuron model shown in Fig. 2.

3.2 Performance

The rapidly changing technology of very large integrated circuits (VLSI) has
provided us with a means in which it is now possible to fabricate tens of millions of
transistors interconnected on a single silicon wafer. Such capability has opened new
directions for the implementation of neural networks into silicon structures. The
complexity of such computational silicon structure derives from the multiple ways in
which a large collection of its components is made to interact with each other.

With reference to a simple VLSI neural circuit one may wish to evaluate the
maximum amount of time which must elapse from a given input data pattern application
to the successive one, knowing the propagation delay of each element in this circuit.
From more complex VLSI implementation of neural networks, with many cascaded
stages for creating a multilayer neural network, this task is complicated by the possibility
to vary the input data pattern X (or the weighted data pattern W), while the previous
pattern still propagates in the network.

From the continuing VLSI revolution, we found that a vital need to develop
specification and verification technique such as the CN-nets to ameliorate the difficulties
associated with validating VLSI neural circuit designs. For this purpose, in the previous
section, we have studied through the TRG how our proposed CN-net technique is able to
provide a formal specification concept for a neural network. The TRG permits the
automatic translation of behavioral specification neural model into a state transition
graph made up of a set of states, a set of actions (firing the transitions), and a succession
relation associating states to actions. Furthermore, from the TRG, we are able to check
the validity of the modeled neural network. In this section, we complete the framework
of CN-net methodology by evaluating the performance of a VLSI neural network.

Given time delays of elementary VLSI circuit of each neuron structure in the
ANNs, the CN-net model of the desired neural network can be executed to obtain a
TRG whose arcs are labeled with firing transitions numbers and their time delays. As an
example, see Fig. 3. For evaluating the performance of VLSI circuit that implements the
desired neural network, we calculate the Maximum Processing Rate (MPR) for the CN-
net model of this network. To calculate this performance measure, we apply the results

S1 S2 S3 S4 S5 t4 t5 t5 t5
S6 S7 t6 t7

1 1 1 2 3 zero

CN-Nets for Modeling and Analysing . . .

33

obtained by Ramchandani [4] to the TRG of the CN-net model as follows. After
developing the TRG, we search all the paths of the TRG (from the initial state to the
final state) to find the path with the maximum time delays. Then, the MPR can be
obtained from the TRG by simply adding up the firing delays of the transitions over this
path. Thus, the MPR can be defined as the determination of the maximum speed at
which signals can flow in the various paths assuming that the modeled circuit is
operating correctly.

Let k = t1 t2 ... ti ... tf be a firing sequence of transitions of a path k in a TRG,
then the total delay time k of k is equal to 1 + 2 + ... + i +...+ f, where i is a given
delay time of a transition ti in a CN-net model. Based on this concept, we can formally
describe the MPR as follows:

MPR = max{ k : k=1, 2, ..., q}

where q is the number of signal paths in the TRG and k is the sum of the firing delays
of the transitions in the path k.

Example: Consider the TRG shown in Fig. 4 is developed from a CN-net neural model.
Firing transition sequences or execution scenarios of successful execution are given as:
(a) t1 t2 t3 t4 t8; and (b) t1 t5 t6 t7 t8. The execution time of the first
scenario a = 1 + 2 + 3 + 4 + 8 = 2 + zero + 3 + 1 + 1 = 7 time units. The execution
time of the second scenario b = 1 + 5 + 6 + 7 + 8 = 2 + zero + 3 + 3 + 1 = 9 time
units. By enumerating all paths in the net, the MPR is equal to 9 time units.

4. Application of a CN-Net to Feedforward Neural Networks

In this section, we explain how the CN-net model can be used as a powerful
analysis tool for studying the various feedforward neural network configurations. This
type of networks has been widely used in the literature as a practical neural network for
illustrating the dynamics of ANNs [3].

4.1 XOR Feedforward neural network

Feedforward networks constitute an important variety of neural networks [2, 3].
For such networks, it is possible to index the neurons in such a way that the output of a
neuron j is connected to an input of a neuron i when j < i. The final output of this
network depends only on synaptic weights and the pattern presented at the input of the
neural network because there is no feedback. This type of network can be connected in
cascade to create a multilayer network. Thus, we can call such network a multilayer
feedforward neural network. The most famous practical example of such network is the

Samir M. Koriem

34

Fig. 4. An example of TRG.

exclusive or (XOR) network [2]. This network responds {1} if it receives {0, 1} or {1,0}
and responds {0} otherwise. Fig. 5 shows a network capable of this pattern.

As shown in Fig. 5, the input layer contains NE1 and NE2, the hidden layer
contains NE3 and NE4, and the output layer contains NE5. In Fig. 5, NE1 and NE2
transmit, in parallel fashion, the input data x1 (along with the weighted data w1) and the
input data x2 (along with the weighted data w4) to NE3 and NE4, respectively. Then, NE1
and NE2 transmit, in parallel fashion, the input data x1 (along with the weighted data w3)
and the input data x2 (along with the weighted data w2) to NE4 and NE3, respectively. In
other words, NE1 and NE2 are only used for transmitting the required data to the
network (e.g. each one has a threshold of value zero). Both NE3 and NE4 represent the
hidden neurons. The NE5 delivers an output of this network.

The structure and behavior of the XOR neural network shown in Fig. 5 can be
described using the CN-net model shown in Fig. 6. This model is also used to represent
the communication and computation behavior of each neuron in the XOR network.

Fig. 5. A XOR feedforward neural network.

t1
S8 S1 S2

S3
S7

S5 S6

S4
t3 t2 t4

t5 t7 t6
t8

1 =2

2 =zero 3 =3
4 =1

6 =3 7

8 =1
5 =zero

TLU2

TLU3

TLU4
TLU5

TLU1 PE3

 PE5

 PE4

3
x1

4

5 w5

w6
RES5

w1

w2
w3

w4

x1

x2
x2

RES3

RES4
Input Layer Hidden Layer Output Layer

CN-Nets for Modeling and Analysing . . .

35

Fig. 6. A CN-Net model for the feedforward neural network.

 OUT-RES5

 OUT-RES1 OUT-RES2
 G(c4,c6) G(c3,c5) Tst-send1

 G(c4,c6) G(c4,c6)
 G(c4,c6) G(c4,c6)

 G(c3,c5) G(c3,c5)
 G(c3,c5) G(c3,c5)

 Xbuid-up1 Xbuid-up2 Wbuid-up2 Wbuid-up1
 Tsend-I1 Tsend-I2

 ADAPT

 Tsend-II

 2c3
 2c5 2c4

 2c6

 c6 c5

 G(2c3, 2c4)
 INP-NE4 INP-NE3 2c3 2c4 c5 c6 G(2c3, 2c6) G(2c4, 2c5) Tend-rec3 Tend-rec4

 X3 X4 W3 W4
 G(c3,c6) G(c4,c5) G(c3,c6) G(c4,c5)

 v v v v
 3 4

 c6
 Tmult3 Tmult4

 Tadd4

 Tadd3

 Tmult5

 Tadd5

 MULT-RES3 MULT-RES4

 MULT-RES5

 ADD-RES3 ADD-

 ADD-RES5

 5
 Tend-rec5

 INP-NE5

 Tsend- Tsend-I3
 OUT-RES5 OUT-RES5

 G(c5, c6)

 c6

 c6

 G(c5, c6) G(c5, c6)
 v v

 v
 G(c5, c6)

 c6
 c6
 c6

 c6

 c6
 X5 W5

 v v

 G(c3,c6) G(c4,c5)

 : < c6, 1>
 : < c5, 2>

 : < c4, 3>
 : < c3, 4>

 c6

 c6 c6 c5 c5
 c5
 c5
 c5

 c5

 c6 c5

 c6 c6 c5 c5

 c6

 STATUS3
 1 1

 2

 3 3

 4 4

 5 5

6 6

 7

 8

 9

Samir M. Koriem

36

A description of the CN-net model of Fig. 6 is illustrated in Table 2. In the initial state of
this model, a place OUT-RES1 contains the colored tokens <DATA13, (c6,1)>, <DATA14,
(c4,3)> and a place OUT-RES2 contains the colored tokens <DATA23, (c5,2)>, <DATA24,
(c3,4)>. Starting from this initial state, we can generate the TRG of the CN-net model of
XOR network as shown in Fig.7. The formal description of this TRG is presented in the
Appendix.

Table 2. Annotation of the places and transitions of the XOR CN-Net model shown in Fig. 6

OUT-RESi (p1, p2) : A NEi (i = 1, 2) contains its output results. The tokens shown in this place
represent the output results obtained from a NEi.

Tst-send i (t1, t2): A NEi (i = 1, 2) starts to send its output data to NE3 and NE4.
Xbuild-up1 p3: A NE1 allocates the data pattern x1, x1 that should be send to NE3 and NE4,

respectively.
Xbuild-up2 p5: A NE2 allocates the data pattern x2, x2 that should be send to NE3 and NE4, respectively.
Wbuild-up1 p4: A NE1 allocates the weight pattern w1, w3 that should be send to NE3 and NE4,

respectively. The weights w1, and w3 are related to the data x1 and x1, respectively.
Wbuild-up2 p6 : A NE2 allocates the weight pattern w2, w4 that should be send to NE3 and NE4,

respectively. The weights w2 and w4 are related to the data x2 and x2, respectively.
Tsend-I i (t3, t4): Neurons i and i+1 (i = 1) transmit, in parallel fashion, the data (x1, w1) and (x2, w4)

to NE4 and NE3, respectively.
ADAPT p9 : Neurons i and i+1 (i = 1) are ready to transmit the data (x1, w3) and (x2, w2) to NE3, and

NE4, respectively.
Tsend-II t5 : Neurons i and i+1 (i = 1) transmit, in parallel fashion, the data (x1, w3) and (x2, w2) to

NE3, and NE4, respectively.
STATUSi (p7, p8): A NEi (i = 3, 4) is busy, when the place STATUSi contains a token. This means

that a NEi is not ready to accommodate another connection with its neighboring neurons.
Tsend-Ii t14, t15: A NEi (i = 3, 4) transmits its output data to the NE5.
INP-NEi (p10, p11, p24): A NEi (i = 3, 4, 5) receives data from its neighboring neurons.
Tend-rec i (t6, t7, t16): A NEi (i = 3, 4, 5) has completely received its required data from the

neighboring neurons.
Xi (p12, p15, p25): A NEi (i = 3, 4, 5) recognizes its input data vector X from the data coming

from the neighboring neurons.
Wi (p13, p16, p26): A NEi (i = 3, 4, 5) recognizes its weighted data vector W from the data

coming from the neighboring neurons.
i (p14, p17, p27): A threshold value of the NEi (i = 3, 4, 5).

Tmult i (t8, t9, t17): A NEi (i = 3, 4, 5) executing its multiplication operation.
MUL-RESi (p18, p19, p28): The results of the multiplication operations of the NEi (i = 3, 4, 5).
Tadd i (t10, t11, t18): A NEi (i = 3, 4, 5) executing its addition operation.
ADD-RESi (p20, p21, p29): The result of the addition operation of the NEi

(i = 3, 4, 5).
Tshold i (t12, t13, t19): A NEi (i = 3, 4, 5)) executing its comparison operation.
OUT-RESi (p22, p23, p30): The output result of the NEi (i = 3, 4, 5).

CN-Nets for Modeling and Analysing . . .

37

 As we have illustrated in the Appendix, the mathematical analysis of TRG of
Fig.7 provides us with the complete information regarding the movement of tokens, the
existence of different types of conditions at different levels and the firing sequences of
transitions. This information help us in studying the dynamics of the modeled networks.
The term dynamics applied to nets describes how the net functions over time. Firing
sequences or execution scenarios of transitions of Fig. 7 are given below:

 t1 t2 t3,t4 t5 t6 t7 t8,t9 t8,t9 t10,t11 t12,t13 t14,t15 t16 t17 t17 t18 t19.
 t2 t1 t3,t4 t5 t7 t6 t8,t9 t8,t9 t10,t11 t12,t13 t14,t15 t16 t17 t17 t18 t19.

Since the transitions t1, t2, t6, t7 and t16 represent the immediate transitions in both the
above paths, the MPRs of these paths are equal. Then, the MPR of the CN-net XOR
model is equal to 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 time units.

From the above analysis of the CN-net XOR model shown in Fig. 6 and its TRG
shown in Fig. 7, we observe the following interesting points.

 The model provides us with clear and understandable graphical representation for
the modeled neural network. This representation has a potential for being useful
in the design of fitting VLSI circuit for the desired network.

Fig. 7. The TRG of the CN-Net model of Fig. 6.

t1 S2
S1

S3
S4 S5

S7

S8
S9

S10 S11 S12 S13 S14 S15 S16

S17 S18 S19

S6
t2

 t3, t4

t16

t5

t6

t7

t2 t1 t7

t6

 t8, t9 t10, t12, t14,

t17
t17

t18 t19

 t8,
 t9

1 2

3

4 5 6

zero

3 7
7

8 9

zero
zero zero zero
zero zero

zero

zero

Samir M. Koriem

38

 There is a direct correlation between elements of the model and circuit
realizations: places, tokens, and transitions could represent wires, signals, and
actions, respectively.

 The model does not serve only as a description scheme but it is accompanied by a

mathematical methodology which allows the dynamic analysis of the desired
neural network. Furthermore, the formal description of the TRG illustrates the
various steps of the learning algorithm that can be applied to the CN-net neural
model. However, the CN-net model can be used as a learning model. This
learning model will help the user to apply different types of learning algorithms
[3] to the modeled neural network and study them in an easy way.

4.2 Multilayer neural network

The motivation for the introduction of our proposed CN-net modeling technique
is not only for facilitating the modeling of neural networks in an elegant way but also for
performing a compact representation for a complex neural network. In order to
understand how the CN-net can be useful for providing this compact representation, we
use the multilayer neural network shown in Fig. 8. This figure illustrates the structure of
a six-layer feedforward neural network with eleven neurons. The circles and arcs of the
network represent the computing neuron elements and their communication paths,
respectively. As shown in Fig. 8, the input layer contains NE1 and NE2. The hidden
layers compress layers 1, 2, 3, and 4. The output layer contains NE11. In this network, we
consider NE1 and NE2 are only used for transmitting the required data to the network
(e.g. each one has a threshold of value zero). In practice, the neurons in one layer
generate and transmit outputs to the following layer in accordance with the weighted
inputs from the previous layer and the thershould values.

Fig. 8. Multilayer feedforward neural network.

 Layer-1 Layer-2 Layer-3 Layer-4

 NE3

 NE2 NE10 NE4

 NE5

 NE6

 NE7

 NE9 NE1
 NE11

 w1

 w12

 w8 w5 w13

 w4 w8
 w18

 w16

 w17

 w3

 x1

 x2
 x2

 x1 w6
 w7

 w10
 w11

 w14
 w15

 RES19

Input
Layer Output

Layer

CN-Nets for Modeling and Analysing . . .

39

From the above description of the network of Fig. 8, we observe that the
dynamic behavior of the neurons of each layer is similar except the output layer. Since
the tokens of the CN-net framework are designed to carry the input data, the weighted
data, the threshold value, or the output result of each neuron, we can easily use this CN-
net modeling flexibility to model the dynamic behavior between the neurons of two
similar layers and then repeat this model according to the number of layers that have
similar behaviors.

In order to facilitate the modeling of the network of Fig. 8, we consider the CN-
net model of Fig. 6 as consisting of two submodels as shown in Fig. 9: (i) a “submodel
A” which is started from the places OUT-RES1, and OUT-RES2 to the transitions Tshold3
and Tshold4; and (ii) a “submodel B” which is started from the place INP-NEU5 to the
place OUT-RES5. According to the models shown in Fig. 6 and 9, a “submodel A” is
used to describe the computation and communication behavior between the neurons of
the input layer and those of the hidden layer. Also, a “submodel B” is used to describe
the behavior between the neurons of the hidden layer and the neuron of the output layer.

For the purpose of modeling the network of Fig. 8, a “submodel A” can be used
to model the dynamic behavior between any two similar layers (they have the same
number of neurons) such as input layer and layer-1, layer-1 and layer-2, layer-2 and
layer-3, as well as layer-3 and layer-4. Thus, the number of these dynamics is four. Since
the neurons of these layers perform the same behavior, the dynamics among these layers
are also samiliars. To model these dynamics, we can easily repeat the computation and
communication behavior of a “submodel A” according to the number of dynamics
among the desired layers. To model the mechanism of this repetition, we have used the
places COUNTI, COUNTII, TESTI, and TESTII as well as the transitions TcountI, TcountII,
TtestI, and TtestII shown in Fig.9. Finally, a “submodel B” can be used to describe the
dynamic behavior between the neurons of the layer-4 and the neuron of the output layer.

A place COUNTI (COUNTII) is used to count the number of dynamics among the

layers that should be repeated. As shown in Fig. 9, there are three colored tokens in each
of the places COUNTI and COUNTII. These colored tokens represent the number of
dynamics among the layers: layer-1 and layer-2, layer-2 and layer-3, as well as layer-3
and layer-4. In the initial state of the model of Fig. 9, a place OUT-RES1 contains the
colored tokens <DATA13, (c6, 1)>, <DATA14, (c4, 3)> and a place OUT-RES2 contains
the colored tokens <DATA23, (c5, 2)>, <DATA24, (c3, 4)>. By running these tokens in
the “submodel A”, we exhibit the computation and communication behavior between the
input layer and layer-1. Once the results of this behavior reach the places TESTI and
TESTII, the transitions TcountI and TcountII start to exhibit the dynamics among the layers
2, 3, and 4.

Samir M. Koriem

40

To organize our modeling, a place TESTI (TESTII) is used to collect the results
obtained from a neuron i (neuron j) in the layer k. These results are used as input data to
the neurons of the layer k+1. Firing a transition TcountI (TcountII) denotes that the model is
still performing the dynamics among the layers 2, 3, and 4. The firing of a transition TtestI
(TtestII) indicates that the behaviors of these layers are exhibited. When the places OUT-
RES3, and OUT-RES4 of Fig. 9 receive tokens from the transitions TtestI and TtestII
respectively, the final results of the layer-4 of Fig. 8 are obtained. These results proceed
to the place INP-NE5 of the “submodel B” through the transitions Tsend-I3 and Tsend-I4,
asshown in Fig. 9. Then, the “submodel B” is used to exhibit the dynamic behavior
between the neuron of layer 4 and a neuron 11 of the output layer. When the place OUT-
RES5 receives a token, the final result of the network of Fig. 8 is obtained.

Fig. 9. A CN-Net model for the multilayer feedforward neural network of figures 8.

OUT-RES1 OUT-RES2

OUT-RES3 OUT-RES4

Submodel A
Obtained from Figure 5

COUNTI COUNTII
TESTI

TTESTII

TESTII

TTESTI TcountII TcountI

 Tshold4 Tshold3

 v

 v
 v v

 v
 v

 v
 v

2v 2v

Submodel B
Obtained from Figure 5

Final Output Result

 v v

 OUT-RES5

INP-NE5

 Tsend-I4 Tsend-I3
 v v

 : < c6, 1>
 : < c5, 2>

 : < c4, 3>
 : < c3, 4>

CN-Nets for Modeling and Analysing . . .

41

According to the above explanation, we can easily use our modular approach (e.g.
submodel A and submodel B) to exhibit the behavior of n-layers feedforward neural
networks such as that of Fig. 8. Based on this modular approach, the performance
measure MPR of the network of Fig. 8 can be calculated as follows. From the TRG of
Fig. 7, we calculate the MPR for the submodel A. Thus, the MPR of a submodel A is
equal to 1 + 2 + 3 + 3 + 4 + 5 time units. Subsequently, the MPR of the layers 1, 2, 3
and 4 of Fig. 8 is equal to 4(1 + 2 + 3 + 3 + 4 + 5) time units. From the TRG of Fig. 3,
we calculate the MPR for the submodel B. Thus, the MPR of submodel B is equal to 1 +

1 + 2 + 3 time units. Finally, the MPR of a six-layer feedforward neural network of
Fig. 8 is calculated as follows: 4 (1 + 2 + 3 + 3 + 4 + 5) + (1 + 1 + 2 + 3) time units.

One of the main problems in neural networks is to obtain a topological structure
and a learning rule which guarantee the stability of the network [3]. It is clear from the
network modeled above that the CN-net is capable of providing a mechanism for
studying the different topological structures of the desired neural network (e.g. see
Figures 6 and 9) as well as performing the various learning algorithms that are required
for such network (e.g. see Fig. 7). Furthermore, we observe that the computations in a
neural network are basically matrix products. Matrix products are also the only
operations inside the network which absolutely require data communications between
the processing elements of the neurons. Thus, if we implement the neural network onto
VLSI chip, we can easily parallelize these matrix products. This parallelization achieves
high speed computations and few data communications. Also, this implementation
approach makes the matrix product algorithms run by each processing element identical
and simple as well as makes the communication between processing elements very
regular. Another implementation approach can be found in [3]. As shown in Figures 6
and 9, the CN-nets can model the neural network hierarchically; at various levels of
abstraction and detail. This methodology enables us to design VLSI circuits for the
complicated neural network in an elegant way.

To understand the mechanism with which the design of CN-net neural model can

be transformed to VLSI circuit, we illustrate the isomorphisms between a neuron
architecture and a CN-net concept.

 A place p P represents the output through one arc. The place / soma is the
“storage” or waiting element of the model.

 The arc between the place p P and the transition t T represents the axon
and it is working with the multiplicity colored function G(a).

 The output arcs from the typical CN-net transition are corresponding to the
axon terminals in the neuron.

 The input arcs to the place p P represent the axon terminals from other
neurons.

Samir M. Koriem

42

 The colored tokens in the CN-net represent the various input/output values
that effect on the behavior of the neuron. The colored tokens carry the
input data to the neuron, the corresponding weighted data, the threshold
value of the neuron, or the output result of the neuron.

 The transitions in the CN-net represent the various computation (e.g.
addition, multiplication and comparison) and communication (e.g.
transmitting and receiving data between the active neuron and its
neighboring neurons) events that occur in the neuron.

 The predefined delay times for the transitions of different colors represent
the different capabilities of the various neuron cells.

5. Conclusion

We have developed a CN-net as a novel modeling technique for studying and
analyzing the structure properties and dynamic behaviors of the ANNs. A generic CN-
net model for a single artificial neuron is developed and analyzed. This generic model
has the capability to accurately describe the characteristics of any neuron in the ANNs.
To provide a practical insight into the application of CN-net technique to the ANNs, we
have used this generic module for developing CN-net models for various feedforward
neural network configurations. This study shows that the CN-net can be easily used as a
modular approach for modeling the dynamics of n-layers feedforward neural networks.

We have explained how the formal description of the TRG of the desired CN-net

model can be easily used for studying (i) the various steps of the learning algorithm that
can be applied to this model; and (ii) the movement of data at the various elements of
each neuron in the network. We have also explained how the CN-net model is very
useful in the design of VLSI circuits for ANNs.

References

[1] Habib, M. K. and Akel, H. “A Digital Neuron Type Processor and Its VLSI Design.” IEEE Transactions

on Circuits and Systems, 36, No. 5 (May 1989) , 739-746.
[2] Kim, S.T., Suwunboriruksa, K., Herath, S. Jayasumana, A. and Herath, J. “Algorithmic Transformations

for Neural Computing and Performance of Supervised Learning on a Data Flow Machine.” IEEE
Transactions on Software Engineering, 18, No. 7 (July 1992), 613-623.

[3] Petrowski, A., Dreyfus, G. and Girault, C. “Performance Analysis of a Pipelined Backpropagation
Parallel Algorithm.” IEEE Transactions on Neural Networks, 4, No. 6 (Nov. 1993), 970-981.

[4] Freedman, P. “Time, Petri Nets, and Robotics.” IEEE Transactions on Robotics and Automation, 7, No.
4 (August 1991), 417-433.

[5] Zargham, M. R. and Jyman, M. “Neural Petri Nets.” In: Proceedings of the International Workshop
Timed Petri Nets, Torino, Italy (1985), 72-77.

[6] Ahson, S.I. “Petri Net Models of Fuzzy Neural Networks.” IEEE Transactions on Systems, Man,
and Cybernetics, 25, No. 6 (June 1995), 926-932.

CN-Nets for Modeling and Analysing . . .

43

[7] Chamas, N., Anneberg, L. and Yaprak, E. “Timed Neural Petri Nets.” In: Proceedings of the 36th
Midwest Symposium on Circuits and Systems, Detroit, MI, USA (16-18 August 1993) , 926-929.

[8] Hadjinicolaou, M. G., Abdelrazik, M. B. and Musgrave, G. “Structured Analysis for Neural Networks
Using Petri Nets.” In: Proceedings of the 33rd. Midwest Symposium on Circuits and Systems, Calgary,
Alta., Canada (Aug. 1990) , 770-773.

[9] Habib, M. K. and Newcomb, R. W. “Neuron Type Processor Modeling Using a Timed Petri
Net.” IEEE Transactions on Neural Networks, 1, No. 4 (Dec. 1990), 282-289.

[10] Smith, L. S. “A Framework for Neural Net Specification.” IEEE Transactions on Software Engineering,
18, No. 7 (July 1992) ,601-612.

[11] Gaeta, R. “Efficient Discrete-Event Simulation of Colored Petri Nets.” IEEE Transactions on
Software Engineering, 22, No. 9 (Sept. 1996).

[12] Lakos, C. “On the Abstaction of Colored Petri Net.” In: Proceedings of the 18th International
Conference on Application and Theory of Petri Nets, Toulouse, France (June 23-27, 1997).

[13] Shapiro, R. M. “Validation of a VLSI Chip Using Hierarchical Colored Petri Nets.” Journal of
Microelectronics and Reliability, Special Issue on Petri Nets, Pergamon Press (1991), 667-687.

[14] Stiege, G. “Equivalencies of Colored Petri Nets.” Petri Net Newsletters, No. 52 (April 1997), 33-58.
[15] Aura, T. and Lilius, J. “Time Process for Time Petri Nets.” In: Proceedings of the 18th

International Conference on Application and Theory of Petri Nets, Toulouse, France (June 23-
27), 1997.

[16] Nicol, D. M. and Mao, W. “Automated Parallelization of Timed Petri Net Simulations.” Journal of
Parallel and Distributed Computing, 29, No. 1 (August 1995), 60-74.

[17] Tanabe, M. “Timed Petri Nets and Temporal Linear Logic.” In: Proceedings of the 18th International
Conference on Application and Theory of Petri Nets, Toulouse, France (June 23-27, 1997).

[18] Zuberek, M. “Throughput Analysis in Timed Petri Nets.” In: Proceedings of the 35th Midwest
Symposium on Circuits and Systems, Washington DC, USA (August 9-12, 1992), 1576-1580.

Samir M. Koriem

44

Appendix

In the following, we formally describe the dynamic behavior of our CN-net XOR

model of Fig. 6 through its developed TRG shown in Fig. 7. To simplify our explanation
of this TRG, we give other names for the transitions and places of the model of Fig. 6 as
shown in Table 2.

S1 : MRK1 : (p1) = <DATA13, (c6,1)>, <DATA14, (c4,3)>,

 (p2) = <DATA23, (c5,2)>, <DATA24, (c3,4)>
 SET1 : TNEW : t1 = <(c6,1), (c4,3)>, t2 = < (c5,2), (c3,4)>
 TFIR : t1 can fire, t2 can fire

S2 : MRK2 : (p2) = <DATA23, (c5,2)>, <DATA24, (c3,4)>,
 (p3) = <x1, (c6,1)>, <x1, (c4,3)>,
 (p4) = <w1, (c6,1)>, <w3,(c4,3)>, (p7)= <s1, (c6,1)>
 SET2 : TFIR : t2 = < (c5,2), (c3, 4)>
 INH2 : H(p7 <c6,1>, t1)

S3 : MRK3 : (p1) = <DATA13, (c6,1)>, <DATA14, (c4,3)>,
 (p5) = <x2, (c5,2)>, <x2, (c3,4)>,
 (p6) = <w4, (c5,2)>, <w2,(c3,4)>, (p8) = <s2, (c5,2)>
 SET3 : TFIR : t1 = < (c6,1), (c4,3)>
 INH3 : H(p8 <c5, 2>, t2)

S4 : MRK4 : (p3) = <x1, (c6,1)>, <x1, (c4,3)>, (p4) = <w1, (c6,1)>, <w3,(c4,3)>,

 (p7) = <s1, (c6,1)>, (p5) = <x2, (c5,2)>, <x2, (c3,4)>,
 (p6) = <w4, (c5,2)>, <w2,(c3,4)>, (p8) = <s2, (c5,2)>

 SET4 : TFIR : t3 = <COM13, 1, ((c6,1), (c4,3))>,
t4 = <COM24, 1, ((c5,2), (c3,4))>

 INH4 : H(p7 <c6,1>, t1), H(p8 <c5,2>, t2)

S5 : MRK5 : (p10) = <x1, (c6,1)>, <w1, (c6,1)>,

(p11) = <x2, (c5,2)>, <w4, (c5,2)>,
 (p9) = <x1, (c4,3)>, <w3, (c4,3)>, <x2, (c3,4)>, <w2, (c3,4)>,

 (p7) = <s1, (c6,1)>, (p8)= <s2, (c5,2)>
 SET5 : TFIR : t5 = <(COM14, COM23), 2, ((c4,3), (c3,4))>
 INH5 : H(p7 <c6,1>, t1), H(p8 <c5,2>, t2)

S6 : MRK6 : (p10) = <x1, (c6,1)>, <w1, (c6,1)>, <x2, (c3,4)>, <w2, (c3,4)>,
 (p11) = <x2, (c5,2)>, <w4, (c5,2)>, <x1, (c4,3)>, <w3, (c4,3)>,

CN-Nets for Modeling and Analysing . . .

45

 (p7) = <s1, (c6,1)>, (p8) = <s2, (c5,2)>
 SET6 : TNEW : t6 = <(c6,1), (c3,4)> t7 = <(c4,3), (c5,2))>
 TFIR : t6 can fire, t7 can fire
 INH6 : H(p7 <c6,1>, t1), H(p8 <c5,2>, t2)

S7 : MRK7 : (p11) = <x2, (c5,2)>, <w4, (c5,2)>, <x1, (c4,3)>, <w3, (c4,3)>,
 (p12) = <x1, (c6,1)>, <x2, (c3,4)>,

(p13) = <w1, (c6,1)>, <w2, (c3,4)>, (p14) = < 3, (c6,1)>
 SET7 : TFIR : t7 = <(c4,3), (c5,2) >
 INH7 : H(p14 <c6,1>, t6)

S8 : MRK8 : (p10) = <x1, (c6,1)>, <w1, (c6,1)>, <x2, (c3,4)>, <w2, (c3,4)>,
 (p15) = <x2, (c5,2)>, <x1, (c4,3)>,
 (p16) = <w4, (c5,2)>, <w3, (c4,3)>, (p17) = < 4, (c5,2)>
 SET8 : TFIR : t6 = <(c6,1), (c3,4)>
 INH8 : H(p17 <c5,2>, t7)

S9 : MRK9 : (p12) = <x1, (c6,1)>, <x2, (c3,4)>,

(p13) = <w1, (c6,1)>, <w2, (c3,4)>, (p14) = < 3, (c6,1)>,
 (p15) = <x2, (c5,2)>, <x1, (c4,3)>,
 (p16) = <w4, (c5,2)>, <w3, (c4,3)>, (p17) = < 4, (c5,2)>

SET9 : TFIR : t8 = <(x1 w1), 3, ((c6,1), (c3,4))>,
 t9 = <(x2 w4), 3, ((c5,2), (c4,3))>

 INH9 : H(p14 <c6,1>, t6), H(p17 <c5,2>, t7)

S10 : MRK10 : (p12) = <x2, (c3,4)>, (p13) = <w2, (c3,4)>,

(p14) = < 3, (c6,1)>, (p18) = <x1 w1, (c6,1)>,
 (p15) = <x1, (c4,3)>, (p16) = <w3, (c4,3)> ,

 (p17) = < 4, (c5,2)>, (p19) = x2 w4, (c5,2)>
 SET10 : TFIR : t8 = <(x2 w2), 3, ((c6,1), (c3,4))> ,

 t9 = <(x1 w3), 3, ((c5,2), (c4,3))>
 INH10 : H(p14 <c6,1>, t6), H(p17 <c5,2>, t7)

S11 : MRK11 : (p18) = <x1 w1, (c6,1)>, <x2 w2, (c3,4)>,

 (p19) = <x2 w4, (c5,2)>, <(x1 w3), (c4,3)>
 (p14) = < 3, (c6,1)>, (p17) = < 4, (c5,2)>

 SET11 : TFIR : t10 = <(x1 w1 + x2 w2), 4, ((c6,1), (c3,4))> ,
 t11 = <(x1 w3+ x2 w4), 4, ((c5,2), (c4,3))>
 INH11 : H(p14 <c6,1>, t6), H(p17 <c5,2>, t7)

S12 : MRK12 : (p20) = < 3, (c6,1)>, (p21) = < 4, (c5,2)>,

Samir M. Koriem

46

 (p14) = < 3, (c6,1)>, (p17) = < 4, (c5,2)>
 SET12 : TFIR : t12 = <(3 3), 5, (c6,1)>, t13 = <(4 4), 5, (c5,2)>,
 INH12 : H(p14 <c6,1>, t6), H(p17 <c5,2>, t7)

S13 : MRK13 : (p22) = <DATA35, (c6,1)>, (p23) = <DATA45, (c5,2)>
 SET13 : TFIR : t14 = <COM35, 6, (c6,1) >, t15 = <COM45, 6, (c5,2)>
 S14 : MRK14 : (p24) = <DATA35, (c6,1)>, <DATA45, (c5,2)>,
 SET14 : TFIR : t16 = <(c6,1), (c5,2)>

S15 : MRK15 : (p25) = <RES3, (c6,1)>, <RES4, (c5,2)>,
 (p26) = <w5, (c6,1)>, <w6, (c5,2)>
 (p27) = < 5, (c6,1)>
 SET15 : TFIR : t17 = <(RES3 w5), 7, ((c6,1), (c5,2))>
 INH15 : H(p27 <c6,1>, t16)

S16 : MRK16 : (p25) = <RES4, (c5,2)>, (p26) = <w6, (c5,2)>,

 (p28) = <(RES3 w5), (c6,1)>
 (p27) = < 5, (c6,1)>
 SET16 : TFIR : t17 = <(RES4 w6), 7, ((c6,1), (c5,2))>
 INH16 : H(p27 <c6,1>, t16)

S17 : MRK17 : (p28) = <(RES3 w5), (c6,1)>, <(RES4 w6), (c5,2)>
 (p27) = < 5, (c6,1)>
 SET17 : TFIR : t18 = <((RES3 w5) + (RES4 w6)), 8, ((c6,1), (c5,2))>
 INH17 : H(p27 <c6,1>, t16)

S18 : MRK18 : (p29) = < 5, (c6,1)>, (p27) = < 5, (c6,1)>
 SET18 : TFIR : t19 = <(5 5), 9, (c6,1)>
 INH18 : H(p27 <c6,1>, t16)

S19 : MRK19 : (p30) = <RES5, (c6,1)>

CN-Nets for Modeling and Analysing . . .

47

 كات "سي إن" لتمثيل وتحليل الشبكات العصبيةشب

 سمير إم. كريم
 قسم نظم وهندسة الحاسب، كلية الهندسة،

 جامعة الأزهر، القاهرة، مصر
 م)٩/٢/٢٠٠٠م؛ وقبل للنشر في ٢٤/٢/١٩٩٨(قدّم للنشر في

طلــق يقــدم هــذا البحــث مفهــوم شــبكات "بــتري العصــبية الزمنيــة الملونــة" (اختصــارا ي ملخــص البحــث.

عليها شبكات "سي إن") التي تشبه في أدائها الهياكل العصبية. والتكنيك الخاص لشبكات "سي إن"
يتضمن المعالم المميزة للشبكات العصبية، بالإضافة إلى إمكانية التمثيل التي تتمتع đا كلا من شبكات

ة لبنــاء شــبكات "ســي إن". بــتري الزمنيــة والملونــة. وهــذا البحــث يقــدم شــرحا وافيــا للأساســيات الضــروري
ولقد تم إظهار المقدرة الحسابية لنموذج شبكات "سي إن" من خلال "الشكل الزمني الموصل" المستنتج
مــن هــذا النمــوذج. وصــممت شــبكات "ســي إن" بغــرض دراســة الخــواص البنائيــة للشــبكات العصــبية

وك الــــديناميكي لهـــــذه الصــــناعية بينمــــا اســـــتخدم "الشــــكل الـــــزمني الموصــــل" للتحقــــق مـــــن صــــحة الســـــل
الشبكات. بالإضافة إلى ذلك فإن شبكات "سي إن" تقدم تمثيلا سهلا ومقروءا للنموذج المطلوب، مما
يســهل تصــميم الــدوائر المتكاملــة كثيفــة العــدد المســتخدمة في الشــبكات العصــبية المعقــدة. وقــد تم تقــديم

دة لهـا القـدرة علـى محاكـاة السـلوك أمثلة عملية لتوضيح طريقـة توظيـف شـبكات "سـي إن" كتقنيـة جديـ
 الديناميكي والنشاطات المتوازية للشبكات العصبية الصناعية.

