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Abstract. Join is the most important and expensive operation in relational databases. The parallel join 
operation is very sensitive to the presence of the data skew. In this paper, we present two new parallel join 
algorithms for coarse-grained machines, which work optimally in presence of arbitrary amount of data skew. 
The first algorithm is sort-based and the second is hash-based. Both of these algorithms employ a 
preprocessing phase (prior to the redistribution phase) to equally partition the work among the processors. 
These algorithms are shown to be theoretically as well as practically scalable. Experimental results are 
provided on the IBM SP-2. 
 
 

1.  Introduction 
 

Join is the most important and expensive operation in relation database [1]. Natural join, 
the most popular form of join, of relation R on attribute x with relation S on attribute y is 
the set of all tuples t such that t is the concatenation of a tuple r belonging to R and a 
tuple s belonging to S and r.x = s.y. Parallel join has been a widely studied problem in 
the literature.  Most of the parallel join algorithms are based on the uniprocessor join 
algorithms. The uniprocessor join algorithms can be categorized into three major 
paradigms: nested-loop, hash-based, and sort-based based [1]. Further, these algorithms 
can be roughly divided into two groups. One group of the algorithms is skew-sensitive 
where the performance significantly deteriorates with the presence of data skew, while 
the other group is skew-insensitive which alleviates the presence of data skew to some 
degree. Database research shows that the data skew exists in many real and realistic 
datasets[2 - 4].   
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In this paper, we present two new parallel join algorithms, which work optimally 
in presence of arbitrary amount and any type of skew. The first algorithm is sort-based 
while the second is hash-based algorithm. Both of these algorithms employ a 
preprocessing phase  (prior to the redistribution phase) to equally partition the work 
among the processors using perfect information of the join attribute distribution. The 
cost of this preprocessing step is relatively small in case of uniform distribution . 
Further, it is shown to generate perfect or near-perfect load balancing for datasets with a 
varying degree of data skew. These algorithms are shown to be theoretically as well as 
practically scalable. Experimental results are provided on the IBM SP-2. Our algorithms 
are relatively architecture independent and are designed for memory-resident (in-core) 
data . 
 

The proposed algorithms have been designed for memory resident-data. In the 
new generation of coarse-grained machines, the main memory size can be as large as 
one GBytes/processor. For a 128-processor machine, the aggregate memory available 
can be as large as a few hundred gigabytes. This can accommodate relations of 
reasonable sizes in today relational database applications. Further, our algorithms can be 
easily extended for disk-resident relations. 
 

The rest of this paper is organized as follows. Section 2 describes the parallel 
machine model and a set of communication primitives.   Sections 3 present our notations 
and assumptions.  Section 4 presents the conventional join algorithms.  We review some 
of the proposed parallel join algorithms and discuss some of the important 
characteristics, which are used in classifying these algorithms in Section 5. Section 6 
presents and analyses the two new algorithms. Experimental results are presented in 
Section 7.  Conclusions are presented in Section 8. 
 
 
 

2.  Coarse-Grained Parallel Machine 
 

Coarse-Grained Machines (CGMs) consist of a set of processors (tens to a few 
thousand) connected through an interconnection network.  The memory is physically 
distributed across the processors. Interaction between processors is either through   
message passing or through a shared address space. CGMs have cut-through routed 
networks which will be the primary thrust of this paper and will be used for modeling the 
communication cost of the algorithms.   
 

Our analysis will be done for hypercube and two-dimensional meshes networks.  
The analysis for permutation networks, such as CM-5 and IBM SP Series, and 
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hypercube is the same in most cases. These cover nearly all commercially available 
machines. Although the algorithms are analyzed for two types of interconnection 
networks, they are architecture independent and can be efficiently implemented on other 
interconnection networks. 

 
Parallelization of applications requires distributing some or all of the data 

structures among the processors.   Each processor needs to access all the non-local data 
required for its local computation. This generates aggregate or collective communication 
structures. Several algorithms have been described in the literature for these primitives 
and are part of standard textbooks [5,6]. We model the cost of sending a message from 
one node to another as O(τ+μ m), where m is the size of the message,  τ  represents the 
latency, and μ represents the inverse bandwidth  of the communication   network. 
 

Table 1 describes the collective communication primitives used in the 
development of our algorithms and their communication time requirements on cut-
through routed hypercube and meshes.  In what follows, p refers to the number of 
processors. A brief description of the primitives is as follows: 
 

1. All-to-All broadcasting: In all-to-all broadcast, every node has a message 
of size m to be sent to all other processors. For more details see [6].  

2. Global combine and prefix scans: Each processor has a vector of size m. In 
the global-combine operation, an element-wise sum (or some other operation) is 
computed on the input vector such that the resultant vector will be stored on all the 
processors. In the global vector prefix-sum, an element-wise prefix-scan is used 
instead of the sum. For more details see [6].  

3. Transportation primitive: It performs many-to-many personalized 
communication with possibly high variance in message size. Let r be the maximum 
of outgoing or incoming traffic at any processor. The transportation primitive 
breaks down the communication into two all-to-all communication phases where 
all the messages sent by any particular processor have uniform message sizes [7]. 
If r ≥ p2, the running time of this operation is equal to two all-to-all communication 
operations with a maximum message size of O(r/p). For more details see [7].   

4. Non-order maintaining data movement: Each processor i has mi elements. 
The objective is to redistribute the elements such that each processor will be 
assigned approximately equal number of elements (m’). Let m be the maximum 
difference between the mi and m’. For more details see [8].  

5. Random access write: Let M be the number of elements distributed across 
p processors. Each processor is initially assigned approximately m(=M/p) 
elements. In a Random Access Write (RAW) each of the M elements may need to 
write data to another element [9]. Each element has, in array P, the index of the 
element to which it has to send its data. It is possible to have collisions during a 
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RAW. This happens when two or more data elements are written to the same 
destination. When collisions occur, one of the following can n be done: (i) choose 
one of the colliding values using a pre-defined rule (ii) combine the colliding data 
values using a pre-defined binary associative operator. Details of the algorithm for 
n writes on an array of size n are given in [10,11]. 

6. Merging two sorted lists: Merging of globally sorted lists has been widely 
studied problem in the literature. We have chosen a merging algorithm presented 
in [12]. The size of first list R is N elements and the size of second list S is M. Each 
processor has approximately the same number of elements, n=N/p and m=M/p, of 
lists R and S respectively. The computation time needed by the algorithm is 
O(δ(n+m)) when n and m are sufficiently large. 

7. Parallel sort: In the parallel sort algorithm, each processor initially has 
m(=M/p) elements. The objective is to globally sort all the elements across all the 
processors such that each processor will be assigned approximately equal number 
of elements. There are several well-known algorithms for sorting on coarse-grain 
parallel machines. We have chosen a parallel sampling-based sort for our problem 
[6]. The total computation time required is O(δ(m lg m+ p2 lg p+p lg m + m lg p)). 
For m ≥ p2, this reduces to O(δ (m lg m+p2 lg p)).   
 
Table 1. Time complexity of communication time of the primitives on different interconnection networks 

Primitive Hypercube Mesh (wraparound,square) 

All-to-all broadcast O(τ lg p + μm(p-1)) O( τ(  p -1)+ μm (p-1)) 
Prefix-sum O( τ lg p+ μm) O(τ  (p –1)+ μ m) 
Global-combine O(τ lg p + μm) O(τ(  p –1)+ μm ) 
Transportation O(τp+ μm) O((τ+  μm)  p) 
Non-Order maintaining data mov. O(τp+ μm) O( (τ+  μm)  p) 
RAW O(τp + μm) O((τ+  μm)  p) 
Circular q-shift  O(τ+ μm) O((τ+ μm)(  p + 1)) 
Merge two lists  O(τp + μ(m+n)) O((τ+  μ(m+n))  p) 
Sample sort O(τp +μ(p  lg2 p + m)) O( τ  p + μ (p1.5 + m  

p)) 
 
 
 

3.  Notations and Assumptions 
 

Table 2 shows the notations and assumptions that are used for the presentation 
and the analysis of algorithms described in the next few sections.  We assume that each 
processor has approximately n/p and m/p tuples of relations R and S respectively. This is 
not necessarily realistic, especially if some other database operation is performed prior to 
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the join operation. However, this non-uniform tuple distribution can always be handled 
by the non-order maintaining data movement primitive (see Section 2).  

In analyzing the join algorithms, we assume that the local partitions of the two 
relations at each node are memory resident. Since the total memory capacity in a large 
parallel system is expected to be high, reasonably large relation partitions can be 
accommodated in the main memory.  Also, no CPU and communication overlap is 
considered. 
 
Table 2. Notations and assumptions 

p - the number of processors in the system     
There are two relations R and S where R is the smaller relation  
n - the number of tuples in relation R     
tR - the tuple size of relation R        
M - the number  of tuples in relation S      
tS - the tuple size of relation S 
μ - the data transfer rate 
τ - the communication start-up overhead 
h - the time taken by the hash function 
F - the fudge factor 
δ - the cost of a unit computation  local to a processor 
OR - the largest ratio of the cumulative size of outgoing messages of relations R  (OR < 1) 
OS - the largest ratio cumulative size of outgoing messages of relations S (OS  < 1)  
QR - the largest ratio of the relation R which is assigned to some processor to perform the join (QR < 1)  
QS - the largest ratio of the relation S which is assigned to some processor to perform the join (QS < 1) 
J - the total join output size produced by all the processors  
Jmax - the maximum join output size produced by some processor  

 
 
 

4.  Conventional Parallel Join Algorithms 
 

In this section, we briefly present the parallelization of conventional sort-based 
and hash-based algorithm. Both of these algorithms are sensitive to the presence of the 
data skew. The main purpose of this section is to illustrate the communication costs 
inherent in the join algorithms independent of the data skew. Moreover, we analyze 
these algorithms under the assumption that no data skew is present, i.e., the amount of 
required work by the join attribute values has a uniform distribution.  Each parallel join 
algorithm consists of a global and local join method. The global join method refers to the 
implementation of the join operation across all the processors. The local join method 
refers to the join method, which is used locally to carry out the join operation between 
the local fragments of both relations. We restrict ourselves to algorithms in which the 
global and the local join methods are the same method. 
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4.1  Sort-based algorithm  

We adopt the following version of the sort-based method. This algorithm consists 
of two phases: sorting and merging phases. In the first phase, both relations (R + S) are 
sorted as one big relation such that any tuple of processor i has a join attribute value less 
than the join attribute value of any tuple of processor j, where i <j. The sample sort 
algorithm carries out this phase. As a result of the sorting phase, processor i will receive 
O(n/p) and O(m/p) tuples of  relations R and S, respectively. The received tuples of 
relations R and S are independently merged to obtain sorted lists for the local fragments 
of both relations. Each processor then produces the join output by merging its local 
fragments of both relations.  The total time requirement of the sort-based algorithm is 
given in Table 3. We expect that Jmax to be very close to J/p with high probability. This 
algorithm is highly parallel since it achieved a good load balancing (under the uniformity 
assumption) in two ways. Firstly, the join output is produced almost equally by all the 
processors. Secondly, the sizes of the local fragments (after sorting) are approximately 
equal. However, the sort-based method is very sensitive to the data skew. The above 
algorithm will perform poorly in the presence of the data skew due to the following two 
reasons.  Firstly, Jmax might be as high as J and secondly the variant of the sizes of the 
local fragments (after sorting) can be very high. 
 
Table 3. The time total requirements of the sort-based algorithm on different interconnection networks 

Network Complexity of the sort-based algorithm 
Hypercube O(τp + μ(p   log2 p +( tR n+tS m)/p)+ δ (m/p  lg  m/p+n/p lg  n/p+ 

(n+m)/p lg  p + tR n/p + tS m/p +( tR+tS) Jmax )) 
Mesh O( τ  p + μ (p1.5 + (tR n+tS m)/  p)+  δ  (m/p lg m/p + n/p lg n/p+ 

(n+m)/p lg p + tR n/p + tS m/p)+( tR+tS) Jmax ))    
 
 
4.2  Hash-based algorithm 

There is reasonable consensus that parallel hash-based algorithm is the most 
efficient algorithm for the join operation in case that the join attribute has a uniform 
distribution [1].  The hash-based has two phases: the partition and the join phases.  In the 
partition phase, each processor applies a common hash function on the join attribute 
values for its local fragments of relations R and S and determines the destination 
processors for the tuples based on predetermined assignment of the hash values into 
processors number.  The expected partition (fragments) sizes of relations R and S are n/p 
and m/p, respectively.  
 

Each processor may have a set of tuples to send to every other processor. The 
communication phase can be performed by using the transportation primitive for the two 
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relations with O(tR n/p ) and   O(tS m/p) as the maximum  outgoing/incoming message 
sizes, respectively . 
 

In the join phase, each processor builds a local hash table for its local fragment of 
one of the relations, i.e. R, using different hash function. Then, each processor probes its 
local hash table for its local fragment of the other relation, i.e. S . The total time 
requirement of the hash-based algorithm is given in Table 4.   Like the sort-based 
algorithm, the hash-based method is very sensitive to the data skew and it is expected to 
perform poorly in the presence of the data skew.  As it is noted in the literature, its 
performance significantly deteriorates with the presence of the data skew (single or 
double skew) [13,1].  We will discuss different types of skew in the next section.  
 
Table 4. The total time requirements of the hash-based algorithm on different interconnection networks 

Network Complexity of the hash-based algorithm 
Hypercube O(τp + μ( (tR n+tS m)/p) + δ  (tRn+tS m)/p + n/p (h+ δ) + m/p  (h+ Fδ + δ) + δ (tR+ tS) 

Jmax ) 
Mesh O(τ + μ( (tRn+tS m)/  p)+  δ (tRn+tS m)/p + n/p (h+δ)+ m/p (h+ Fδ + δ)+ δ (tR +tS) 

Jmax ) 

 
 
 

5 Join Algorithms with Data Skew 
 
 

In this section, we describe different types of data skew and review some of the 
proposed parallel join algorithms and their characteristic. As it is observed by the 
database research, data skew exists in several real or realistic data sets [2,3,4]. The 
simple parallelization schemes described in the previous section will have poor 
performance in the presence of data skew mainly due to resulting load imbalances in the 
amount of local computation required. 
 

There are four main characteristics which can be used to classify the methods 
used for achieving load balance in parallelization of join methods [1]. These 
characteristics are as follows: 
 

1. Types of data skew: The data skew may exist in one relation (single skew) or 
in both relations (double skew).  The data skew and different types of data skew 
have been defined and modeled in [14].  The data skew types are tuple placement 
skew, selectivity skew, redistribution skew and join product skew.  The tuple 
placement skew occurs when the initial partitions of a relation have different sizes. 
The selectivity skew results from performing other database operations prior to the 
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join operation. Whereas, the redistribution skew occurs a result of the 
redistribution phase of the join algorithm, which may generate partitions with high 
variance in term of sizes.  The product skew occurs when the variance of the 
output sizes produced by each processor is high. The first two types of the data 
skew can be handled by the non-order maintaining data movement primitive, 
which is presented in Section 2. In the rest of this paper, we assume that both of the 
relations are approximately partitioned among the p processors. We also define 
work skew. This skew combines the redistribution and product skews, which can 
be measured by the variance of the amount of work performed by each processor.  

2. Load Metrics: Load metric is the criterion that is used to balance the load 
across the processors. There are mainly two criterion which have been used as a 
load metrics: 

 Cardinality: This load metric uses the partition/bucket sizes of one or 
both relations to balance the load across the processors. An approach that 
can be used for load balancing is to ensure that partition sizes are 
approximately of the same size. Another approach, which uses the 
cardinality of the output as a load metric, assigns tuples among processors 
such that each processor will approximately produce equal number of 
output tuples. 

 Estimated execution time: The join operation is divided into tasks. The 
time required to perform each task is estimated using some cost model. 
The tasks are then assigned to processors such that each processor will 
finish its tasks in approximately the same time. 

 Statistical Measures:  Several statistical measures have been used for 
load balancing: 

 Bucket-based: One or both relations are decomposed into buckets.   The 
sizes of the buckets of one or both relations are used in the assignment 
process.  

 Class-based:  Join attribute values are organized into equivalence classes 
using some deterministic function. For each class, a set of statistics is 
maintained, e.g., the number of distinct join attribute values and the 
number of tuples from both relations.  

 Perfect information: This method is an extreme case of class-based 
method when each class contains only one distinct join attribute value. 

3. Task Allocation: There are mainly two allocation strategies: static and 
adaptive. In the former, a task is statically assigned to one of the processor for the 
entire computation. The latter allows for immigration of the tasks to other 
processors during the join process. 
 



Skew-insensitive Parallel Algorithms . . . 

 

85

 

Several parallel join algorithms have been proposed to alleviate the presence of 
the data skew, e.g, [15 - 25]. Most of the proposed algorithms are hash-based algorithms. 
In the rest of this section, we review a few of the proposed algorithms. Bucket tuning 
was introduced in [15]. In this strategy, the number of the buckets of one of the relations 
is chosen to be very large. In the later phases, smaller buckets are combined to form 
large size joins buckets. In Bucket Spreading strategy [16], buckets are spread across all 
processors. These are then reassigned to appropriate processors based on their sizes 
using a special Omega network. A similar algorithm to bucket spreading strategy, which 
uses a software control instead of Omega network, has been designed in [17].   A 
Partition Tuning strategy was presented in [17].   This strategy organizes a relation as a 
set of data cells, and reassigns these data cells from overflow processors to underflow 
processors using a best fit decreasing strategy to balance the load among processors. 
Three algorithms that use the partition tuning and best fit decreasing strategies have been 
presented in  [26]. Based on their simulation results, they recommended that the adaptive 
load balancing parallel hash  (ABJ) is the algorithm of choice for most the cases. The 
bucket tuning, bucket spreading and partition tuning strategies use the cardinality of the 
partitions/buckets as a load metric. The above algorithms are sensitive to the output 
skew and expected to perform poorly in the presence of mild or high output skew.  
 

An incremental hash-based algorithm has been proposed and improved in [21] 
and [22], respectively. In this approach, the join process proceeds in several steps. A 
checkpoint strategy is used after each step to either evaluate the load degree (at the end 
of the first step) or apply partition tuning using the cardinality of the partially full 
buckets to change the buckets assignment.  
 

A sampling-based approach has been proposed in [24]. Their approach uses a 
random sample to estimate the degree of the data skew. Based on this estimation, an 
appropriate join algorithm is invoked. The invoked algorithm is one of four hash-based 
algorithms, which have been proposed in [24] along with the conventional hash-based 
algorithm. Two of these algorithms have been designed to deal with the presence of the 
redistribution skew and the other two deal with the presence of the product skew.  
Further, the random sample is, once again, used in the partitioning phase of the join 
algorithms. Their main assumption is that the skew degree is not very high. Based on 
their experiments, the virtual processor range partitioning (VPP) is the algorithm of 
choice in case of mild skew. Two algorithms have been proposed which use an estimated 
execution time as a load metric to alleviate the presence of double or single skew [19]. 
The first algorithm is sort-based and the second algorithm is hash-based. The sort-based 
algorithm uses a divide-and-conquer approach to address the data skew and a heuristic 
scheduling phase to balance the load across the processors. The hash-based algorithm 
uses a two-level hierarchical hashing.  The results from the hierarchical hashing are used 
in a heuristic scheduling phase to balance the load across processors . 
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A hash-based algorithm (HISH), which uses a histogram-based technique to 

estimate the data distribution and the amount of work, has been proposed in  [23]. A cost 
model has been designed to estimate the amount of work contributed by a join attribute 
value. The estimated work is then used in the partitioning phase to balance the work 
among the processors.  They also use virtual processors approach in assigning the work 
among the processors. Their histogramming technique, which is based on sampling, 
produces an approximation of the frequency distributions of both relations and the 
output sizes. In most real database systems, the histograms are generally precomputed 
which makes the preprocessing step of this algorithm is of negligible cost. This 
algorithm has been compared against VPP algorithm [24], conventional hash-based and 
ABJ algorithm [26]. For mild product skew, the performance of the ABJ and VPP are 
comparable.  However, HISH is superior to all the three algorithms. A PRAM algorithm, 
which is similar to our new algorithms in spirit, has been proposed in [25]. The proposed 
algorithm uses the exact total join output size as well as the join output size contributed 
by each join attribute value to balance the load across the processors. 
  

 
 

6. Our Algorithms 
 
 

In this section, we present and analyze two new parallel algorithms, which deal 
with arbitrary amount of skew as well as different types of skew. One of these 
algorithms is a sort-based while the other is a hash-based.  Both of these algorithms 
employ a preprocessing phase  (prior to the redistribution phase) to collect perfect 
information of the join attribute distribution.  
 

The main idea of the new algorithms is to compute a weight for each distinct join 
attribute value. These weights are generated using the perfect information of the join 
attribute distribution. In the partitioning phase of the join algorithm, p partitions of 
approximately equal weights are generated. These partitions are then assigned among the 
processors using static allocation strategy.  Further, these sets of weights can be defined 
in different ways to alleviate different types of skew, i.e. define a weight function for 
each skew type. 
 

For an in-core parallelization of the join operation, we expect that the product 
skew can affect the performance of the algorithm more than the redistribution skew.  For 
this reason, we will investigate two weight functions, output function (for the output 
skew) and work function (for the work skew).  The proposed algorithms have been 



Skew-insensitive Parallel Algorithms . . . 

 

87

 

designed using a set of primitives by which they are relatively architecture independent.  
Below, we describe the new algorithms.   
 
6.1  The sort-based algorithm  

The sort-based algorithm presented in Section 4 is expected to perform poorly 
with the presence of data skew. The new sort-based algorithm has been designed to 
alleviate the effect of the presence of the data skew  (double or single). The algorithm 
consists of several phases:  

 Sorting phase: To sort the local fragments of both relations locally, 
followed by sorting the join attribute values globally.  

 Preprocessing phase: To collect the perfect information of the join attribute 
and generate the set of weights. 

 Splitters phase: To decide the decomposition strategy and generate a set of 
splitters.  

 Redistribution phase: To create the partitions and redistribute them among 
the processors.  

 Merging phase: Similar to the conventional sort-based algorithm.  
 
 

Our sort-based algorithm first sorts relations R and S using parallel sample-based 
algorithm. In the sample sort, each processor first sorts its local fragments of both 
relations using a sequential sorting algorithm. However, in the subsequent steps of the 
sorting phase, the join attribute values are projected and used instead of the whole 
record. In the preprocessing phase, the perfect information of the join attribute is 
collected as follows. Each processor scans its local fragments (of the join attribute) of 
both relations and counts the number of duplicates of each distinct value of the join 
attribute. The last and the first elements of the local lists might cause an interprocessor 
communication. 
  

Let HistR and HistS be the results of the counting step for both relations R and S, 
respectively. Each element of these lists consists of two fields: (1) the value of the join 
attribute and (2) the number of duplicates. It should be noted that the sizes of HistR (nH) 
and HistS  (mH) are smaller than or equal to n and m, respectively.  Merging primitive is 
performed on HistR and HistS to obtain a combined list Hist of both relations. The 
merging primitive guarantees that all the elements of the same values are assigned to one 
processor. In the next step, the set of weights is generated using some weight function. 
We define two such functions: work and output weight functions. These functions have 
been defined to assign a weight to some join attribute value using only the information 
of that value, i.e., the frequency of the join attribute values in each relation (fR and fS).  
They are defined as follows: 
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 Output weight function FO:   FO(fR,fS) = fR × fS 
 Work weight function FW :1   FW(fR,fS) = fR × fS + fR + fS 

 
Potentially, one can define more complicated functions, which include the (exact 

or estimated) cost of the next phases of the join algorithm, i.e., the cost of the 
interprocessor communication and cost of processing a tuple during the local join 
method. 
 

One advantage of the above weight functions is that the weights set can be 
computed locally. Scanning Hist list and applying the weight function for each distinct 
value can achieve this. Let W be a list of the weights. It can be easily shown that the size 
of W is less than or equal to min(nH,mH). During the previous step, each processor keeps 
track of its local sum of its weights wi The total sum of the weights w is computed by 
performing a global-combine-sum primitive of unit size on wi 
 

Our assignment technique needs the ranks of the weights. These ranks Rank can 
be computed by performing global exclusive-prefix-sum on W list in two steps. In the 
first step, the rank of the first weight of each processor (Rank0) is computed by 
performing global exclusive-prefix-sum of unit size on wi's. The remaining ranks are 
computed locally by each processor using sequential prefix-sum on local W list with 
Rank0 as the starting value.    
 

Our objective is to generate p partitions of approximately equal weights. There 
are two approaches which have been used for assigning tuples to processors: full-
fragmentation and fragmentation-replication. In the full-fragmentation approach, both 
relations are partitioned into disjoint fragments; these fragments are then assigned 
among the processors. The fragmentation-replication approach might partition one or 
both relations into non-disjoint fragments, i.e., replicates some of the data among more 
than one fragments. Ideally, one would like to use the full-fragmentation approach 
because it incurs fewer overheads than the fragmentation-replication approach. 
However, the full-fragmentation approach is not applicable for some cases. This can 
happen if the maximum value of Wi‘s, call it wmax, has value greater than c w/p, for some 
constant c. We call c a load factor. In that case, we switch to the fragmentation-
replication approach. wmax is found by finding the local wmax of each processor followed 
by performing global-combine on the local wmax's. To decide between the two 
approaches, we use the Approach function: 
 
 

                                                           
1 This function has been defined in [24]. However, they use it to estimate the cost of join buckets. 
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                                       full-fragmentation             :   wmax < c os/p  
Approach(wmax) =      
                                       fragmentation-replication :  Otherwise  
 
 

In case of full-fragmentation approach, the algorithm processed as follows. p-1 
splitters are chosen to create p partitions. Each partition is assigned to different 
processor. These splitters are selected such that the sum of the weights of each partition 
is c w/p+ є and all the join attribute values in partition i are smaller than the values in 
partition i+1. Each processor locally determines which element of its local Hist is a 
splitter by using its ranks Rank and weights W lists . Element i is a splitter j  if its rank 
less than Rank0 of processor j  and its rank plus its weight greater than or equal to the 
Rank0 of processor j. After finding the splitters, many-to-all broadcast is performed (with 
potentially different message sizes) on the splitters. 
 

In the redistribution phase, the local fragments of relations R and S are partitioned 
using the splitters list using binary search (the local fragments are already sorted). The 
required inter-processors communication for both relations is performed using the 
transportation primitive. The merging phase is exactly similar to the conventional sort-
based (Section 4).  
 

In case of fragmentation-replication approach, a more complicated assignment 
procedure is needed. Each processor locally finds a set of splitters as discussed above. 
Each splitter might be assigned to multiple adjacent processors. For each splitter i with 
join attribute value t, we need to determine the replicated relation, first destination, the 
number of destinations and a set of weights (these are another set of weights), which are 
used in the redistribution phase, call these wdist.  The replicated relation is the relation 
having smaller number of tuples with join attribute value t. This choice will generally 
have less communication overhead. The first destination (d1

i) is computed using the 
splitter's rank (Ranki) and the number of destinations (ni) is computed using the splitter 
weight Wi and Ranki; i.e. (Ranki  + Wi) div w/p - d1

i  +1. 
 
  wdist

ij is used by all the processors to determine how many number of tuples 
having the join attribute value t (the value of splitter i) of the fragmented relation to be 
sent to processor j. These weights are computed locally as follows. 
 
 
                                 (((j+1) × w)/p -Ranki)/ Wi       :     (j ×w)/p < Ranki 
 
               wdist

ij =      w/(p× Wi)                                :  Ranki < (j ×w)/p < Rank(i+1) 
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                                (Rank(l+1) – (j  × w)/p) / Wi     :  Otherwise 
 
 

After finding the splitters, many-to-all broadcast (with potentially different 
message sizes) is performed on the splitters along with other information. It can be 
easily shown that the size of all the weights set is at most 2p. 
 

In the redistribution phase, a destination processor for each tuple is determined as 
follows. A tuple with join attribute value less than the value of splitter i and greater the 
value of splitter i-1 is assigned to processor with address equals to d1

i-1. For tuples 
having a join attribute values equal to the value of splitter i, we perform the following. 
Assigns those tuples belonging to the replicated relation to all processors with addresses 
equal to d1

i, …, d1
i +ni-1. For those tuples belonging to the fragmented relation, 

computes the number of duplicates of that value, ndup, and assigns ndup ×  wdist
ij tuples to 

processor with address equals to d1
i+j.  The cost of counting the number of duplicates is 

linear since the local fragments of both relations are already sorted. The required inter-
processors communication and the merging phase are exactly the same as in the full-
fragmentation approach. 
 

The overall time requirement of the new sort-based algorithm is the sum of the 
time required by all the phases. It can be simplified to the time taken by the sorting 
phase, transportation primitive, merging the R's tuples, merging the S's tuples and the 
final merging. The computation requirement is:  
 

O( δ( n/p lg n/p+ tR n/p +  m/p lg m/p +  nQR  lg  p + tR n QR +mQS  lg p + tS mQS + (tR+tS) J/p)). 
 

The communication requirement is given in Table 5 for the two interconnection 
networks. 
 
Table 5. The communication time requirement for the sort-based algorithm on different interconnection 
networks 

Network Requirement of the sort-based algorithm 
Hypercube O(τp + μ(p lg2 p+tR n max(QR,OR)+tS m max(QS,OS))) 
Mesh O(τ  p + μ  p (p +tR n max(QR,OR)+ tS  m max(QS,OS))) 
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6.2  The hash-based algorithm 
The new hash-based algorithm is very similar to the new sort-based algorithm in 

the sense that they both collect the same types of information and generate the same set 
of splitters. However, they mainly differ in the following:  
 

1. Counting the number of duplicates of each distinct join attribute value is 
done differently. In the hash-based algorithm, a Random Access Write (RAW) 
primitive with the addition as a collision resolution strategy is used in this process. 

2. The local join methods are different. The hash-based algorithm uses  a hash-
based method as opposed to sort-based method in the sort-based method.  
 
Our hash-based algorithm consists of several phases:   

 Preprocessing phase: To collect the perfect information of the join 
attribute using RAW and generate the set of weights. 

 Splitters phase: To decide the decomposition strategy and generate a set 
of splitters.  

 Redistribution phase: To create the partitions and redistribute them 
among the processors.  

 Join phase: Similar to the conventional hash-based algorithm. 
 

The distributed memory is viewed as a global shared memory with addresses in 
the range [0..b], where b=m × p and m  is the size of the local available memory of each 
processor and p is the number of the processors. Location i of this global shared memory 
resides at processor i div m and it corresponds to location i mod m of the local memory 
of that processor.  First, the algorithm hashes the join attribute values to integers using 
some hash function hash.  The result of hash is used as an address of the global shared 
memory. As necessary requirement of the hash function hash, its range should be less 
than or equal to the size of the global shared memory. We choose to use the RAW 
algorithm of [10]. This algorithm is very scalable as it shown in Table 1.  
 

Another requirement of the hash function hash, to ensure that the number of 
duplicates computed in the counting step is accurate, is that the hash function hash 
should satisfy the following condition2: 
 

 For all join attribute values x and y in both relations, hash(x) = hash(y) ↔ 
x = y [25]. 

                                                           
2 In case that this condition is not satisfied ، our hash-based algorithm is still complete (produce all the join-
able tuples). Using a function which does not satisfy the condition affects  the performance of the algorithm but 
it does not affect its complicity. 
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We apply the random access write RAW on both relations where the addresses 

are the hash values and the values are ones. The result of RAW operation is the HistR and 
HistS lists of both relations R and S, respectively.  For the details about RAW algorithm 
see Section 2.  Computing the set of weights W is straightforward. Since  HistR  and HistS  
have same size,  this process does not need any interprocessor communication and it can 
be done by applying the weight function on each pair of HistR and HistS  lists. 
 
Computing the rank list Rank, total sum of the weights set w and finding the splitters 
phase are exactly similar to the sort-based algorithm. However, the redistribution phase 
is quite different because the local fragments of the relations R and S are not sorted.  In 
case of full-fragmentation, the assignment of tuples is done by searching the splitters list 
for each tuple using binary search. While in the fragmentation-replication case, instead 
of counting the number of duplicates of the tuples having a join attribute value equals to 
some splitter value as in the sort-based algorithm, we use a weighted round-robin 
method to assign those tuples belonging to the fragmented relation to destination 
processors. The required inter-processors communication is carried out by the 
transportation primitive. The join phase is very similar to the conventional hash-based 
algorithm. 
 

The overall time requirement of the new hash-based is the sum of the time 
required by all the phases. The overall time requirement of the hash-based algorithm can 
be simplified to the time taken by the RAW primitive, transportation primitive, assigning 
phase, building and probing the hash table and producing the output tuples.  The 
computation time is: 
 

O( (n+m)/p (δ lg p + h) + δ(tRn/p + tSm/p ) + nQR(h+ δ) + δmQSF+δ(tR+tS) J/p + mQSh). 
 

The communication time is given in Table 6 for the two interconnection 
networks. 
 
Table 6. The communication time requirement of the hash-based algorithm on different interconnection 
networks 

Network Requirement of the hash-based algorithm 
Hypercube O(τp+ μ(tR n max(QR,OR) + tS m max(QS,OS))) 
Mesh O(τ  p+ μ  p (tR n max(QR,OR) + tS m max(QS,OS))) 

 
6.3  Scalability considerations 

In real database applications, the sizes of the tuples tR and tS are generally a few 
hundreds of bytes. In the two new algorithms, the total cost of the preprocessing step is 
proportional to the cardinality of the relations times the size of the join attribute. 



Skew-insensitive Parallel Algorithms . . . 

 

93

 

Whereas, the over all costs of the both algorithms are proportional to the cardinality of 
the relations times the size of the tuples. The size of the join attribute is generally smaller 
than the size of the tuples by an order to two orders of magnitude. Hence, we expect that 
the cost of the preprocessing step is relatively small in case of uniform distribution. 
 

 
7 Experimental Results 

 
We have implemented the four algorithms, namely the conventional hash-based 

(SSH) and sort-based (SSS) algorithm, the new hash-based (SIH) and the new sort-based 
(SIS) algorithms, on an IBM SP-2 with 16 processors. The clock speed of the processors 
is 66.7 MHz, the memory size is 256 MB per processor, and the operating system is AIX 
version 4.1.4.  Our experiments were targeted to study the effect of the weight functions, 
the load factor, the tuple size, and the size of the relations.  
 

Datasets 
We have evaluated the algorithms for dataset generated using three distributions: 

 
1. Uniform distribution: The join attribute values has a uniform distribution in 

[0..256K]. 
2. Scalar skew distribution: This distribution has two parameters (oneR and 

oneS) . Relation R (S) has oneR (oneS) tuples with join attribute of value ``1'' and 
the rest of the tuples are generated randomly from [2..n] ([2..m]) [24]. The default 
value for oneR and oneS is 1000. 

3. Zipf distribution: The Zipf distribution has two parameters that determine 
the degree of the skew of the data [27].  The first parameter z is between zero and 
one. The dataset corresponds to a uniform distribution when z is set to zero. The 
level of skew increases as the value of this parameter increases. The second 
parameter determines the number of distinct values d. For all experiments, d is 
fixed to 128K. The default value of z is 0.75. 
 
The default values of the sizes of both relations and the tuple size are 256K and 100 
bytes, respectively.  
For each experiment, the algorithms were executed three times and the median is 
reported. This is done to alleviate the effect of the randomization of the communication 
of the underlying network . 
In the first experiment, we ran the new algorithms using the two weight functions. Tab. 7 
shows the overall execution time in seconds of the new algorithms for different datasets. 
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Clearly, the work function captures the cost more effectively as it results in better load 
balance. We have set the weight function to the work function for the rest of our 
experiments. 
 
Table 7. The overall execution time (in seconds) for the two new algorithms using different weight 
functions for the three distributions on 16 processors 

Distribution Hash Based Sort Based 
 output work output work 
Uniform 0.425 0.423 0.794 0.798 
Scalar 1.043 0.701 2.150 1.294    
Zip-f 6.940 5.936 7.443 6.818 

We also ran the new algorithms using different load factors (1, 1.25 and 1.5), the 
overall performance is almost independent of the load factor for the three datasets. The 
load factor is fixed to 1 for the rest of the experiments.  
 

Figures1 through 3 show the total execution times for the four algorithms using 
different tuple sizes (52, 100 and 200 bytes). We can draw the following conclusions 
from these figures: 
  

1. For uniform distribution the absolute cost of the preprocessing phase is 
independent of the tuple size. However, its relative cost decreases with the 
increase of the tuple size. Further, the preprocessing step is relatively small 
comparing to the overall cost.  

2. Our algorithms substantially outperform the conventional algorithms for 
mild (Scalar Skew) and high (Zip-f) skews. Further, we expect the improvement 
to be significantly better for large number of processors. This is due the fact that 
that the conventional algorithms are not scalable, whereas our algorithms are. 

3. The new hash-based algorithm is the clear winner for small levels of skew.  
For high degree of skew, the new sort-based outperforms all the other algorithms. 
This is due to the fact that the sequential sort-based (in-core version) outperforms 
the other algorithms for large and highly skewed relations. This can attributed to 
the high cost of probing the hash table. 
 
 The speed-up3 of  the four algorithms on 4,8 and 16 processors for datasets and tuple 
sizes of 256K and 100 bytes, respectively, are shown in Fig. 5. When the amount of the 
work required is not high, our  algorithms do not achieve any speed-up. For example, the 
hash-based algorithms do no achieve any speed-up for uniform distribution and small 
number of processors. This is because that the amount of the required work is about 1.11 

                                                           
3  The speed-up of the hash-based (sort-based) algorithms are measured against the sequential hash-hased 

(sort-based) algorithm. 
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seconds. This is comparable to the overhead of these algorithms. However, our algorithms 
achieved almost similar speed-up as of the conventional algorithms for these cases. 
 
 For mild and high skew, the speed-up achieved by our algorithms is significantly 
better than the conventional algorithms. Further, the new algorithms achieved almost 
linear speed-up. 
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Fig. 1. Comparison of different algorithms for different sizes of tuple on 4 processors. 
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Fig. 2. Comparison of different algorithms for different sizes of tuple on 8 processors. 
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Fig. 3. Comparison of different algorithms for different sizes of tuple on 16 processors. 
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Fig. 4 shows that our algorithms have excellent size-up properties. 
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Fig. 4. Comparison of different algorithms for different sizes of relations 16 processors. 
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Fig. 5. Speed-up of different algorithms on datasets of size 256K and tuples of size 100 bytes. 
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Conclusion 
 

We have presented two new parallel join algorithms for coarse-grained machines, 
which work optimally in presence of arbitrary amount of data skew.  The first algorithm 
is sort-based and the second algorithm is hash-based. Both of these algorithms employ a 
preprocessing phase (prior to the redistribution phase) to equally partition the work 
among the processors using perfect information of the join attribute distribution. The 
cost of this preprocessing phase is relatively small in case of uniform distribution.  These 
algorithms are shown to be theoretically as well as practically scalable.  The hash-based 
algorithm achieved almost perfect speed-up for highly skewed data on different number 
of processors. It was also better than the other algorithms except for high degree of skew 
and large relations for which the new sort-based algorithm performs slightly better. 
Clearly, one can design a hybrid algorithm, which estimates the amount of skew to 
trigger the appropriate join algorithm.  
 
The proposed algorithms can be easily extended to disk-resident relations. In case that 
the join attribute values of both relations can be accommodated in the main memory, one 
can project these values and apply our techniques on them to compute the set of splitters. 
Then, one can apply the state of the art sequential join algorithm for the local disk-
resident fragments in the join/merge phase. This will require one extra sequential I/O 

(Read) of both relations. As we discussed earlier, the total size of the aggregate main 

memory across coarse-grained machines can be as large as few hundred gigabytes. 
Assuming that the tuple size is larger than the join attribute size by a factor of more than 
25, this technique can handle relations with sizes proportional to a few terabytes. 
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 خوارزميات متوازية غير منحرفة للربط العلائقي
 

 خالد عبداالله السبتي* و سانجاي رانكا**
 *قسم علوم الحاسب، كلية علوم الحاسب والمعلومات، 

 ، المملكة العربية السعودية١١٥٤٣، الرياض  ٥١١٧٨جامعة الملك سعود، ص.ب: 
 ** جامعة فلوردا، فلوردا، الولايات المتحدة الأمريكية

 
 م)٠٥/٠٩/٢٠٠٠م؛ وقبل للنشر في ٢٢/١١/١٩٩٩دّم للنشر في (ق

 
يعتبر الربط أهم عملية في قواعد البيانات العلائقية ومن أكثرها تكلفة، كما أن الربط  ملخص البحث.

المتــوازي  عمليــة حساســة لوجــود انحرافــات بيانيــة. وفي هــذه الورقــة نقــدم خــوارزميتين متــوازيتين جديــدتين 
المتوازيــة، فهاتــان الخوارزميتــان تعمــلان بشــكل مثــالي في حالــة وجــود بيانــات  الأجهــزةى لعمليـة الــربط علــ
ن الخوارزميــة الأولى مرتكــزة علــى الترتيــب، في حــين أن الخوارزميــة الثانيــة مرتكــزة علــى إمنحرفــة. حيــث 

دة هـاتين التشتت. وكلتا الخوارزميتان تقسمان العمل على المعالجـات في المرحلـة التمهيديـة. ونوضـح جـو 
 الخوارزميتين نظرياً وعملياً. 

 




