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Abstract. This paper deals with modeling and simulation of neural oscillators introduced by Ellias and 
Grossberg. The proposed model incorporates all-important physiological characteristics. The model uses 
reliable, compact, and inexpensive components for simulation and several such models can be interconnected 
together to study complex dynamic behavior of central nervous system such as the human gait transitions. The 
model has been successfully tested for different phenomena and behavior of neuronal systems. A chain of the 
proposed electronic model tested for phase locking produced good results similar to those obtained from 
software simulation. This model is also a step in the direction of development of artificial intelligent systems. 
 
 
 

1.  Introduction 
 

An electronic model of any system possesses advantages of being compact, flexible, and 
cheap. An electronic model of a neuron gives clear and consistent picture of its 
physiological behavior. In such a model various circuit parameters, which are analogous 
to different physiological processes, can be varied and the effect of these changes on the 
performance of the system can be visually observed. Such studies are of great 
importance in research, diagnosis and prosthesis. This paper presents an electronic 
version of a model proposed by Ellias and Grossberg [1] (EG oscillator) which provides 
an accurate functional representation of reciprocally connected fast-slow oscillator. 
Several such models can be connected together to study the behavior of complex 
interconnected neuronal networks. 

 

The model incorporates all-important physiological characteristics. The model 
uses reliable, compact, and inexpensive components. The model has been successfully 
tested for different phenomena and behavior of neuronal systems. A chain of the  
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purposed electronic model tested for phase locking produced good results similar to 
those obtained from software simulation. This model is also a step in the direction of 
development of artificial intelligent systems. 
 
The model incorporates the following features: 
 

1- The use of integrated circuits facilitates the construction of a reliable, 
compact and reasonably inexpensive units of the model. 

2- Operational amplifiers are extensively used so that the signals at each 
stage bear a simple mathematical relationship to those at earlier stages 
and thus permitting easy comparison with actual neuronal data. 

3- All-important properties of a neuronal element can be simulated. 
 

In this paper we provide simulation results for the electronic version of the Ellias-
Grossberg single-oscillator using Electronics Workbench-5. We also study the behavior 
of a chain of four-coupled neural oscillators [2, 3] and provide EWB simulation results. 
We then study the effect of noise [4], which shows that the behavior of the oscillator is 
stable in the presence of noise. We also propose a circuit for human walk-and-run gait 
transition [5] and demonstrate its behavior through electronic simulation. 
 
 

2.  Single EG Oscillator 
 

Neurons are the information generation, transmission and distribution elements in 
the central nervous system of the living creatures. They generate, store, update and 
process information in the brain. Motor neurons carry information from brain and spinal 
cord to different parts of the body and the sensory neurons carry information from 
different parts of the body to spinal cord of the brain. The size and shape of a neuron 
may vary from one location to another due to variation in function. A number of models 
have been developed to simulate the characteristics of a neuron. The complexity of the 
models increase with the increase in the number of variables in order to describe 
accurately the time course of the ionic current that follow across nerve membranes [6, 7]. 
In this work, Ellias-Grossberg model [1] has been chosen because of its simplicity 
compared to other biological models, ease of control due to its parameters, and 
insensitivity to noise. The model of single oscillator is defined in the simplest form as a 
feedback loop between an excitatory unit and an inhibitory unit as shown in Fig. 1.a and 
governed by the following equations: 

y )E(x
dt

dy

Γ]Dx[yI}Γ]x){C[x(BAx
dt

dx

 
(1) 
 
 
(2) 
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where (s)+ = max (s, 0). The variable x represents the potential of an excitatory cell 
governed by a non-linear shunting equation. y represents the  potential of an inhibitory 
cell governed by a linear equation. The parameters are A=1, B=1, C=20, D=33.3, =0.5 
and I ranged from 0.2 to 1.0 in different trials. E in (2) governs the relative time scales of 
x and y and represents the relative rate at which the inhibitory interneuron tracks the 
firing rate of the excitatory cell. When E is small and thus (2) is in its relaxation regime, 
the excitatory cell exhibits a spike like waveform and when E is near unity the excitatory 
cell exhibits sinusoidal behavior. Computer simulations were performed for the model, 
and the obtained output response is shown in Fig. 1.b, c. 
 

 
 
 
Fig.1. (a) EG Oscillator shows the connections between the excitatory and inhibitory units. Triangle 
represents excitatory connection and circle represent inhibitory connection. (b) and (c) are the 
simulation results of the Ellias-Grossberg model, where  (b) Waveforms for inhibitory cell (solid curve) 
and excitatory cell (dashed curve), (c) Phase portrait, limit cycle and Nullclines. 
 
 

3.  Electronic Simulation of EG Oscillator 
 

Electronics Workbench-5 was used to simulate the single EG oscillator. Fig. 2 is 
the schematic diagram for the EG Oscillator. As shown in the circuit, the input is driven 
through a battery V2 that introduces an active input I=1. The input battery value controls 
the activity of the neuron. For normal operation the input battery is replaced by an 
external input I. The input summer A5 collects the coming inputs from other neurons 
and the feedback signal from the neuron output. The battery V1 presents the threshold 
value used ‘ ’. The diodes D1 and D2 used in the circuit resemble the solution for the S+ 
problem, so its output is the maximum of 0 or S that means the output has to be +ve in 
all cases. The forward voltage drop for the used diode has taken into consideration in 
simulation trials. The gain blocks represent the parameter values C, and D. The 
parameter E value is used as the gain of the integrator block A12. The feedback path is 
fed to the input summer through the analog switches, which are controlled by the pulse 
generator V3. The analog switch is used to feed the output at certain times to the input 
summer and controls the base frequency of the circuit. The output from the integrator 

           (a)    (b)        (c) 
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A10 resembles the excitatory and the output from the integrator A12 resembles the 
inhibitory. 

 
 

 
 

Fig.2. Schematic diagram for a single EG oscillator. 
 
 

From our trials on simulating this model, it was shown that changing the 
Operational Amplifier model affects the output very much. We were not concerned 
about component speed because of the low speed nature of our signal and the Ultra high-
speed components available now from everywhere [8 - 11].   
 

The simulation results are as shown in Fig. 3, for the excitatory and inhibitory 
cells activities, and the phase plane portrait that shows the limit cycle starting from a 
random value depending on the initial conditions of the excitatory and the inhibitory 
outputs. Changing the initial conditions in the range from 0 to 1 does not affect the limit 
cycle at all. These boundaries are chosen according to the simulated neuron output 
limits. 
 



Electronic Circuit Simulation . . . 

 

53

 

             

  
 

   (a)      (b) 
 
Fig.3. Relaxation oscillation obtained for the simulated Hardware neuron. (a) Waveforms for inhibitory 
cell (lower curve) and excitatory cell (upper curve), (b) Phase portrait, limit cycle. 
 
 

4.   A chain of Four EG Oscillators 
 

A chain of four coupled oscillators was simulated based on the tested EG model 
and connected as shown in Fig. 4. The schematic diagram for the chain of oscillators is 
shown in Fig. 5. The output activities from the excitatory cells are recorded and 
illustrated in Fig. 6. No wrap around is used for the chain simulation The i-th oscillator 
in the chain was governed by (1) and (2), where x and y were replaced by xi and yi 
respectively. Nearest neighbor coupling was implemented by adding the term (3) to the 
excitatory equation (1).  
 

}
Nik

Γ]k[x){ixα(B ξ  

 
Where (3) governs the Excitatory coupling term,  is the Excitatory coupling strength, 
N(i) is the set of the adjacent oscillators that connect to oscillator i and  is a scaling 
factor calculated according to the number of connected neighbors. Oscillators 2 and 3 are 
connected to their two nearest neighbors as illustrated in Fig. 4, and oscillators 1, 4 are 
only connected to one neighbor.  
 

In this paper, relaxation oscillations are used. It was shown before that, For a 
broad range of initial conditions and coupling strengths, arrays of relaxation oscillators 
synchronized more rapidly than did arrays of sinusoid oscillators under the same 
coupling and initial conditions [12]. The absolute rates of synchronization however 

(3) 
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depend on the coupling strength. At a moderate coupling strength (e.g. =0.10), the 
model used relaxation, nearest neighbor networks almost always approached synchrony 
in few cycles, while it was uncommon for their sinusoid counterparts under the same 
conditions to approach this synchrony criterion in less than 30-40 cycles. 

 
 

 
Fig. 4.  A diagram showing the interactions between the excitatory and inhibitory units in a chain of 
 four  oscillators. 
 
 

 
Fig. 5.  Schematic diagrams for a chain of four coupled oscillators. 
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Fig. 6. The chain output, showing the four neurons synchronization. 
 
 
 

5. The Effect of Noise 
 
 Oscillatory behavior in neural networks is attracting increased attention, partly due to 
recent results suggesting that responses are present in visual cortex and may contribute to 
the solution of the binding problem [13 - 16].  
 

From a theoretical point of view it needs to be clarified in how fast 
synchronization of oscillations is possible, and what the underlying mechanisms 
necessary to obtain fast synchronization are. In this section we study the fast-slow 
oscillator, characterized by the equations (4), and (5), in response to deterministic and 
noisy inputs. The input consists of two parts: the deterministic input S and the random 
noise ρ that obeys a uniform distribution. We confirm that oscillations occur only if the 
input lies within a particular interval. We establish that the input has a notable influence 
on amplitude, frequency and area of oscillations. We find that the behavior of the 
oscillator is stable in the presence of noise. Armed with these results we study how two 
competing oscillators (encoding different orientations) interact, how competition affects 
their amplitude, frequency, area, and the influence of noise. 
 

y)E(x
dt

dy

Γ]Dx[yρ}ISΓ]x){C[x(BAx
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dx

 

 

(4) 
 
 
(5) 
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In the presence of noise, oscillations occur when the deterministic input S lies within an 
oscillation interval that is shifted by roughly the mean of the added noise ρ. At very high 
noise intensities, the fast-slow oscillator produces spikes at irregular intervals. In this 
work, only regularly spaced spikes are countered as oscillations. 
 

The presence of noise hardly affects the slow node, since y averages the activity x 
from the fast node, thus establishing a baseline of activity. Hence, for stronger noise, 
inhibition from the slow node is bigger, thus ensuring that the fast node remains centered 
at the same activity, although the amplitude of oscillations varies. Fig. 7 shows the 
output when connecting two oscillators in a chain and applying input with large amount 
of noise that acceded 2.7 times of the input value. 
 

(a) (b) 
 
Fig.7. (a) and (b) Traces show the excitatory and the inhibitory outputs respectively of two  competing oscillators 

according to an application of noisy input. 
 
 

6. Human Bimanual Coordination Effects 
 

In the Yamanishi et al [4] finger-tapping task, subjects were required to 
bimanualy tap keys in time to visual signals. The timing signal was varied across ten 
relative phases: (0.0, 0.1, 0.2…1.0), where 0.0 =0 هand 1=360ه . The authors observed 
two properties in the responses of their subjects. First, the subjects ‘fingers’ tended to 
slip from intermediate relative phase relationships toward purely in-phase (0.0 and 1.0) 
or anti-phase (0.5) relationships. Second, the observed in-phase and anti-phase 
oscillations exhibited less variability than oscillations with intermediate phase 
relationships. That is, when the subjects were asked to synchronize to signals whose 
phase relationships varied from 0.0 to 1.0 the standard deviation of the errors was lowest 
when the phase relationship was near in-phase (0.0 and 1.0 or 0ه and 360 ه ) or pure anti-
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phase (0.5 or 180ه  ). The standard deviations of the errors increased as the subjects were 
required to move away from the in-phase or pure anti-phase oscillations.  
 

Grossberg [4] described an experimental task in bimanual coordination, which 
involved moving fingers or limbs in in-phase or anti-phase oscillations. For example, 
adduction of the right index finger simultaneously with abduction of the left index finger 
is an anti-phase movement. Concurrent abduction (or adduction) of both fingers is an in-
phase movement. A metronome signaled the rate of movement of the fingers. Tuller and 
Kelso [13] summarize the following four qualitative behaviors found in the bimanual 
tasks: (1) If a subject was asked to produce a 180ه anti-phase oscillation, the subject 
could do so at low frequencies. But as frequency was increased, the subject eventually 
switched to an in-phase oscillation. (2) When instructed to perform an in-phase 
oscillation, the subject could do so at both low and high frequencies. (3) Fluctuations, in 
which no clear phase relationship dominates, occur before the transition from anti-phase 
to in-phase oscillations. There does not appear to be clear transition point between 
ranges of frequencies where only in-phase output occurs and the lower frequencies were 
both anti-phase and in-phase frequencies occur. (4) Subject’s phase errors were minimal 
at required phases of 0ه180 , ه, and 360ه ( the “seagull effect” described above).     
 
6.1. Model of two-channel neural pattern generator 

The model is a version of the cooperative-competitive nonlinear feedback 
network introduced by Ellias and Grossberg [1]. The two-channel pattern generator, 
briefly summarized in Cohen, Grossberg, and Pribe [4] is depicted in Fig. 8 and obeys 
the equations: 

]2y]2)[x2yE[(1
dt

2dy

)]2g(y22D)1g(y21)[D2x(c]2I)2)[f(x2x(B2Ax
dt

2dx

]1y]1)[x1yE[(1
dt
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where D12=D21, [w]+=max(w, 0), and 
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Fig. 8. This two-channel neural pattern generator exhibits oscillatory behavior consistent with human 

performance in bimanual coordination tasks. 
 
6.2. Simulation results 

Figure 9. shows our simulation circuit diagram for the Ellias Grossberg two-
channel neural pattern generator.  The neural pattern generator reliably reproduces all 

 
 

 
Fig.9. The two-channel neural pattern generator circuit diagram. 
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four effects in response to input pulses, Ii, that mimic experimental conditions: (1) 
Increasing the frequency of anti-phase square wave, input caused a bifurcation from anti-
phase (Fig. 10.a) to in-phase (Fig. 10.b) oscillations. (2) There was no reverse transition 
in response to in-phase inputs. (3) Phase fluctuations were exhibited in between the anti-
phase and in-phase regimes (Fig. 10.c). (4) The “seagull” effect was observed (Fig. 
10.a). The tendency to slip from intermediate phase relationships toward purely in-phase 
and anti-phase. These results support the hypothesis that oscillations during human 
bimanual coordination are emergent properties of a neural network whose finger 
commands compete via slow inhibitory feed back interactions, excite themselves via fast 
excitatory interactions, and are nonlinearly coupled to shunting membrane processes via 
nonlinear sigmoid signals. 
 

(a) (b) (c) 
 

Fig.10. Bifurcation from anti-phase to in-phase oscillation in response to anti-phase inputs of 
increasing frequency. (a) The Low frequency (0.1 pulses per unit time) of the anti-phase inputs Ii 

give rise to the anti-phase oscillation. (b) The high frequency (0.85 pulses per unit time) of the anti-
phase inputs Ii give rise to the anti-phase oscillation. (c) The intermediate frequency (0.45 pulses per 

unit time) of the anti-phase inputs Ii give rise to the anti-phase oscillation. A=1.0, B=1.1, C=2.5, 
Dii=0.8, Dij=0.45, E=1.0, F1=9.0, G1=3.9, F2=0.5, G2=0.5, The input, Ii, when on was 0.4 and when off 

was 0.0. 
 
 

7.  Conclusion 
 

The neural analog presented in this work incorporates most of the important 
features of the actual biological neurons. One important advantage of this neural analog 
is that the outputs at the various stages of the analog are processed typically to that of an 
actual neural data for the direct comparison of the two. This model is flexible in its 
operation and studies can be carried out on the electrical characteristics of the different 
kinds of nerve cells by the simple process of changing the required parameters of the 
circuit. 
 

Since the low cost integrated chips are used in the present model, it serves as a 
valuable aid to study the single nerve cells as well as the neural nets incorporating 
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several neurons. The model can be updated in the future as more neural data become 
available.  

Since it is possible to control the amplitudes of the EPSPs and IPSPs and also 
their frequencies, this circuit will serve as a good aid to study the interactions of EPSPs 
and IPSPs of various amplitudes and frequency. Since it is possible to set different 
threshold values by controlling the threshold battery value, this circuit serves as a good 
means to study the effects of the synaptic inputs at several areas of the postsynaptic 
membrane having non-uniform distribution of excitability. It is seen that action potential 
and synaptic potentials are transmitted without any distortion with active axon model as 
in neurons in living creatures.  
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 ذبذبات جروسبرجتصميم نموذج محاكاة إلكتروني لم
 

 أحمد محمد محمود
 قسم هندسة الحاسب، كلية علوم الحاسب والمعلومات، 

 ، المملكة العربية السعودية١١٥٤٣، الرياض  ٥١١٧٨جامعة الملك سعود، ص.ب: 
 

 م)١٤/٠٩/١٩٩٩م؛ وقبل للنشر في ١٠/٠١/١٩٩٩(قدّم للنشر في 

 
لمحاكــاة الحاســوبية، إلى تنفيــذ النمــاذج ســعى عــدد مــن البــاحثين، بعــد نجــاح تجــارب ا ملخــص البحــث.

الناجحــة للخلايــا العصــبية علــى دوائــر  مدمجــة، لمــا لهــا مــن المميــزات  مــن حيــث: صــغر الحجــم، و قلــة  
التكلفـــة، و ســـهولة التـــداول، إلى جانـــب تســـهيل ملاحظـــة واكتشـــاف ســـلوك الخلايـــا العصـــبية بطرائـــق 

اسوبية. ونعرض في هذه الورقة لمحاكاة تصـميم ملموسة باستخدام عارضة الموجات أو شاشة العرض الح
إلكــتروني للخليــة العصــبية طبقــا لنمــوذج جروســبرج للمذبــذبات العصــبية المتعانقــة  مــع نتــائج تؤكــد نجــاح 

 هذا النموذج في محاكاة جميع وظائف الخلية.
ولقــد تم توصــيل عــدد مــن وحــدات نمــوذج الخليــة علــى شــكل سلســلة مترابطــة، وجــاءت نتــائج 
التجربــة مطابقــة لنظيرēــا باســتخدام المحاكــاة الحاســوبية. ويعــد هــذا النمــوذج خطــوة مهمــة في اتجــاه  بنــاء 
وتطـــوير خليـــة عصـــبية اصـــطناعية، ممـــا يســـهم في تطـــوير نظـــم الـــذكاء الاصـــطناعي الـــتي يتســـارع معـــدل 

 تخدامها في تطبيقات شتى في عالمنا المعاصر.اس




