
J. King Saud Univ., Vol. 15, Comp. & Info. Sci., pp. 33-66 (A.H. 1423/2003) 

33 

A New Disk-based Technique for Solving the Largeness Problem of 
Stochastic Modeling Formalisms  

 
Samir M. Koriem and W. S. El-Kilani* 
Department of Systems and Computer Engineering, 

Faculty of Engineering, El-Azhar University, Cairo, Egypt 
* Department of Information Technology, Faculty of Computer and Information, 

Menoufia University, Shabeen El-Koum, Egypt 

 
(Received 14 October 2001; accepted for publication 11 February 2002) 

 
Abstract. Stochastic modeling formalisms such as stochastic Petri nets, generalized stochastic Petri nets, and 
stochastic reward nets can be used to model and evaluate the dynamic behavior of realistic computer systems. 
Once we translate the stochastic system model to the underlying corresponding Markov Chain (MC), the 
developed MC grows wildly to several hundred thousands states. This problem is known as the largeness 
problem. To tolerate the largeness problem of Markov models, several iterative and direct methods have been 
proposed in the literature. Although the iterative methods provide a feasible solution for most realistic systems, 
a major problem appears when these methods fail to reach a solution. Unfortunately, the direct method 
represents an undesirable numerical technique for tolerating large matrices due to the fill-in problem. In order 
to solve such problem, in this paper, we develop a Disk-Based Segmentation (DBS) technique based on 
modifying the Gauss Elimination (GE) technique. The proposed technique has the capability of solving the 
consequences of the fill-in problem without making assumptions about the underlying structure of the Markov 
processes of the developed model. The DBS technique splits the matrix into a number of vertical segments and 
uses the hard disk to store these segments. Using the DBS technique, we can greatly reduce the memory 
required as compared to that of the GE technique. To minimize the increase in the solution time due to the disk 
accessing processes, the DBS utilizes a clever management technique for such processes. The effectiveness of 
the DBS technique has been demonstrated by applying it to a realistic model for the Kanban manufacturing 
system. 
 
Keywords: Stochastic reward nets; largeness tolerance methods; direct methods; Markov chain; disk-based 
segmentation; gauss elimination. 
 

1.  Introduction 
 

Rapid advances in technology have resulted in the proliferation of complex computer 
systems that are used in different applications, ranging from spacecraft flight control to 
information and financial services. Modelling and evaluating mechanisms provide
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a good methodology for examining the behavior of these systems from the design stage 
to the implementation and final deployment. Recently, the use of Continuous Time 
Markov Chains (CTMCs) has proven to be a very useful modeling formalism for 
evaluating these systems [1, 2]. Many problems have been encountered in the use of 
Markov models such as stiffness and largeness [1,3]. 
 

Stiffness is an undesirable characteristic of many practical Markov models. 
Stiffness adversely affects the computational efficiency of the numerical solution 
technique [3]. The stiffness problem arises if the model solution has rates that differ 
widely. Moreover, since most Markov models of real systems are very large, the actual 
model of the desired system is usually specified using a high-level description such as 
Stochastic Reward Nets (SRNs) [4]. The SRN technique has the capability of modeling 
the dynamic behavior of large and complex systems in a compact way. Once we 
translate the SRN system model to the underlying corresponding CTMC, the developed 
CTMC grows wildly to several hundred thousands states. This problem is known as the 
largeness problem [5].  
 

The largeness problem can be overcome by the use of the largeness avoidance or 
largeness tolerance technique [5]. The largeness avoidance approach needs to discover 
the structure of the CTMC under study to facilitate its solution. Examples of such 
technique are the stochastic process algebras, matrix-geometric stochastic Petri nets, 
product-form queuing networks, and product-form stochastic process algebras [6-8]. 
These techniques have the capability of exploiting the structure of the CTMC under 
study to obtain an efficient CTMC generation. Subsequently, the solution of the CTMC 
becomes possible.  
 

On the other hand, the largeness tolerance approach employs the sparse storage 
techniques and computational procedures that do well in combination with sparsely 
processing solution methods. This approach gives a facility to the modeler to 
accommodate the desired models that are as large as possible. In practice, the concept of 
this approach means that the CTMC size is restricted by the size of the main memory of 
the system on which the model is constructed and solved. CTMCs with several hundred 
thousand states have been solved using this approach [9]. It should be noted that the 
model reduction is employed only in the case of the largeness avoidance approach. In 
this paper, we deal only with the largeness tolerance approach. In the literature, three 
important numerical solution techniques for the largeness tolerance problem have been 
considered: Superposed Generalized Stochastic Petri Nets (SGSPNs) [10], on-the-fly 
technique [11] and disk-based method [12]. 
 
  The idea of the SGSPN technique [10] is to combine a set of originally 
independent GSPNs into a single superposed GSPN by synchronization of transitions. At 
net level, the synchronization takes place by merging the desired transitions. The 
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resulting transitions are called synchronized transitions. This concept is closely related to 
the concept of stochastic automata networks [13] and Markovian process algebras [14]. 
The SGSPN technique has two substantial restrictions: (i) the structure of the developed 
model should incorporate independent components with limited interaction between 
them, and (ii) the sub-models of the developed model should have approximately the 
same size. Therefore, the SGSPN technique has the disadvantage of requiring a special 
structure in the model in order to work efficiently [15]. 
 
  On-the-fly technique [11] introduces a new iterative solution method, called a 
modified adaptive Gauss-Seidel. This technique eliminates the need to explicitly store 
the matrix at all when generating the rows and columns of the state transition-rate-matrix 
on-the-fly. Further, this approach permits the caching of portions of the matrix. This 
process leads to the reduction of the solution time. 
 

A Disk-based technique [12] uses a workstation disk to hold the transition-rate 
matrix of the CTMC under study, the variant of the Gauss-Seidel block as an iterative 
solution method, and an innovative implementation that involves the following two 
parallel processes. The first process retrieves portions of the transition matrix from the 
workstation disk. The second process repeats the computation on small portions of the 
matrix. Disk-based methods have the potential to greatly outperform the SGSPN method 
by using a large disk to allow to the holding of the state-transition-rate matrix of the 
Markov model being solved. Further, high performance disks are inexpensive, relative to 
the cost of main memories (RAMs). 
 

It is interesting to note that largeness tolerance methods such as the SGSPN [10], 
the on-the-fly technique [11] and the disk-based method [12] utilize powerful iterative 
methods such as the Jacobi method, the power method, and the Gauss-Seidel method. A 
major problem appears when the largeness tolerance methods fail to reach a solution for 
the desired model or spend a long time to converge to the prescribed precision [16]. To 
solve such problem, we can use the direct method as an alternative approach for the 
numerical solution of the Markov models. Unfortunately, the direct method is an 
undesirable numerical technique for tolerating large matrices due to the following 
problems [17, 18]. 
 

 The reduction of the matrix from its regular form to the upper triangular form 
(reduction phase) often needs to perform subtraction operations among the rows. 
These operations lead to the creation of many non-zero elements in positions that 
previously contained zeros and the fading out of the undesired elements. This kind of 
problem is known as the fill-in problem. The appearance of new elements and the 
fading out of undesired elements needs a continuous process of data insertion and 
deletion from the memory. This process needs a lot of time. Consequently, the direct 
method suffers from a time consumption problem. 
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 The subtraction operations among the rows that occur during the reduction phase also 
lead to a continuous change of matrix elements. This change in turn leads to a build 
up of rounding error in the matrix elements. 

 
The main objective of this paper is to develop a suitable largeness tolerance 

methodology based on modifying a version of the Gauss Elimination (GE) technique. 
The proposed technique has the capability of solving the consequences of the fill-in 
problem that usually arises in the GE procedure. Our proposed methodology modifies 
the GE procedure in order to be able to solve the large Markov chain matrices generated 
from the stochastic reward nets. We call such a technique “Disk-Based Segmentation” 
(DBS) technique. The basic concept of the DBS technique depends on splitting the 
whole matrix into a number of vertical segments. Each vertical segment consists of a 
band of successive columns. Each vertical segment is acted upon by a modified version 
of the GE procedure in such a way that these segments are transformed and become a 
part of the triangular form of the original matrix. We make use of the hard disk to store 
the segments before and after the transformation processes and carry the records of the 
computation operations applied. It is interesting to note that the dependence of the 
proposed technique on the hard disk for data retrieval and loading gives it the name DBS 
method. In order to identify the merits of our proposed technique, we measure its 
efficiency with respect to time and space under different conditions. We have also 
implemented a tool to support the proposed methodology. This tool works on PCs and 
provides us with the following capabilities. 
 

 Generating and solving Markov large matrices resulting from the SRN models.  
 Performing both steady and transient analysis for these matrices by utilizing a 

number of traditional direct and iterative methods proposed in the literature [1-3], 
[19]. 

  
The remaining parts of this paper are organized as follows. Section 2 gives a brief 

description for our developed EasySPN tool that is used to support the DBS technique. 
Section 3 illustrates the main steps of the proposed DBS technique. In Section 4, three 
implementation issues for the DBS technique have been analyzed. Section 5 gives the 
numerical results for the application processes of the DBS technique on a large matrix 
generated from a practical SRN system model. Section 6 concludes this paper. 

 
 

2. The Easy SPN Tool 
 
In this section, we give a brief description of the proposed tool that is used to support the 
DBS technique. The proposed tool is called the EasySPN. This tool has the capability of 
generating and solving the Markov model that is obtained from the SRN system model. 
The EasySPN tool is a windows-based application that runs on Microsoft (MS) 
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Windows 2000 (or its later versions). The capability of utilizing the powerful memory 
management facilities of MS Windows represents the main advantage of the proposed 
tool. Further, the proposed tool has been implemented in a modular fashion using the 
object-oriented facilities of MS Visual C++ package. 
 

This EasySPN package consists of five main modules: the graphical user interface 
(GUI) module, the state space generator (SSG) module, the state probability solver (SPS) 
module, the performance measures (PM) module, and the memory management (MM) 
module. A block diagram of the tool is shown in Fig. 1. The GUI module manipulates 
four menus: net menu, firing menu, solver menu and performance menu. The net menu 
allows the user to enter the description of the modeled system according to the GSPN, or 
SRN formalisms. Using the SSG module, the firing menu permits firing of the desired 
net giving rise to the Reachability Set (RS) and the Reachability Graph (RG). The RS is 
the set of states resulting from firing the transitions of the SRN model. The description 
of the connections (in terms of the transition rates of the SRN model) between the 
various states of the RS is contained in the RG. Both the RS and RG are stored in two 
separate files in a way allowing easy access by other modules of the program. It is well 
known that the developed RG of the stochastic nets is isomorphic to an ergodic CTMC 
[18]. This CTMC is governed by the following Kolmogorov differential equation [17]. 
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Where N is the number of the RS states,   { i; 0  i  N-1}, and i(  ) is the 

probability of being in a state Si at time . The matrix Q  {qij}N N  is the 
infinitesimal generator or transition rate matrix of the CTMC under study. Each 
element of the matrix Q is related to the infinitesimal transition rate λt from a 
state Si to a state Sj as follows. 

 

ji StS:Tt
tijq λ ;    0  i  N-1                                 (2.3) 

Fig.1. Block diagram of the Easy SPN tool. 
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The SPS module computes ( ) as well as the steady state distribution 
_
π using equations 

2.1, 2.2, and the following equation. 
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  We have supported the SPS module with several well-known algorithms for 
steady state analysis such as Gauss Seidal, Gauss Jordan and successive over-relaxation. 
Also, several algorithms for transient analysis such as Runge Kuta, and uniformization 
have supported the SPS module. Depending on the nature of the net (i.e. values of its Q 
elements), the user may choose any of the previously mentioned techniques using items 
of the solver menu. Using ( ) and π , the user can compute various performance, 
reliability and availability estimates of the modeled system by programming the PM 
modules. The execution of PM programs is activated using items of the performance 
menu. Finally, the MM module is responsible for allocating enough memory blocks for 
the different modules of the package. The MM module also allows clever retrieval and 
storage of data through these memory blocks. 
 

Although several packages have been implemented (under Sun OS and Linux) to 
deal with SPNs such as: SPNP [20], GreatGSPN [9] and DSPNExpress [21], our 
package has the ability to work with MS Windows. This advantage enables our package 
to interact with other MS packages. Another advantage of our package is its ability to 
manage the full memory of the PC. Hence, our package performs on the PC as other 
packages perform on other platforms (e.g. Sun platforms). We will not go further in the 
description of our package, since this is not the objective of this paper. 
  
 

3. The Disk-Based Segmentation Technique 
 
   In this section, we propose the DBS technique for solving the fill-in problem. This 
technique depends on modifying the classical GE method in which the whole matrix is 
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reduced to its upper triangular form by eliminating non-zero elements under the matrix 
diagonal. The basic concept of the DBS technique depends on splitting the whole matrix 
into a number of vertical segments K.  Each vertical segment consists of a band of 
successive columns. To obtain the upper triangular form of the matrix, the DBS 
technique transforms each vertical segment (denoted by VSl; 1  l K) to the Segmental 
Upper Triangular (SUT) form. The path of the original matrix diagonal through the 
segment VSl determines the SUT form of this segment. Since the matrix diagonal 
traverses each VSl VS {VSl; 1  l  K} in a different position, each VSl will have its 
own SUT form. The SUT form of VSl can be defined as follows. 

 

otherwise     any value 

)Col( If        0

)1  Col (  ),ColCol ( If        0 

) ,(VS elx

xyblelxbl
yxl  

Where  
VSl (x,y): represents the value of the VSl element at row x and column y in  the 

matrix QT; 
Colbl : represents the first column in the segment VSl; 
Colel : represents the last column in the segment VSl.         

 
The SUT form of the segment VSl  can be obtained by performing a reduction 

analysis (RA) on this segment. The RA of VSl means the elimination processes of non-
zero elements under the path of the matrix diagonal through VSl. Applying subtraction 
operations between the rows of these non-zero elements and the corresponding diagonal 
rows after scaling the diagonal rows can perform these elimination processes. By 
diagonal rows, we mean the rows of the vertical segment intersecting the path of the 
diagonal. Computational operations performed during the RA of VSl are stored on the 
hard disk (denoted by HD). We call these operations, the history list of VSl (denoted by 
HLl).  
 

Moreover, before applying the RA of vertical segment VSl, we must first apply 
on VSl the computational operations (division and subtraction operations) that have been 
performed during the RA of previous vertical segments, i.e. HLi; 1  i  l-1. We call this 
step, the history analysis of VSl (denoted by HAl). Accordingly, the z-th history analysis 
of VSl means applying the computational operations (division and subtraction 
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operations) that have been performed during the RA of VSz VSi; 1  i  l-1 to the 
current segment VSl. The reason for this step can be explained as follows. Each vertical 
segment contains segments of all rows (e.g. rowi) of the original matrix QT (transpose of 
Q).  Hence, the computational operations performed on one segment of rowi in one 
vertical segment VSj should be applied also to the other segments of rowi in the vertical 
segments VSl; l >j. 
 

Figure 2 illustrates the steps of the DBS technique, where the DBS technique is 
applied on a matrix split into three vertical segments. The DBS scheme can be 
summarized in the following steps.  

 
Algorithm: The DBS technique steps 
 
Step 1.  Develop the full matrix QT (N N) from the RG of the desired model  (see Fig. 

2.a).  
 
Step 2.  Partition the matrix QT into a number K of vertical segments (Figs. 2.b.1, 

2.c.1, and 2.d.1). The set of vertical segments VS is defined as VS = {VS1, 
VS2,..., VSK}. This set gives the whole matrix QT. Each vertical segment VSl 

consists of N rows  M columns (Fig. 2.b.1). 
 
Step 3.  Store each VSl in a file on the HD. The storage processes of the vertical 

segments have been implemented in a suitable manner so that the overhead of 
retrieving them from the HD is minimized. 

 
Step 4.  Perform the following operations on the segments VS1, VS2 ,..., VSK  to 

transform the full matrix QT into its triangular form QT. 
For l = 1 To K do  

 
a) Retrieve VS1 from the HD to the RAM. This RAM represents the 

available memory that is used for applying our DBS technique on the 
desired model. The determination of RAM can be done according to the 
resources of the platform that is used to run the algorithm. 

 
b) Use the following loop to perform the HAl. 

For z = 1 To l-1 do  
Perform the z-th history analysis of VSl, or apply the computational 
operations contained in HLz to VSl. 
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Figure 2.c.2 shows the application of the computational operations 
contained in HL1 to VS2. 

c) Use the RA to transform VSl into its SUT form. 
Figure 2.c.3 shows the SUT form of VS2 after the application of its RA. 

d) Save a list of all operations that have been done during the RA of VSl  to 
HLl. 

e) Store the final SUT form of VSl on the HD in a separate file. 
 
Step 5.  Calculate the steady state probabilities 0, 1, ..., N-1 for the states of 

RS={S0 , S1, ..., SN-1} by retrieving the rows of  QT [17, 18]. Notice that the 
elements of any row of QT are now present in the vertical segment files. 
Hence, to retrieve the elements of a certain row, we must retrieve its 
corresponding elements from all vertical segment files.   

 
Remark 3.1. The history analysis of VS1 implies no computational operations applied 
on it, or no HA is applied on VS1. 
 
Remark 3.2. We only need to apply the GE method on a few number of columns instead 
of all columns (i.e. one vertical segment at a time) of the whole matrix. Therefore, we 
obtain a fewer number of new elements (zero elements are changed to be non-zero ones). 
This minimization has the advantage of substantially reducing the effect of the fill-in 
problem. Thus, our methodology is able to enhance the capability of RAM to 
accommodate large matrices. 
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From the previous discussion, we remark that the DBS technique manages both 

the RAM and HD during its run-time. This management may result in many problems 
affecting the overall performance negatively. We have implemented the DBS technique 
in an intelligent way to allow minimizing considerably the negative impact of these 
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problems on the desired performance measures. In the following section, we discuss 
several of the implementation issues for the DBS technique. 

  

4. Implementation of the DBS Technique 
 

In this section, we explain how the DBS technique is implemented to obtain the 
performance measures of the modeled system. To fulfill this objective, we have 
encountered several obstacles. The first of these obstacles stems from the enormous time 
consumed due to the back-and-forth movement of the vertical segment of non-zero 
elements during the RA and HA computations. In Section 4.1, we give a brief 
description of this obstacle. In addition, we present the technique that is utilized by the 
DBS technique to eliminate these movements.  Further, since the RAM may suffer from 
overflow due to the exponential increase of the vertical segment of non-zero elements, 
we explain in Section 4.2 how the number of vertical segments K can be determined. 
Finally, in view of the fact that the history list will be accessed excessively during the 
HA of any vertical segment consuming a lot of time, Section 4.3 introduces an intelligent 
way for managing the records of the history list. 
 
4.1 Implementation of the reduction and history analysis 

The computation operations performed during the RA and HA of any vertical 
segment (e.g. VSl) usually incorporate the following two processes. First, the insertion 
process of new elements among the elements of VSl VS, e.g. Fig. 2.c.2. Secondly, the 
deletion process of the elements situated under the path of the diagonal (i.e. change of 
non-zero elements into zeros), e.g. Fig. 2.c.3. Insertion or deletion processes of elements 
in each VSl VS require back-and-forth displacements of these elements in the RAM. 
These displacement processes consume a lot of time. These processes represent the main 
drawback of the DBS technique. Therefore, in this section, we illustrate how the RA and 
HA can be implemented in an intelligent way to allow eliminating these back-and-forth 
displacements.  
 

To achieve this objective, we have been motivated by the Successive Row 
Generation and Reduction (SRGR) technique [17, 18]. This technique transforms the 
whole matrix into its upper triangular form by reducing the rows, one by one, to their 
Upper Triangular Row (UTR) form. The zero elements of the UTR form can be defined 
for rowi as follows. 
 
    Rowi (j)  = 0          for  j < i                                (4.1.1) 
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Where, rowi(j) is the jth element of rowi.  To transform any rowi into its UTR form, the 
SRGR technique retrieves rowi from the HD to the desired buffer. Then, the SRGR 
transforms the retrieved row into its UTR form by subtracting this row in a scaled form 
from the previous rows (rowi; 1  l  i-1) stored in the RAM. The reduced form of rowi is 
then stored in the RAM. 
 

In order to avoid handling whole rows of the matrix, we have used a modified 
version of the SRGR technique. We call it, the MSRGR technique. Let row portions 
denote the rows of each vertical segment. Let rowil; 0  i <N denotes the row portion of a 
vertical segment VSl. The MSRGR technique helps us to reduce the row portions to its 
Segmental Upper Triangular Row (SUTR) form. The zero elements of rowil in its SUTR 
form are defined as follows. 
 
 rowil(j) = 0   for   ( j< i, Colbl  j  Colel)                                          (4.1.2) 

 
Where rowil(j) is the element at the jth column of rowi. The definition of the 

SUTR form follows from the fact that each segment VSl is constructed from a set of N 
row portions (i.e. VSl  rowil; 0  i <N) which extend from column Colbl to column 
Colel.  
     

To achieve the transformation of rows of each vertical segment to its SUTR form, 
we first retrieve rowil from the HD to the desired buffer. Next, we perform on rowil the 
computation operations that have been done during the reduction processes of rowi0, 
rowi1, and rowi,(l-1) to transform them to their SUTR forms. We call such operations, 
the history analysis of rowil. In this way, rowil is ready to be transformed into its SUTR 
form using the previously transformed rows (row0l to rowi-1,l) that have been stored in 
the RAM. We call such transformation, the reduction analysis of rowil. After reducing 
the rowil into its SUTR form, we store it in the RAM. 
 
Algorithm: Re-implementation processes of step 4 of the DBS technique (explained in 

Section 3) according to the MSRGR technique described above. 
 
Step 4.  Perform the following operations on the segments VS1, VS2, VS3 ,...,VSK to 

transform the full matrix QT to its triangular form QT. Note that Fig. 3 shows 
the execution processes of the combined RA and HA for VS2 of the matrix 
shown in Fig. 2.a.  
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For l =1 To  K  do   

(a) Retrieve row0l  row0  of VSl  from the HD to the RAM (see Fig. 3.b for VS2). 
(b) Retrieve row1l  row1 of VSl from the HD to the reduction buffer (see Fig. 3.b for 

VS2). 
(c) For i = 2 To N-1, l  2 do  

(i) Apply the history analysis of rowil.  
(ii) Transform the rowil to its SUTR form by applying reduction analysis.  
(iii) Transfer rowil from the reduction buffer to the RAM, as shown in Fig. 3. 
(iv) Register all computational operations performed during the RA of rowil in a 
portion of the history list (denoted by PHLil ), see Figs. 3.b and 3.f. 

 
It is interesting to note that not all the regions of the row portions are subjected to 

RA. To clarify this statement, we define the following terms. Let the upper diagonal 
region be the region existing above the diagonal path through any vertical segment. Let 
the diagonal region be the region intersecting the diagonal path. Let the lower diagonal 
region be the region existing below the diagonal path. From our analysis, we have 
remarked the following interesting points. If we split the vertical segment VSl into these 
three regions, the row portions of the upper diagonal region (rowil; 0  i  Colbl) will 
not be subjected to the reduction analysis. On the other hand, the row portions of the 
diagonal region (rowil; Colbl < i  Colel) and the lower diagonal region (rowil; i > 
Colel) will be subjected to the reduction analysis. In Figs. 3.c, 3.d and 3.e, we describe 
the application processes of the RA to the row portions: row12, row32, and row52, as 
examples of these regions. The results of this application can be illustrated as follows. 
The result of the RA of the row portions of the lower diagonal region is the complete 
elimination of its elements as shown in Fig. 3.e for row52 of VS2. On the other hand, the 
result of the RA of the row portions of the diagonal region is the partial elimination of its 
elements as shown in Fig. 3.c for row32 of VS2. 
 
4.2 Estimation of the suitable number of vertical segments 

The proper operation of the DBS technique depends, largely, on the choice of the 
suitable K that prevents RAM overflow. This overflow occurs due to the enlargement of 
the vertical segment sizes during their transformation to their SUT forms. We have 
supported the DBS technique with a utility that allows the prediction of the final sizes of 
the vertical segments with the help of which a suitable K can be determined according to 
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Fig. 3. Reduction of VS2 using MSRGR technique. 



Samir M. Koriem and W. S. El-Kilani 

 

48 

 

the available RAM. In this section, we describe the implementation of this utility. The 
problem of choosing K stems from the fact that the transformation of a vertical segment 
into its SUT form results in an exponential increase of its non-zero elements. These 
newly generated elements may cause RAM overflow, or the RAM may not be able to 
accommodate the enlarged size of some vertical segments. To avoid memory overflow, 
one may choose to increase K.   When we increase the parameter K, the final sizes of the 
vertical segments after transformation decrease. This decrement in turn may prevent 
memory overflow. Unfortunately, increasing the parameter K leads to the increase of the 
time needed to complete the solution due to the overhead processing needed to manage 
the history list file. Therefore the minimum number of vertical segments (denoted by 
Kmin) that prevents the memory overflow, must be determined carefully. Yet, choosing 
K requires the knowledge of the final sizes of vertical segments to determine whether the 
RAM will accommodate these sizes. Since the vertical segment’s final forms are 
successive groups of columns of QT, the estimation processes of the final sizes of 
vertical segments can be achieved by estimating the non-zero elements in all columns of 

QT. We have made use of the following lemma to estimate the number of non-zero 
elements in any column j (denoted by Colj).  
 
Lemma: 
Let eij; 0  i,j  N-1 denotes the non-zero element of Colj and rowi. Let uj be the row 
index of the uppermost non-zero element of Colj. Define the following formula as the set 
of non-zero elements of Colj in the transition matrix QT. 
 

Colj {eij; i  uj}                  (4.2.1) 
 

After applying the GE method to the matrix QT, the number of elements of any Colj can 
be calculated by the following formula. 
 

NEj  | uj – j +1|          (4.2.2) 
 
Where, uj is the row index of the uppermost element of Colj. 
 
Proof: 
To prove this lemma, we use the simple SRN model shown in Fig. 4.a.  The matrix QT 
(14 14) generated from this model is shown in Fig. 4.b. Simulate the effect of the GE 
method on the elements of the matrix QT shown in Fig. 4.b.  The GE method transforms 
the matrix QT (N N) into its upper triangular form in N steps. In the step i, the GE 
method uses rowi to eliminate the non-zero elements existing in Coli under the diagonal 
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element eii. Accordingly, to simulate the effect of the GE method on the elements of the 
matrix QT shown in Fig. 4.b, we need to monitor the elimination operations that the GE 
method performs on the elements of the matrix QT in each of its N steps. Assume we first 
monitor the second step performed by the GE method on the elements of the matrix QT 
(i.e. eliminating the non-zero elements existing in the Col1 under the diagonal element 
e11). Actually, this step can be performed using row1 to act upon the row2, row3, and 

row6 in order to eliminate the set of elements {e21, e31, e61} existing under e11. 
However, eliminating this set of elements induces the following elements: {e23, e28, 
e29} in row2, {e38, e39} in row3, and {e68, e69} in row6. A considerable part of these 
induced elements will be situated in the gap between the uppermost elements of Col3, 
Col8 and Col9 (i.e. e13, e08, e19), and the corresponding diagonal elements (i.e. e33, 
e88, e99). Figure 4.c shows the execution of the second step performed by the GE 
method on the elements of the matrix QT, where e23 is generated in the gap between e13 
and e33. Also, {e28, e38} will be induced in the position of zero elements present 
between e08 and e88. Moreover, {e29, e39, e69} will be situated in the position of zero 
elements in the gap between e19 and e99. 
 

Finally, there are several non-zero elements that will be induced in the row2 and 
row3 during the elimination step {e21, e31} due to the following reasons. The elements 
of the matrices Q {qij}N N  (or QT) resulting from systems modeled by the Petri net 
(PN) theory exist near the diagonal [9], [20]. Thus, most elements of any row of the 
matrix Q (or QT) will exist near the matrix diagonal. Consequently, the non-zero 
elements of any column will exist in several neighboring rows. Subsequently, applying 
any step i of the GE method on the matrix QT will induce non-zero elements in several 
neighboring rows to rowi.  A part of these induced elements will reduce the gap between 
the uppermost elements and the corresponding diagonal elements, while the other part 
will be situated under the matrix diagonal to be eliminated through subsequent 
elimination steps. Hence, we deduce that the third step performed by the GE method on 
the matrix QT will induce new non-zero elements in neighboring rows to row3. 
Moreover, the elements induced in row3, during the second step of the GE method, will 
produce more non-zero elements in the gap between the uppermost elements of row3, 
row8, and row9 as well as the corresponding diagonal elements. Figure 4.d shows the 
execution of step 3 of the GE method on the matrix QT, where e28 (induced in step 2 of 
the GE method) produces e48 and e78. Also, e29 (induced in step 2 of the GE method) 
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produces e49 and e79. This process further tightens the gap between e08 and e88 as well 
as e19 and e99.  
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Since the execution of GE steps gradually reduces the gaps between the 

uppermost elements and the corresponding diagonal elements, the number of non-zero 
elements in Coli of QT can be calculated by the following formula. 
 

NEi  | ui - i+1| 
 

Where, ui is the row index of the uppermost element of Coli. 
 
From our experience with the SRN models and their generated QT matrices, we 

have found that the estimating processes of the 14 14 matrix are still valid for the QT 
matrices generated from most SRN system models. This result is due to the previously 
mentioned property: the elements of the QT matrices resulting from the PN models exist 
near the diagonal. In Section 5, we illustrate the validity of our estimating processes of 
large QT matrices.  
 

From our analysis, we have found that the calculation of NEi for any Coli of QT 
depends only on its uppermost elements. Thus, we can easily get a set NE={NE0, 
NE1,…, NEN-1}, where NEi carries the number of non-zero elements in the 
corresponding column of QT. Having the set NE, one can calculate the minimum 
number of  vertical segments (Kmin ) that can be accommodated by a given RAM. In 
this algorithm, we take into consideration that any non-zero element of a vertical 
segment needs 12 bytes of memory (4 bytes for the column index, and 8 bytes for the 
element storage). The following algorithm illustrates how the set NE supports the 
calculation of the parameter Kmin. 
 
Algorithm: Calculation of Kmin for a given RAM 
Step 1. Initialize the minimum number of vertical segments such that Kmin =1  
 
Step 2. Calculate the number of non-zero elements in vertical segments (no_elem_VSi) 

through the following loop. 
 

For i =1 To  Kmin 
(i) Calculate Colbi and  Colei of VSi according to 

   no_col_VS=  N / Kmin  
  Where  no_col_VS is the  number of columns of a vertical segment VSi. 

 x  is the maximum integer less than x. 
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Hence 

    Colbi = (i-1)  no_col_VS 
Colei = i  no_col_VS – 1,            for  i  < Kmin 
 Colei = N-1, for  i= Kmin 

 
 

 (ii) Calculate no_elem_VSi according to the following equation: 

  
eiCol

biColi
ii NEVSno_elem_  

       If             (no_elem_VSi  12)    RAM size,  
      Then        Go To Step 3 

Else         • Kmin= Kmin+ 1  
                     • i = 1    
                     • Go To Step 2 

 
Step 3.  Display Kmin 
 
 
4.3.  Management of history analysis 

As we have explained in Section 4.1, the HA must be performed on each row 
portion. Consequently, during the HA of row portion rowil, we must perform on rowil 
all the computational operations done during the RA of the previous row portions S 

{rowij; 1  j  (l-1)}. On the other hand, many of these computational operations may 
not to be needed during the HA of a row portion. Since the records of these 
computational operations are present in the form of the history list (Section 3) on the 
HD, the determination processes of their applicability need to retrieve them from the 
HD. 
 
  In this section, we present the management technique utilized by the HA to guess 
the applicable operations without the need to access the HD. The main advantage of the 
proposed management technique is the elimination of time consumed during the 
accessing processes of the HD for inapplicable operations. In addition, we get rid of the 
burden of performing these inapplicable operations. To clarify how our proposed 
management technique performs the HA of row portions of a vertical segment, let rowim 
be one of the row portions of VSm. Also, we assume that the HA for the rowim is 
required. It is interesting to note that the rowim may be situated in the upper diagonal 
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region, or the diagonal region, or the under diagonal region with respect to VSm. The 
position of rowim greatly affects the way of handling its HA by the proposed 
management technique. In the following, we illustrate how the proposed management 
technique handles the history list records corresponding to the row portions of the 
previously mentioned regions. For this purpose, let us define the following. Let the non-
zero row portion be the row portion that some of its elements are non-zero. Let the zero 
row portion be the row portion that some of its elements are zero. 
 

To illustrate how the HA of the zero row portion and the non-zero row portion 
can be managed, suppose that the rowim is situated in the upper diagonal region of VSm 
(i.e. 0  i < Colbm). The HA of the non-zero rowim  can be illustrated throughout 
applying on rowim all the computational operations registered in the history list 
corresponding to rowij; 0  j  m-1. From our experience with the matrix Q generated 
from the PN system models, we have found that the non-zero elements of any row in this 
Q are confined to the area near the matrix diagonal. Also, each rowi has a set of leftmost 
zero row portions given by the set A {rowij ; 0  j < li}, where rowili 

is the leftmost 

non-zero row portion of rowi.  
 

Since the row portions of A are zero row portions, the members of A will not be 
subjected to any RA. In turn, no computational operations will be registered in the 
history list corresponding to the set A.  On the contrary, we expect that the history list 
will include records of computational operations corresponding to the non-zero row 
portions of the set B  {rowij ; li  j < di}, where rowidi

 is the non-zero row portion 

situated in the diagonal region of VSdi
 (i.e. Colbdi

  i  Coledi
). This expectation is due 

to the fact that all the members of B are situated under the matrix diagonal. Hence, B 
will be subjected to RA.  
 

From the above discussion, we conclude the following. During the HA of rowim, 
we only need to apply on rowim the set of operations stored in S {PHLij ; li  j < di}, 
where PHLij is a part of the history list carrying the group of computational operations 
performed on rowij during its RA (as shown in Section 4.2).  Having the set S, we can 
define the history domain of rowim  (denoted by Domim) as follows.  
 
 Domim {j ; li  j  di}                                                                (4.3.1) 
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We can then designate li and di as the left and right history domain sides of 
rowim and denote them as LDomim and  RDomim respectively. The HA of 
rowim {rowjm , 0  j < um} implies all the computational operations that have been 
performed on rowim. These operations have been stored in the history list corresponding 
to rowim. As shown in Section 4.1, these computational operations have been done 
between rowim and the rows higher than rowim (i.e. between rowim and rowjm; 1  j < 
i). Since rowim and the rows higher than rowim are all zero row portions, the history 
domain of rowim; 0  i< um can be assumed to be equal to , where  is the empty set. 
Thus, the history domain of the zero row portions extending higher than the uppermost 
row portion of VSm is equal to . 
 

In the following, we illustrate the processes of the HA of zero rowim. To perform 
these processes, we use the same processes that have been applied on the non-zero 
rowim. In this case, li and di will be also the history domain sides of rowim. Throughout 
the HA of zero rowim, we need to apply on rowim the computational operations stored in 
S. Yet, the state of rowim will be only changed if the computational operations stored in 
PHLij; li  j  di are performed using the non-zero row portions. This constraint can be 
accomplished by redefining the history domain of the zero rowim as follows. 
   Domim { j ; li  j  di , Colej  um}               (4.3.2) 
  

The PHLij; li  j < di contains the records of computational operations performed 
between the members of rowkm; Colbj  k  Colej and the rowim. Consequently, the 
condition Colej  um guarantees that the set rowkm; Colbj  k  Colej contains the non-
zero row portions. This condition acquires a great validity due to the following reason. 
From our experience with the matrix Q generated from the PN system models, most of 
the non-zero elements of a vertical segment are concentrated in the diagonal region rows. 
The presence of these elements decreases significantly as we move up and down through 
the rows of the upper and lower diagonal regions, respectively. Moreover, in large 
matrices of practical systems, the non-zero elements vanish completely in most rows of 
the upper and lower diagonal regions.   
 

Having finished from the analysis of the upper diagonal region, suppose the 
rowim is situated in the diagonal region of VSm (i.e. Colbm  i  Colem ). According to 
equations 4.3.1 and 4.3.2, we can easily derive the history domain of rowim as follows. 
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   Domim  {j; li  j  m-1}            (4.3.3) 
 
It must be noted that all the row portions of the diagonal region are of the non-zero kind. 
Hence, there is no need to discuss the zero row portions. 
 

Finally, suppose rowim is situated in the lower diagonal region of VSm (i.e. 
Colem < i< N). Row portions of these regions can be non-zero or zero type. The history 
domain of non-zero rowim is the same as that of equation 4.3.3. The history domain of 
zero rowim is defined as follows. 
 
   Domim  {j ; li  j m-1 , Colej  um}            (4.3.4) 
 
In the following algorithm, we explain how our management technique uses equations 
4.3.1- 4.3.4 to perform the HA of rowim. 
 
Algorithm: History Analysis of rowim of VSm(Domim) 
 
Step 1. Determine the Domim of rowim through the following steps. 
 

(a) If  (0  i < um ) (the upper diagonal region), then 
Domim =  

(b) If (um  i < Colbm) (the upper diagonal region), then 
 (i) Domim of zero rowim { j; li  j  di, Colej  um } 
(ii) Domim of non-zero rowim { j; li  j  di }. 

 (c) If (Colbm  i ) (the diagonal region and the lower diagonal region), then 
(i) Domim of zero rowim { j; li  j  m-1, Colej  um } 
(ii) Domim of non-zero rowim {j; li  j  m-1}. 

 
Step 2. Use the Domim of rowim to apply on rowim the set of operations A  {PHLij ; j 

Domim} where, PHLij is a part of the history list carrying the 
computational operations performed during the RA of rowij. 

 
5.  Numerical Results 
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To illustrate the merits of using the DBS technique, we have applied the DBS on 
the SRN model of the Kanban manufacturing system shown in Fig. 5. This model has 
been used previously in the literature to show the effectiveness of several largeness 
tolerance techniques [11, 12]. The SRN Kanban model is composed of four subnets [22]. 
At each subnet, a token enters, spends some time, and exits or restarts with certain 
probabilities. Once the token leaves the first net, it may enter the second or third subnet. 
The token must go through the fourth subnet to leave the system.  
 

To solve the SRN Kanban model of Fig. 5, we have represented the 
synchronization transitions by the timed transitions. Assuming that the places pkanban1

, 

pkanban2
, pkanban3

 and pkanban4
 contain 3, 2, 2 and 2 tokens respectively, we get the 

matrix QT of dimension N N, where N=18400 as shown in Fig. 6. In this figure, the 
presence of the matrix elements near the diagonal can be observed. Moreover, suppose 
that the matrix QT cannot be solved using the traditional iterative methods due to the 
stiffness of its rates. Consequently, the matrix QT can be managed only by using the 
direct methods such as the GE technique.  Unfortunately, applying the GE technique on 
the matrix QT causes memory overflow even for 256 Mbytes of RAM (which is a 
common resource for many platforms). If the algorithm of Section 4.2 supports the DBS 
technique, the matrix QT can be solved using the DBS technique for K 5 due to the 
following. The estimated memory used by the DBS technique is more than 256 Mbytes, 
which is beyond the available memory. Consequently, we have applied the DBS 
technique on the matrix QT for the values of K ranging from 20 to 200. For these 
variations of K, we have measured the time needed by the DBS technique to solve the 
matrix QT.  
 

All the experiments done using the DBS technique are performed on an Intel 
Pentium III-550 MHz with 256 Mbytes of RAM and 20 Gbytes of HD. Moreover, for a 
certain number of vertical segments K, the size of the vertical segment SUT form varies 
from one vertical segment to another as shown in Fig. 7 for K = 40. Therefore, we are 
interested in monitoring the maximum size of these SUT forms. By allocating enough 
memory for this maximum size (denoted by Mmax,K ), the DBS technique has the 
capability to completely convert all the vertical segments to their SUT forms. Table-I 
shows the time (denoted by TK) and the Mmax,K needed by the DBS technique to 
completely convert the vertical segments into their corresponding SUT forms for 20  K 

200.  
 

It is interesting to note that the proposed DBS technique has been developed 
based on the modification of execution sequences of the GE procedure.  Therefore for a 
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given K, the size of the vertical segment SUT form (denoted by Mi; 1  i  K) is related 
to the size of the matrix QT (denoted by M Q) by the following relation. 
 

    
K

i
i

1
Q MM                           (5.1) 

 
Fig. 5. The model of the kanban manufacturing system. 

 
 

 
Fig. 6. The 18400x18400 QT of the kanban model. 

 
Table 1. Time (Tk), maximum memory (Mk), percentage increase in time (%Tk) and percentage 

reduction in memory (%Mk) consumed by the DBS for 10  k 200 
K 0 10 20 40 60 80 100 120 140 160 180 200 

Tk (sec) 13683 14863 15221 16302 17676 20209 20916 21135 22957 23266 24711 27480 
% Tk  0 8.62 11.24 19.14 29.18 36.92 52.86 54.46 67.78 70.04 80.60 100.83 
Tmax,k (MB) 675.5 119.42 61.04 30.61 20.64 15.57 12.50 10.50 8.99 7.82 8.99 6.26 
% Mk 0 82.32 90.96 95.47 96.94 97.70 98.15 98.44 98.67 98.84 98.67 99.07 
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Using equation 5.1, the M Q has been found to be 675.5 Mbytes (i.e. 59,025,755 
non-zero elements). The enormous size of this matrix QT indicates why the GE 
technique is not able to solve such a matrix. To illustrate the advantage of using the 
proposed DBS technique, we have calculated the reduction percentage in RAM needed 
by the DBS (denoted by %MK ) for all variations of K.  The percentage %MK  can be 
obtained using the following formula.  
 

   100
QM

),M-Q(M
%M

Kmax
K                (5.2) 

 
In Table 1, we illustrate the values of %MK when 20  K  200.  From Table 1, 

we have remarked the following interesting points.  
 

 (i). %MK increases as K increases; 
 (ii). For K>60, the change in %MK is less than 1%; and 
 (iii). When K=60, %MK reaches 96%. 

 
 Hence it will be satisfactory to use the DBS technique for K 60. Regrettably, the 
increase in the value of %MK is accompanied by an increase in the corresponding 
solution time (denoted by TK) consumed by the DBS technique to solve the matrix QT. 
In the following, we calculate the percentage of increasing TK (denoted by %TK). 
 

100
T

)T-(T%T
0

0K
K                           (5.3) 

Where 
TK  (20  K  200): the time consumed by the DBS technique to solve the matrix QT;  
T0   (K =0): the time consumed by the GE technique to solve the matrix QT. The 
behavior of the DBS technique is the same as that of the GE technique when K = 0. 
 

The advantages gained from our DBS technique can diminish greatly if %T60 has 
a comparable value to 96% of %M60. Yet, we have not been able to get T0  because of 
the enormous size of the matrix QT preventing its solution, as previously stated. As an 
approximate solution for this problem, we have calculated T0  by extrapolating the set 
{TK; 20  K  200}, for K=0. To make our extrapolation more accurate, we have also 
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measured TK for K=10. Having T0, we can compute  %TK for 20  K 200 (see also 
Table 1). We have plotted in Figure 8, the change of %TK and %MK for 20  K 200. 
From Figure 8, we can remark the following points. For K=60, while %MK reaches 
96%, %TK reaches only 20%. When K>60, %TK increases excessively and %MK  
increases slightly (i.e. less than 1%). When K 60, there is a remarkable difference 
between %TK and %MK due to the effect of the proposed history management 
technique (discussed in Section 4.3). 
  
  To understand the effect of the proposed history management technique on the 
performance of the DBS, we must notice that the main difference between the GE and 
DBS techniques is the time consumed during the HD accessing. A part of the HD 
accessing occurs during the HA (denoted by ACCHA). Another part occurs during the 
retrieval and storage of the vertical segment elements (denoted by ACCRS). From our 
analysis, the value of ACCRS is nearly constant during the variation of K due to the 
following reasons. The total number of the vertical segment elements is constant. Also, 
this number does not vary with K (see equation 5.1). The operations (stored in the 
history list) performed during the HA are the main cause of these elements. Thus, the 
total number of history list records accessed will be more or less constant. Subsequently, 
minimizing ACCHA will greatly enhance the performance of the DBS technique. 
Indeed, we can perform the HA by accessing all the history list records. Yet, we need to 
access the HD several times. 
 

Figure 7 shows the number of times the history list is accessed by the proposed 
history management technique for K=40. From this figure, we can remark the difference 
between the number of history list records and that of the history list records accessed 
for the vertical segments of K=40. To access the entire history list records, we need to 
access the HD 258,294,947 times (i.e. ACCHA = 258,294,947) as shown in Fig. 7. On 
the other hand, the proposed history management technique (explained in Section 4.3) 
needs to access the HD 180,532,385 times (i.e. ACCHA=180,532,385). Thus, the 
proposed history management technique achieves 30% reduction in ACCHA. Moreover, 
ACCHA is usually much greater than ACCRS. For example, from Fig. 7, we found that 
while ACCHA is equal to 180,532,385, ACCRS equals 59,150,755. We can then state 
that ACCHA constitutes nearly 75% of the time consumed during accessing the HD. 
Hence, we can conclude that ACCHA affects greatly the performance of the DBS 
technique (i.e. time of solution). For each vertical segment {VSi; 1  i  K}, ACCHA is 
controlled by the history domain range of the vertical segment VSi (denoted by DomRi). 
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 DomRi = max{LDomij; 0  j N-1}- min{RDomij; 0  j N-1}              (5.4) 
 

Figure 9 illustrates that there is a proportional effect for the DomRi on the 
solution time of the vertical segments {VSi; 1  i K} when K=40. The effect of DomRi 
on the solution time of VSi ensures the previous conclusion concerning the effect of 
ACCHA on the performance of the DBS technique due to the following reason. The 
increase of DomRi means the increase of the accessed history list records for any vertical 
segment VSi.   
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To gain more insight about the operation of the proposed management technique, 

we use the following example. Let us monitor the HA of VS10 and that of VS30 during 
the application of the DBS technique when K=40. As shown in Fig. 9, DomR10  =7 and 

Fig. 7. Number of history list records and history list accessings, initial and final 
number of elements for vertical segments resulting from applying DBS for K=40. 

Fig. 8. % increase in memory reduction, % increase in time for k  of  the DBS varying 
from 20 to 200. 

Fig. 9. Time for reduction and history domain range of vertical segments for K=40. 
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DomR30 =17. The number of times the HD is accessed during the execution process of 
the HA of VS10 and that of VS30 on the set PHLi; 1  i 40 when K=40 is shown in Fig. 
10. From our analysis of Figs. 9 and 10, we have observed the following. These 
accessing processes are performed on history list portions situated within the domain 
range of VS10 and that of VS30 (i.e. {PHLi; 10-DomR10  i <10}, {PHLi; 30-DomR30  
i <30}). The number of times the history list records is accessed corresponding to nearby 
vertical segments is greater than that of farther vertical segments. For example, during 
the HA of VS30, the accessing process to PHL29 is greater than that to PHL28 or 
PHL27. This behavior is due to the fact that the non-zero elements of a certain row 
extend through several neighboring vertical segments. Subsequently, during the HA of 
VSi, the history list of neighboring vertical segments will contain more applicable 
operations to row portions of VSi than that of farther VSi.  
 

Furthermore, it is interesting to illustrate how the proposed management 
technique performs the HA of a row portion, as a basic operation of this technique. Fig. 
11 shows the change of the left and right history domain sides for the row portions of 
VS10 and those of VS30 for K =40, (i.e. LDomij, RDomij; 0  i N-1,  j (10,30)).  The 
effect of the matrix diagonal on these history domain sides can be noticed by the 
descending zigzag appearance of the diagrams shown in Fig. 11. Moreover, as shown in 
Fig. 12, the history domain of the row portions VS10 and that of VS30 has not exceeded 
2 for VS10 and 3 for VS30. Also, we can notice the close relation between Figures 11 
and 12 according to equations 4.3.1- 4.3.4. This close relation is due to the fact that the 
elements of the matrix QT are confined to the area near the matrix diagonal.  
Subsequently, the leftmost row portion rowili

 of rowij is situated nearby the vertical 

segment VSli
 (i.e. (j-li) <<K). Furthermore, the number of times the HD is accessed by 

each row portion on the history list is presented in Fig. 13. The effect of Dom10,i and 
Dom30,i on the number of times the history list is accessed can be noticed by comparing 
Figs. 12 and 13. From this comparison, the row portions that have an equal history 
domain access the history list in nearly equal number of times. Also, the row portions 
that have a greater history domain access the history list more times. 
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Fig. 10. Number of accessings performed by VS10  
and VS30 on{HLi;1 40i 40} for K=40.  

Fig. 11. Left and right history domain sides for row 
 portions of VS10 and VS30 for K=40.  

Fig. 12. History domain for row portions of VS10 and 
 VS30 for K=40.  
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Using the proposed history management technique, the HA greatly affects the 
number of non-zero elements enclosed in a vertical segment VSi. From Fig. 14, we can 
observe the exponential increase in the number of elements enclosed in VS10 and that of 
VS30. Figure 14 illustrates the effect of the application of the DBS technique on the final 
number of elements that have been enclosed in the row portions of VS10 and that of 
VS30.  As shown in Fig. 14, the number of non-zero elements has reached an average 
value of 200 and 280 for row portions of VS10 and VS30, respectively. On the contrary, 
the initial number of elements enclosed in the row portions of VS10 and that of VS30 
(before application of the DBS technique) has not exceeded 6 for the row portions of 
VS10 and those of VS30. The curve shown in Fig. 17 increases exponentially due to the 
application of the HA on the three previously-mentioned regions of VS10 and those of 
VS30. Moreover, we can observe from Fig. 14 that the non-zero elements are only 
distributed throughout the row portions of the upper diagonal and the diagonal regions, 
while the non-zero elements present in the row portions of the under diagonal region are 
eliminated through the RA. Also, these non-zero elements are only present in a small 
subset of the row portions due to the property of the matrices that can be obtained from 
the PN models as previously mentioned. 
    

From our analysis of Fig. 14, we can also observe that the final number of 
elements has a peak value for the set of row portions existing in the border between the 
upper diagonal and the diagonal regions. This peak in the number of elements is 
attributed to the peak present in the number of times the history list is accessed as shown 
in Fig. 13.  The presence of this peak is due the distribution of the elements around the 
diagonal in the border between the upper diagonal and the diagonal regions. This 
distribution means the existence of many applicable records in the history list for row 
portions existing in the border between the upper diagonal and the diagonal regions. 
Consequently, applying the HA of row portions of the border will induce many elements 
for these row portions. The effect of RA can be shown in the sharp inclination in the 
number of elements for row portions of the diagonal region. 
 

Finally, the effectiveness of the estimation criteria proposed in Section 4.2 can be 
observed by comparing Figs. 15.a and 15.b. In Fig. 15.a, the number of elements in each 
column of QT is estimated according to the lemma of Section 4.2. In Fig. 15.b, the 
actual number of elements in each column of QT is monitored from the columns of the 
vertical segments in their SUT forms. The resemblance between the two figures can be 
easily observed, where the error in estimation has not exceeded 0.001% for the 
59,025,755 elements of QT. 
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Fig. 13. History list accessings performed during HA of row 
 portions of VS10 and VS30 for K=40.  

Fig. 14. Final number of elements in row portions of VS10 and 
 VS30 for K=40.  

Fig. 15. Estimated and actual number of elements in columns of  QT.  
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6.  Conclusion 
 

In this paper, we have presented the DBS technique as a largeness tolerance 
technique based on a modified version of the GE procedure. The basic concept of the 
DBS technique depends on splitting the whole matrix into a number of vertical 
segments. Each vertical segment consists of a band of successive columns. Each vertical 
segment is acted upon by a modified version of the GE procedure in such a way that 
these segments are transformed and become a part of the triangular form of the original 
matrix. Further, we store these segments in the hard disk to be used in calculating the 
steady state probabilities. Moreover, a list of the computational operations (performed 
during the transformation of these vertical segments) is stored on the hard disk. By 
varying the number of vertical segments, the memory needed by the DBS technique is 
greatly minimized.  
 
  To minimize the DBS solution time, we have supported the DBS by two novel 
techniques. The first technique enables the DBS to get rid of the time consumed due to 
the back and forth movements of the non-zero elements of vertical segments during the 
transformation processes of each of these vertical segments into its SUT form. The 
second technique permits clever management of the disk accessing for the purpose of 
computation operation records. By making use of these two techniques, we have the 
capability of minimizing effectively the DBS solution time. Moreover, since the number 
of elements of any vertical segment increases excessively during its transformation to the 
corresponding SUT form, we have proposed a utility for the purpose of allowing an 
approximate estimation for the number of vertical segments to prevent the memory 
overflow.  
 

To illustrate the merits of using the DBS technique, we have applied the DBS on 
the matrix Q obtained from the SRN model of the Kanban manufacturing system. From 
this model, we have produced 18,400 states to describe the behavior of large-scale 
models. Also, we have presented the detailed results concerning time and space 
requirements of the DBS technique. These results show that varying the number of 
vertical segments leads to 96% reduction in the memory required as compared to that 
needed by the GE technique, with just only 20% increases in the solution time. This 
reduction is due to the fact that the GE technique needs 675 Mbytes to solve the state-
transition-rate of this model but the DBS technique needs only 60 Mbytes, with 20% 
increases in the solution time. Finally, we have analyzed the execution processes of the 
disk management technique to clarify its effectiveness. 
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 ة كبر حالات الحاسبات علي القرص الصلب لحل مشكل داتكنيك جديد معتم
 العملية الواقعية الناتجة عن طرق نمذجه  شبكات بتري العشوائية التقليدية

 

 و و. س. الكيليني* سـمير محمود كريم
 ،ية الهندسة، كلقسم هندسة النظم والحاسبات

 جمهورية مصر العربية، القاهرة ،مدينة نصر، جامعة الأزهر
 ب والمعلومات،لحاستقنيات المعلومات، كلية اقسم *

 جمهورية مصر العربية مينوفيا، شابين الكوم،جامعة 
 

 م)٣٠/٠٤/٢٠٠٢م؛ وقبل للنشر في ١٤/١٠/٢٠٠١(قدّم للنشر في 
 

شبكه بتري العامة العشوائية و صيغ النمذجه العشوائية مثل شبكه بتري العشوائية،  ملخص البحث.
نمذجه وتقيم للسلوك الديناميكي للحاسبات ن تستخدم لعمل أوشبكه بتري المكافأة العشوائية يمكن 

العملية الواقعية. متي تم استنتاج حالات ماركوف من هذا النموذج العشوائي، فأنه لحلها يتم رياضيا 
لحل  .مئات الآلف لىإوضعها في صورة مصفوفة. عدد عناصر هذه المصفوفة  يزداد زيادة رهيبة تصل 

قدم تكنيك جديد نطلق علية "انقسام المصفوفات مستخدما مثل هذه المشكلة فأننا في هذا البحث ن
عدد من الأقسام  إلىإمكانيات القرص الصلب". في هذا التكنيك المقترح تم تقسيم المصفوفات 

العمودية وتم استخدام إمكانيات القرص الصلب لتخزينها. وđذه الطريقة تم تقليل حجم الذاكرة 
الصدد تم تصميم ثلاثة برامج لتساعدنا في عملية تقسيم اللازمة لتخزين المصفوفات. وفي هذا 

كفاءة التكنيك المقترح فلقد تم  ولتوضيح مدي القرص الصلب بكفاءة عالية. ىالمصفوفات وتخزينها عل
بتري المكافأة العشوائية لكي يمثل السلوك الديناميكي لإحدى  ةنموذج تم تصميمه بشبك ىتطبيقه عل

 ة التي تمدنا بمئات الآلف من حالات ماركوف.  الحاسبات العملية الواقعي




