
J. King Saud Univ., Vol. 15, Comp. & Info. Sci., pp. 1-31 (A.H. 1423/2003) 

1 

Surface Reconstruction from Multiple Views of Painted Curves  
 

Madasu Hanmandlu, V. Shantaram* and M. Vamsi Krishna** 
FOE, Multimedia University, Jalan Multimedia, 63100 Cyberjaya Selangor, Malaysia 

* IT Department, American InterCon. University, 12655 W. Jefferson Blvd., Los Angeles, USA 
**  Electronics & Communications Dept., S.S.N. College, Ongole 523001, A. P., India 

 
(Received 12 August 2000; accepted for publication 2 January 2002) 

 
Abstract. A normal to the extremal contour of a 3D object is the same as the normal computed for the image 
contour projected on the unit sphere by the rays grazing the extremal contour.  This fact is utilized in the 
present work to derive the parameters of quadric surfaces.  We require three views of the point of intersection 
of two painted curves on an object. Out of the three views, one view must be chosen such that the image 
contours of the curves appear close to the extremal contours.  Then the normals to the image contours (i.e., 
apparent contours) and the normals to the surface curves (i.e., contour generators) can be related through 
differential geometry to yield quadric representation of a surface at the point of interest. 
 
 

1.  Introduction 
 

The problem of analyzing a sequence of monocular images (intensity or range) or stereo 
images to extract three dimensional motion and structure is an active area of research in 
computer vision. While analyzing monocular images reliable tokens (features) such as 
curves, corners are detected from the spatial variation of image intensities, assuming that 
they correspond to markings on 3D objects. Second, these tokens are tracked over time 
to recover depth and 3D velocities of the corresponding 3D tokens. One possibility is to 
consider two-dimensional tracking, which gives us matches between different frames, 
and to use these matches for estimating three-dimensional motions. For some of the 
work published for recovering motion and structure from n point matches, p line 
matches, between q views where typically n is 5, p is 6 and q is 2 or 3 refer to [1-8]. 
Three-dimensional tracking is the other possibility [9, 10]. A review on the computation 
of motion from a sequence of images is given in [11]. 
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Some of the recent works on structure from motion are briefly reviewed in the 
following: Weng et al. [12] determine the structure and motion by minimizing the 
nonlinear objective function. The error in the optimal solution is compared with a 
theoretical lower bound. Taylor and Kriegman [13] also estimate the structure of scene 
composed of straight-line segments by minimizing a nonlinear objective function. This 
gives the disparity between the observed line segments and the predicted lines. The 
minimization is done with respect to both the line parameters and camera positions. 
Seales and Faugeras [14] have designed a working system for reconstructing the surface 
model for an object that has smooth and sharp surface boundaries. Using either known or 
computed motion, an image sequence is generated with edges arising out of occluding 
boundaries. Then the locally reconstructed surface information over multiple views is 
fitted with a global surface mesh approximating the original 3D object. Reconstruction 
of 3D structure undergoing rotational motion with respect to camera is presented in [15] 
knowing the correspondences of the point features tracked over many images. The 
location of points under perspective projection is found from the computed image 
trajectories. Wu et al. [16] have presented a robust approach to estimate the kinematics 
of camera and structure of the objects using noisy monocular image sequences. The 
motion is represented by rectilinear motion parameters whereas the structure parameters 
are the 3D coordinators of the salient feature points. Then the incremental motion and 
structure are estimated by both the iterated extended Kalman filter and the nonlinear 
least squares method. Making an assumption that two matched line segments contain the 
projection of a common part of the line segment in space to match line segments 
between different views, Zhang [17] presents an algorithm for recovering motion and 
structure from two perspective images.  

 
A lot of work has been reported using stereo images to reconstruct a depth [10, 

18-20]. The main problem in these methods is to establish correspondence between the 
images and to construct a dense depth map. A review of all types of feature 
correspondences in monocular and stereo sequence of images for motion and structure 
can be found in [21].  

 
Visible surfaces viewed from a single viewpoint when stationary yield almost no 

information about the depth but yield vivid 3D impressions when subjected to 
movement. This introduces the paradigm called `structure from motion'. The emphasis of 
structure from motion is to determine the number of views needed to recover the spatial 
configuration of the scene points and the number of image points or tokens to establish 
correspondence. 

 
Reconstruction of a surface gives potentially useful information for navigation, 

grasping and object identification tasks. The present study is aimed at reconstructing 
quadratic surfaces. There are a number of basic approaches to find a representative 
description of a surface. Surface curvature along extremal boundaries and the 
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deformation of an apparent contour (the silhouette of a smooth surface or the image of 
the extremal contour) under viewer motion is a rich source of geometric  information of 
the object. Barrow and Tenenbaum [22] have shown that the surface orientation along an 
extremal contour can be computed directly from image data. Koenderink [23] has related 
the curvature of an apparent contour to the curvature of a surface, i.e.. Gaussian 
curvature wherein convexities, concavities and inflection of apparent contour indicate 
respectively convex, hyperbolic or parabolic surface points. Giblin and Weiss [24] have 
extended this method by adding viewer motions to obtain qualitative estimates of 
Gaussian curvature. 

 
The objective of the present work is to develop a mathematical formulation using 

differential geometry for the reconstruction of a visible smooth surface and to show how 
an active monocular viewer making deliberate exploratory movements can recover 
reliable descriptions of visible surface geometry from the images of painted curves in 
different views. Cooper et al. [25] have also solved this problem for the reconstruction of 
a planar surface and their method requires the camera geometry for finding the affine 
transformation to match the images of painted curves in two or more views. By making 
use of extremal contours (or, curves in the vicinity of extremal contour) in different 
views, we are in a way considering the planar curves for the reconstruction of a curved 
surface. 

  
In this work rather than estimating curvature from the deformation of apparent 

contours as in [26], we determine the surface parameters from the normal and its 
derivatives at a point formed by intersecting painted curves. The viewpoints are chosen 
so that the image contours appear close to the extremal boundary. This will facilitate in 
relating the normal to the surface curve with the normal to the image contour of the 
same. This work establishes new identities between a surface normal and a normal to the 
image contour. Thus the main aim of this paper is to find and verify a new method to 
reconstruct quadratic surfaces from static contours using differential geometry.  
 

The organization of this is as follows: In section 1, we discuss the imaging model, 
properties of extremal contours. Section 2 deals with surface reconstruction from static 
contours. Section 3 presents the results of simulation as well as implementation on an 
actual object. Conclusions are relegated to Section 4. 

 
1.1 Imaging model  

The orientation of any ray can be determined by a monocular observer when it is 
projected on its imaging surface. However, the observer cannot determine the distance 
along the ray of the object feature. By choosing the direction of an incoming ray to 
represent a unit vector, determination of ray's direction is equivalent to considering the 
imaging device as a spherical pinhole camera of unit radius. 
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For the spherical projection, let the direction of ray to a world point P with a 
position vector r(s, t) be a unit vector on the image sphere Q(s, t), defined at time 't' by 

 
r(s, t) = v(t) + λ (s, t) Q(s, t) (1.1) 

  
Where λ(s,t) is the distance along the ray to the viewed point P and v(t) is the 

viewer's position as shown in Fig.1.  
 

 

 
Fig. 1. Spherical projection geometry. 

 
 

For a given vantage position to, the apparent contour Q(s, to) is a continuous 
family of rays emanating from the camera's optical centre which touch the surface 
forming the contour generator r(s, to), as shown in Fig.1, so that  

Q.n = 0 (1.2) 
where n is the surface normal. 

 
The tangent to the contour generator is also perpendicular to the normal 
rs. n = 0 (1.3) 
 
As a result, the moving observer at position v (t) sees a two parameter family of 

apparent contours Q(s,t) as depicted in Fig. 2. Note that Q is the direction of the light ray 
in the fixed reference frame (world frame)R3. It is determined by a spherical image 
position vector Q  (the direction of the light ray in the camera/viewer coordinate 
system) and the orientation of the camera coordinate system relative to the reference 
frame. For a moving observer, the viewer coordinate system moves with respect to the 

Spherical perspective image 

Optical 
centre 

Apparent contour 
Q (s, to) Contour 

generator 
r (s, to) 
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reference frame. We can, therefore, express the relationships between Q and Q  in terms 
of a rotation operator R(t)  

QR(t)  =  Q  (1.4) 
 

 
Fig. 2. Epipolar parmeterization. 

 
Q and Q0,  =At    t   coincide, at any other t the relative translational and rotational 

velocities U    and  are respectively:  
v  =  U t  (1.5) 

Q  Rt  =  Q  x    (1.6) 
 
where the subscript 't' indicates the differentiation with respect to t. 

 
The relation between temporal derivatives of measurements made in the camera 

coordinate system and those made in the reference coordinate system is obtained by 
differentiating Q with respect to time denoted as Qt  

Q  x    +  QtR(t)  =  Qt  
Since at t=0, R(t) is a unity matrix, the above equation becomes 

Q  x    +  Qt  =  Qt  (1.7) 
 
1.2 Properties of extremal contour and its projections  

We now state the following well-known properties of an extremal contour [27]: 
 

1. The orientation of the surface normal n can be computed by measuring the 
direction of the ray Q of a point on an extremal contour and the tangent to the 
apparent image contour Qs 
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|Qs  x  Q|

Qs  x  Q
  =n   (1.8) 

 
2. The ray direction Q and tangent to the extremal contour rs are in conjugate 

directions. 
According to the second fundamental form, the ray direction and the extremal 
contour will only be perpendicular if the ray is along a principal direction. 

3. The curvature of the apparent contour Kp can be written in terms of its normal 
and the derivatives of the image curve as 

 |2Qs|/n).Qss(  = Kp  (1.9) 
 
1.3 Representation of apparent contours  

As the viewer moves, a family of apparent contours t)(s,  Q  is swept out on the 
image sphere. However, the spatio-temporal parameterization of the family is not 
unique. The mapping between contour generators and hence between apparent contours 
at successive instants is underdetermined. To circumvent this problem, use is made of 
epipolar parameterization defined by 

 0  =  Q  x  rt  (1.10) 
 

The tangent to the t-parameter curve is chosen to be in the direction of ray, Q. 
This implies that the grazing/contact point is chosen to `slip' along the ray. Thus the 
tangent plane basis vectors rs and rt are in conjugate directions. 
 
 In order to set up correspondence between points on successive snapshots of 
apparent contour, we differentiate (1.1) with respect to `t' and enforce the epipolar 
constraint (1.10) leading to  

      xQ  xQ)(U
  =  Qt  (1.11) 

 
This indicates that the corresponding ray in the next viewpoint t) +t ,s0Q(  is 

selected so that it lies in the plane defined by (U x Q) - the epipolar plane as shown in 
Fig.2. 

Rewriting eqn (1.11) to yield, λ, we have 

 
n.Qt

n.U
  -  =   (1.12) 

 
Thus depth λ (distance along the ray Q) can be computed from the deformation Qt 

of the apparent contour under known viewer motion (i.e. translational velocity U). 
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In terms of measurements on image sphere, (1.11) becomes: 

 'xQ  
'  xQ)'  xQ(U

  =  Qt  (1.13) 

 Where Qt is the image velocity of a point on the space curve at a distance λ. 
Equation (1.13) is the well known equation for structure from motion. Points on 
successive image curves are `matched' by searching along epipolar great circles on the 
image sphere defined by the viewer motion U, Ω and the image position Q . 

 
It can be noted from (1.13) that image velocity consists of two components: One 

is determined by the viewer's rotational velocity about camera centre and is independent 
of structure of the scene (λ). The second component is determined by the translational 
velocity of the viewer. 

 
 

2.  Surface Reconstruction from Static Contours 
 

Here the properties of extremal contour are used to derive a relation between the 
derivative of normal to the contour generator and that of normal to the apparent contour 
at the point of intersection of painted curves. This relation will provide us some 
quantities by which the coefficients of the quadratic equation describing the surface can 
be obtained. 
 
2.1 Relation between the surface normals and curve normals  

A surface can be conveniently described by the point (x,y,z) satisfying the 
following equation: 
F(x,y,z) = C (2.1) 
  

For an explicit function where one of the three coordinates can be expressed in 
terms of the other two, we can write for z, which is along the optical axis of the camera 
at the first viewpoint as  

y)g(x,  =  z  (2.2) 
 

For the sake of relating the computed normals and their derivatives at the two 
viewpoints with respect to a single reference point, we consider the first viewpoint as our 
reference coordinate system. 
 In view of (2.2) F can be rewritten as 

C)  +  z  -  y)(x,  (g  =  F  (2.3) 
 
Therefore, 
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k  -  j 
y

g
 +  i 

x

g
  =  F  

 

k  -  j 
y

z
  + i 

x

z
 =  (2.4) 

 

Denoting 
x

z
 by p and 

y

z
 by q, we have 

 
k  -  j q  +  i p  =  F  

 
Hence the unit normal at any point is then 
 

1)  +  q2  +  p2(

k  -  j q  +  i p
  =  

|F|

F
 =  N  

    
  k Nk  +  j Nj  +  i Ni  =   (2.5) 
 
This gives the relations 

Nk

Nj-
  =  q   and   

Nk

Ni-
  =  p  (2.6) 

 
 Note that n was also referred to as the surface normal in the context of extremal 
contours in the previous section. In this section, we distinguish between N and n as the 
former indicating normal to the contour generator and the latter, to the apparent contour. 
  
 In the first viewpoint, assume a plane parallel to XY plane cutting the object 
surface along the vertical painted curve to generate an extremal contour E1 that is viewed 
as apparent contour in Fig.3.  Here, the extremal contour is our contour generator. Let 
the normal to this contour generator be N1, an element on the contour generator be 
denoted by |ds r and that on apparent contour be denoted by |ds Q such that 

       )dy2  +  dx2(  =  |rs|  =  |rds  
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dx

dy
2

  +  1dx  =   (2.7) 

|Qs|  =  |Qds  (2.8) 
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Fig. 3. Two orthogonal views. 

 
 
 
Along the contour generator the unit normal N1 changes its direction. For an 

infinitesimal change along  r with respect to s , |ds r  , let the corresponding change in N1 
be dN1 .  Then the partial derivative   Ns is given by 

 

  
dx

dy
2

  +  1x

N1  =  
|rs

N1  =  Ns  

 
   

          

dy

dx
2

  +  1y

N1  =  (2.9) 

 
 
Taking |F|  constant over ds r in (2.5), we have 
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1)  +  q2  +  p2(

j) 
x

q
  +  i 

x

p
(

  =  
x

F
  
|F|

1
  =  

x
N1                     (2.10) 

 

From (2.9), Ns  
dx

dy
2

  +  1  =  
x

N1  (2.11) 

 
Combining (2.10) and (2.11), we obtain 
 

Ns  
dx

dy
2

  +  1Nk-  =  j 
x

q
  +  i 

x

p
 (2.12) 

Nk

1
  =  Nk   where  

Corresponding to
y

N1 , we get from (2.12) as 

 

Ns  
dy

dx
2

   +  1  Nk-  =  j 
y

q
 +  i 

y

p
 (2.13) 

 

where N'
k, Ns and 

dx

dy
 can be easily obtained from the apparent contour E1 as explained 

below : 
Differentiating (1.1) with respect to s, we have 
 
rs  = λs Q  + λ Qs (2.14) 
 
where we have ignored the arguments. Taking the dot products with the terms in the 
above equation gives us the following:  

Q.rs  =  s  
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Q).s  -  rs(
  =  Qs  

2
})2Q.rs(  -  |rs| 2{

  =  Qs  .Qs  

 

Q  .
|rs|

rs 

2

  -  1

2/1
|rs|

 =  |Qs|  

 

) 2/1
cos2  -  (1

|rs|  =  |Qs|  (2.15) 

 

sin
|rs|

  =  |Qs|   So,  (2.16) 

 
where  θ is the angle between the ray and the contour generator. Note that the mapping 
from contour generator to apparent contour is singular  when θ = 0. The tangent to the 
contour generator projects to a point in the image. 

 
Thus, we have from  (2.16) 

 

sin

|Qds  
  =  |rds  (2.17) 

 
 In view of (2.17) Ns can be rewritten as 
 

|Qs  
N1 sin  =  

|rs
N1  =  Ns  

 
Since at the extremal contour, the normal to the contour generator N1 is the same 

as the normal to the  apparent contour n1  in the first view, so we can write  
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ns 
sin

  =  
|Qs
n1 

sin
 =Ns  (2.18) 

 
This result gives a relationship between the derivative of surface normal and that 

of the image normal. In case of unknown , it has to be estimated from ns in different 
views. We also have :  
 

Qsi

Qsj
 = 

i.Qs

j.Qs  =  
dx

dy
 

 
The unit image normal n can be computed by measuring the direction of the ray 

Q of a point on an extremal contour and the tangent to the apparent image contour Qs 
 

|Qs  x  Q|

Qs  x  Q
  =  n1  (2.19) 

 
The sign of the normal can only be determined if we know on which side of the 

apparent contour the surface lies. However, the "sidedness" of the contour can be 
determined from the deformation of the apparent contour under viewer motion. In the 
following we choose the convention that the surface normal is defined away from the 
solid surface. Our intention now is to find the variation of n1 along apparent contour and 
relate this to variation in N1 of the contour generator. Accordingly, ns is given by 

 

|Qs  x  Q|

Qs  x  Q
  

|Qs  
  =  

|Qs  
n1  =  ns  

 
 

|3Qs  x  Q|

)Qs  x  Q   +   Qs  x  Qs(  ).Qs  x  (Q  ).Qs  x  (Q
   -   

|Qs  x  Q|

Qss  x  Q   +   Qs  x  Qs  =  

 

|Qs  x  Q|
n1)]Qss  x  .(Qn1[

  -  
|Qs  x  Q|

)Qss  x  (Q
 =  
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|Qs  x  Q|
n1)]Qss  x  (Q  .n1[  -  )Qss  x  (Q

 =   (2.20) 

 
where Q, Qs and Qss are the position vectors of an image point, first order derivative and 
second order derivative of the image curve with respect to parameter s respectively. Qs is 
nothing but the tangent to the curve and Qss is the rate of change of tangent in the image 
curve. 
 

While deriving (2.12) & (2.13) we have made an assumption that |F|  is 
constant. If we relax the assumption, we have to proceed to derive the following: 

 

|F|

F
  

x
  =  

x
N1 =

1)  +  q2  +  p2(

k  -  j q  +  i p
 

x
 

 
 

1  +  q2  +  p2

}1)  + q2  +  p2(/{2)
x

q
q2  +  

x

p
p(2  k)  -  j q  +  i (p  - 

x

p
1)  +  q2  +  p2(  

=  

 

1) +  q2  +  p2(

x

q
q  +  

x

p
p  N1  -  j 

x

q
 +  i 

x

p
 1)  +  q2  +  p2(

  =   

 
 

1)  +  q2  +  p2(

x

q
Nj  +  

x

p
  Ni  N1  -  j 

x

q
  +  i 

x

p

  =  

 
 

i 
x

q
  Nj  Ni  -  

x

p
  )N2

i-(1  Nk  -  =  
x

N1  
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j 
x

q
)N2

j  -  (1  +  
x

p
  Nj   Ni-  Nk -  

 

      k 
x

q
  Nk  Nj  -  

x

p
  NkNi-  Nk  -  (2.21) 

 
Equating k  j,  i,  components of (2.12) and (2.21) 
 

Nsi 
dx

dy
2

  +  1  Nk  -  =  
x

q
  N j  Ni  -  

x

p
)N2

i  -  (1  

 
 

Nsj 
dx

dy
2

  +  1Nk  -  =  
x

q
)  N2

j  -  1  (  +  
x

p
 ) N j Ni  (-  

 
 

Nsk   
dx

dy
2

  +  1Nk  -  =  
x

q
  Nk  N j  -  

x

p
  Nk  Ni-  (2.22) 

 
where { }i denotes the ith component of bracketed term. From (2.22) we can 

compute
x

q
  and  

x

p
. Here we have an overdetermined set of equations with two 

unknowns and three equations. The third equation is used to refine the estimates of the 
unknowns. 

Similarly, we can derive the following equations from (2.9) using  
y

N1  

 

Nsi   
dy

dx
2

  +  1Nk  -  =  
y

q
  N j Ni -  

y

p
)N2

j  -  (1  
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Nsj 
dy

dx
2

  +  1Nk  -  =  
y

q
)N2

i  -  (1  +  
y

p
Ni  N j-  

 
 

Nsk 
dy

dx
2

  +  1  Nk  -  =  
y

q
 Nk  Ni  -  

y

p
  Nk  N j-  (2.23) 

From (2.23) we can compute
y

q
 and 

y

p
.  

 

If 
dx

dy
 is infinity or a very large number then 

x

p
  and 

x

q
 can not be computed. If 

dy

dx
 

is zero or very small number then 
y

p
 and 

y

q
 can be computed accurately. Similarly if 

dy

dx
 is infinity we can not compute 

y

p
 and 

y

q
 but can compute 

x

q
 and 

x

p
. If Nk is 

nonzero, then p and q are finite. Our method requires that Nk should be nonzero and it is 
nonzero if the k th component of  (Q x Qs) is nonzero. The kth component is 

]QsiQj  -  QsjQi[ . It follows that  Nk is nonzero if Qi or Qj is nonzero. 

 

As shown in Table 1 by checks, in the worst case of 
dx
dy

 being equal to infinity 

we can get  
y

q
 and  

y

p
q,p, . On the contrary, if 

dy
dx

 is equal to infinity then we can 

get 
x

q
 and  

x

p
q,p, . In the best case we can get 

y

q
  and  

y

p
  ,

x

q
  ,

x

p
q,p, . The 

cross 'x' indicates that we cannot get the corresponding term. 
 
The set of equations (2.22) can be represented as: 
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Nsk  -

Nsj  -

Nsi  -

 = 

x

q

x

p

  

NkN j-NkNi-

N2
j-1N jNi-

N jNi-N2
i-1

 (2.24) 

                                   
 

where 
dx

dy
2

  +  1  Nk+  =   

 
Table 1. The finite derivatives in the given conditions 

 
 

 

  =  
dx

dy
 

 

 

  =  
dy

dx
 

 

    
dy

dx

,    
dx

dy

 

 
 

0  =  Nk  

p  
 

 
 

 
 

 
 

 
x 
 

q  
 

 
 

 
 

 
 

 
x 

x

p
 

 
x 

 
 

 
 

 
x 

y

q
 

 
 

 
x 

 
 

 
x 

y

p
 

 
 

 
x 

 
 

 
x 

x

q
 

 
x 

 
 

 
 

 
x 

 
 
This is of the form AX = B which can be written as 
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BAT  =  XA  AT  
 
 

NskNkN j  -  Nsj)N2
j  -  (1  +  NsiN jNi-

NskNkNi  -  NsjN jNi  -  Nsi  )N2
i-(1

   -  =  

x

q

x

p

 
N2

j-1N jNi-

N jNi-N2
i-1

  (2.25) 

Similarly, we have 
 

NskNkNi  -  Nsj)N2
i  -  (1  +  NsiNiN j-

NskNkN j  -  NsjNiN j  -  Nsi  )N2
j-(1

    -  =  

y

q

y

p

 

N2
i-1NiN j-

NiN j-N2
j-1

 (2.26) 

 

where 
dy

dx
2

  +  1  Nk+  =   

 
Substituting for the left hand side of (2.25) from (2.22) leads to : 
 
 

Nsk  Nk  N j  -  Nsj)N2
j-(1  +  NsiN jNi-

NskNkNi  -  Nsj  N jNi  -  Nsi)N2
i-(1

  -  =  
Nsj

Nsi
  -  

 
 
Consider the first equation, 

Nsk  Nk  Ni  -  NsjNjNi  -  Nsi  )N2
i  -  (1  =  Nsi  

 
which on simplification leads to 

0  =  Nsk  Nk  +  NsjNj  +  Nsi  Ni  >  =  
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0  =  Ns.N  >  =  
as expected.  
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2.2 Computation of coefficients of quadratic equation 
We assume that a surface is fitted with a quadratic equation. The general form of 

a quadratic is follows: 

0  =  j  +  iz  +hy    +gx    +  fxz  +  eyz  +dxy    +  cz2  +  by2  +  ax2  (2.27) 
 

In order to compute the coefficients a to j of this equation, we obtain the first 
order partial derivatives with respect to x and y. 
 
The partial derivative of (2.27) with respect to x is 
 

0  =  ip  +  g  +    xp)+  f(z  +  eyp  +dy   +  czp2  +ax  2  (2.28) 
The derivatives of (2.28) with respect to x and y are 
 

0  =  
x

p
i  +  

x

p
  x+  p2f  +  

dx

dy
p  +  

x

p
ye  +  

dx

dy
d  +  p2  +  

x

p
z  c2  +  a2  

 (2.29) 
 

0  =  
y

p
i  +  

dy

dx
p  +  

y

p
  x+  qf  +  p  +  

y

p
ye  +  d  +  pq  +  

y

p
z  c2 +  

dy

dx
  a2

  
 (2.30) 
The partial derivative of (2.27) with respect to y is 
 

0  =  iq  +h    +  fxq  +  yq)  +  (z  e  +dx    +  czq2  +by  2  (2.31) 
 
The partial derivatives of (2.31) with respect to x and y are 
 

0  =  
x

q
i  +  

x

q
  x+  q  f  +  

x

q
y  +  

dx

dy
q  +  p  e  +  d  +  

x

q
z  +  pq  c2  +  

dx

dy
  b2

 
  (2.32) 
 

0  =  
y

q
i  +  

dy

dx
q  +  

y

q
xf +    

y

q
y  +  q2   e  +  

dy

dx
d  +  q2  +  

y

q
z  c2  +  b2

 
 (2.33) 
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So if we have 
x

q
 and    

y

p
,

y

q
,

x

p
q,p, we can form six equations (2.28) - (2.33) 

 
If a derivative quantity in an equation becomes infinity ( ) then that equation 

cannot be considered. Table 2 shows by checks the possible number of equations that 
can be considered under given conditions. 

 
Our method as stated earlier needs a nonzero Nk. As per the Table, in the first 

view at least four equations can be formed. In the best case we get six equations. The 
additional equations will be used to refine the estimates. Let us consider the worst case 
where the number of unknown coefficients is nine and the number of equations is four. 
We get one more equation by substituting x, y and z in (2.27). So the number of 
equations is now five. We need at least four more equations to solve the unknowns.  
 
Table 2. The equation that can be formed under possible conditions 

 
Eqn. No. 

 
 
 

 
0  =  Nk  

 

 

  =  
dx

dy
 

 

 

  =  
dy

dx
 

 dy

dx

, 
dx

dy

 

 
2.28 

 

 
x 

 
 

 
 

 
 

 
2.29 

 

 
x 

 
x 

 
 

 
 

 
2.30 

 

 
x 

 
 

 
x 

 
 

 
2.31 

 

 
x 

 
 

 
 

 
 

 
2.32 

 

 
x 

 
 

 
x 

 
 

 
2.33 

 

 
x 

 
x 

 
 

 
 

 
No. of eqns 

 
0 

 
4 

 
4 

 
6 
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 We can form four additional equations by considering the derivatives at a 
different point in the same view. But the resulting equations are not independent of the 
earlier equations, hence the need arises for a second view which can be at any 
displacement and angle from the first view. 
 

It may be noted that the first view on front or top contributes to a maximum of 6 
equations or a minimum of 4 equations. When two views are taken on the same side, 
these together would give one more equation for depth. Based on this count, we can get a 
maximum of 13 equations or a minimum of 9 equations if we take two views on the 
front side and one on the top. Accordingly, from 4 views with two on each side we will 
get a maximum of 14 equations or a minimum of 10 equations, which include two 
equations for different depths. 

 
 The second view is obtained after rotating the camera in the first view such that 
Z-axis points upwards and translating the origin of the first viewpoint 
by z)y,x,( as shown in Fig.4. As a result, the second view is orthogonal to the 
first one. 
 
 

 
 

Fig. 4. Relation between the coordinate systems of the two view. 
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In view of this,  (2.27) becomes: 
 

      

0 = j  +  z) + xi(  +  y) + zh(  +

  x) + yg(+  z) + x( x) + yf(  +

  z) + x(  y) + ze(  +  y) + z(  x) + yd( +

 )2z + xc(  +  )2y + zb( + )2x + ya(

 (2.34) 

where )z,y,x(  are the coordinates in the second view.  
For the sake of simplicity we will remove the primes. Now, (x, y, z) are the coordinates 
in the second view. The partial derivatives of (2.34) with respect to x and y are: 
 

px)  +(y    d  +  z)  +(x    c2  +  p  y)  +  (z  b2  

0  =  i  +  hp  +  x)  +(y    f  +  p]  z)  +(x    +  y)  +  [(z  e  +   (2.35) 

y)  +  (z  +  qx)  +(y  d  +  q  y)  +  (z  b2  +  x) +(y    a2  

0  =   hq +  g  +  z)  +(x    f  +  qz)  +(x    e  +  (2.36) 
The derivatives of (2.35) with respect to x and y are: 
 

dx

dy
  p  +  

x

p
x)  +(y      d  +  c2  +  p2  +  

x

p
  y)  +  (z  b2  

 

0  =  
x

p
h  +  

dx

dy
f  +  

x

p
  z)  +(x    +  p2  e    

       (2.37) 

p  +  
y

p
  x)  +(y    d  +  

dy

dx
  c2  +  pq  +  

y

p
  y)  +  (z  b2  

0  =  
y

p
h    +   f  +  

dy

dx
p  +  

y

p
  z)  +(x    +  q  e  +  (2.38) 

Differentiating (2.36) with respect to x and y, we get 
 

x

q
  x)  +(y  d  +  pq  +  

x

q
  y)  +  (z  b2  +  

dx

dy
a2  
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0  =  
x

q
h    +  f    +  q  +  

x

q
z)  +(x    e  +    p  +  

dx

dy
q  +   

         (2.39) 

q2 +  
y

q
 x)  +(y  d  +  q2  +  

y

q
  y)  +  (z  b2  +  a2  

0  =  
y

q
h  + 

dy

dx
f  +    

dy

dx
  q + 

y

q
z)  +(x    e  +  (2.40) 

It may be noted that the derivatives
y

q
 and 

x

q
,

y

p
,

x

p
q,p,  are different in both the 

views because of rotation. The derivatives are calculated exactly in the same manner as 
for the first view. 
 
2.3 Computation of depth at a point 

We make use of (1.12) for obtaining the depth at a point. If we make a small 
translatory motion of the camera along X-axis from the first camera position (first 
viewpoint), then there will be a corresponding change in the image position. Denoting 

these changes by vi  and '
iQ  then  (1.12), assuming any constant, can be written as 

' 

vi-  =  1
iQ

 (2.41) 

The quantities in (2.41) can easily be measured as vi  stands for the movement of 

camera position along X-axis and Qi  stands for the change of image point relative to 
the original point before the translation. It may be mentioned that the above  is valid for 
infinitesimal translatory motion of the camera with unit focal length. 
Now, we can write 

1
  '

vi  =  ||
iQ

 (2.42) 

where  is the focal length of the camera. The above formula is an infinitesimal 
analogue of triangulation with stereo cameras, the numerator is analogous to base line 
and the denominator to disparity. 
 
2.4 Curvature characteristics  

For extremal contours, computations for curvature characteristics can be 
simplified. These characteristics are derived from the apparent contours in the two 
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views. The curvature of apparent contour Kp along the s-parameter curve in the first 
view is given by 

|Qs| 2
n1.Qss  =  Kps  (2.43) 

where n1 is normal to the apparent contour. Similarly, the curvature of apparent contour 
along t-parameter curve in the second view is given by 

|2Qt|

n2.Qtt  =  Kpt  (2.44) 

where n2 is the normal to the apparent contour in the second view. As the painted curves 
intersect, the curvatures along the two principal directions are related to the normal 
curvatures along the corresponding contour generators by the following formula: 

Kps  
1

1sin2
  =  

)rs.rs(
n1.rss  =  Ks  (2.45) 

 

Kpt 
2

2sin2
  =  

rt.rt

n2.rtt  =  Kt  (2.46) 

where 
|rt|

rt.Q
  =  2cos    and   

|rs|
rs.Q

  =  1cos . λ1 and λ2 are the depths. Note that rs and 

rss are the first and second order derivatives of r along s-parameter curve. Similarly, rt 
and rrt are the first and second order derivatives of r along the t-parameter curve. 
The Gaussian curvature can be expressed as a product of the normal curvature Kt and the 
curvature of apparent contour Kps scaled by the depth λ1. Thus, we have 

Kt  
1

Kps
  =K   

 

Kps  Kpt  
21

2sin2
  =  (2.47) 

The above relation can also be proved alternatively by recognizing that   

|G|

|D|
  =K             (2.48) 

where D and G have the following forms : 
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n2.rssn2.rst

n1.rtsn1.rtt
  =  D  

 

rs.rsrt.rs

rs.rtrt.rt
  =G   

For intersecting painted curves on the object, D and G are turned out to be 
 

Ks0

0Kt
  =  D  

1cos

cos1
  =G   

 
where rts. n1 = rt n1s = 0. This follows from the tangency condition Q.n1 = Q.n1s = 0 
Taking the direction of Q along rt in (rt. rs) in the first view, and along rs in (rs.rt) in the 
second view both of which would yield the same angle θ, we can express Kt and Ks in 
terms of Kpt and Kps as follows: 
 

Kpt

2

sin2
  =  Kt  

Kps

1

sin2
   =  Ks  

The mean curvature H and the principal curvatures K1 and K2 can be expressed as 

Kpt

2

)cosec2    sin2(
  +  

1

Kps
  

2

1
  =  H  

 

2

Kpt
  +  

1

Kps
  

2

1
  =   (2.49) 

and 

K)  -  H2(  H  =  K1,2  (2.50) 
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The values of  K1 and K2 provide the qualitative information about an intersection  point 
on the element surface patch [23]. 
2.5 Algorithm  
 
Step 1 : Take the image of the object with the vertical painted curve appearing as 

extremal contour E1 
Step 2 : Extract the extremal contour E1 of the image using Canny edge operator. 
Step 3 : Find the point of intersection of the extremal contour with the horizontal 

painted curve. 
Step 4 : Translate the camera a little and take another image. 
Step 5 : Calculate the depth of the object by noting the disparity at the point of 

intersection. 
Step 6 : Fit B-spline curve to the apparent contour E1 
Step 7 : Find the first and second derivatives at the point of intersection along E1 
Step 8 : Calculate unit normal n from (2.19). 
Step 9 : Calculate ns from (2.20) 
Step 10 : Calculate Ns from (2.18) taking θ equal to 900. 

Step 11 : Solve  (2.25) for 
x

p
 and 

x

q
  

Step 12 : Solve  (2.26) for 
y

p
 and 

y

q
  

Step 13 : Form  (2.28) to  (2.33) using 
y

q
,

y

p
,

x

q
,

x

p
q,p,  

Step 14 : Repeat steps 1 to 13 for the second view. 

Step 15: Form equations (2.35) to (2.40) using p,q,
y

q
,

y

p
,

x

q
,

x

p
 of the second 

view. 
Step 16 : Solve the equations (2.28) to (2.33), (2.35) to (2.40) and (2.27) using 

pseudoinverse to get a, b, c, d, e, f, g, h, i. 
 

The computational burden can be reduced for loss of accuracy as follows. Two 
intersecting curves can be painted on the object and the normal at the point of 
intersection of both the curves can be considered in both the views. The rate of change of 
normal at this point can be taken to be equal in both the views. This is true for a 
spherical surface and they affect widely from each other because the two extremal 
contour generators may have different slopes. 

 
3.  Results of Implementation 
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 The proposed methodology has been implemented on a simulated object, a sphere 
and a real object, a vase. We have chosen solids of revolution for which the proposed 
methodology is easily applicable. 
3.1 Simulated object 
 The equation of the sphere is taken to be 
  

0  =  24  +  z10  +  z2  +  y2  +  x2  
 

The simulated image is stored in a data file in x-y format. The point of interest is 
arbitrarily chosen.  
 

The parameter `s' of the B spline point at the intersection of image curves QF in 
the front view has been obtained as 82.599. QF  at s is found to be {0.141, 0.141, -0.98}. 
The first and second order derivatives at QF are calculated using fourth order B-spline 
function. The derivatives obtained are:  
Qs = { -0.004078, - 0.004082, 0.0 } 
Qss = {0.002358, 0.0, 0.0} 
The unit normal n at QF is {0.6932, 0.6925, 0.2}.  

The slope of the image contour as calculated from 
Qsi

Qsj
is -1.001. 

The rate of change of image normal at QF is,   =  ns  {3.541, 3.545, 0} 

The rate of change of normal at the surface is, n  =  N s
s  = {0.7082, - 0.7090,0} 

Using n , Ns and slope, the derivatives 
y

q
,

y

p
,

x

q
,

x

p
q,p,  

are found to be: 

p = -3.466;  q = -3.463;
x

p
 = -5.010; 

x

q
 =  5.018;  

y

p
 =  5.013;  

y

q
 = -5.005 

Using these six derivatives, six equations are formed. The same steps as performed in the 
case of front view are repeated for the image contour in the top view where QT is the 
intersection of the image curves. The following are the results: 
 For t = 82.599, QT at t =  {0.141, 0.141, -0.98}  
The first derivative is, Qt = {-0.004078, -0.004082, 0} 
The second derivative is, Qtt = {0.0002358, 0.0, 0.0} 
The unit normal is n = {0.6932, 0.6925,0.2} 
The rate of change of image normal nt = {3.541,3.545,0} 
The rate of change of surface normal Nt = {0.7082, -0.7090,0} 
The derivatives are obtained as: 
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p = -3.4666;  q = -3.463; 
x

p
 = -5.010;  

x

p
 = 5.018; 

y

p
 = 5.013; 

y

q
 = -5.005 

Position vector of the camera in the second view with respect to the first view is (0, 5.0, -
5.0). λ is assumed to be  5 in the front view and  -5 in the top view. 
Six more equations are formed using the above six derivatives. The thirteenth equation is 
formed by using QF. These equations are solved using pseudoinverse to get the nine 
unknown coefficients. The normalized coefficients of the reconstructed surface are : 
a  =  1.0 ; b  =  0.996 ; c  =  0.994 ; d  =  0.001 ; e  =  0.0 ; f  =  0.0 ; g =   0.004 ; h =   0.0 
i =  9.942 ;    `j  = 23.86 
The average percentage error in the computed coefficients is 0.87. 
This error is small as expected because of the simulated conditions. 
The curvature characteristics are also computed as: 
Kps = - 4.909 ;  Kpt = - 4.909 ; Kt  = -1.002 ; Ks  = - 1.002 ;K   = 1.004 ; H   = - 4.909 
K1,2= - 0.1033 , - 9.715 
As K1, K2 > 0 the surface point is elliptic as is the case with the spherical object. 
 
3.2 Real object 

A camera is mounted on a rotating table whereas the object is placed on the 
calibrated mount on which it can have a known translation. The object chosen in our 
experiment has hyperbolic surface at the neck portion, elliptic surface at the bottom 
portion and parabolic surface at the middle portion of the object.  Keeping the camera at 
a known distance from the intersection of painted curves, the first view is taken such that 
the vertical painted curve appears as extremal contour. Next, the object is translated and 
another view is taken for depth calculation. Keeping back the object at the original 
position the camera is rotated and placed at the same distance from the intersection point 
such that the horizontal painted curve appears as the extremal contour in the third view. 
Care must be taken to see that the intersection of painted curves is visible in the first and 
the third view.   
 

The images are stored in binary format. Fig.5a shows the front view and Fig.5b  
shows the top view of the object focussing  the middle portion of the object . A Canny 
edge operator, with = 9.0, is applied to these images and their extremal contours are 
extracted. Figure. 6a shows the extremal contour for the front view and Fig. 6b shows 
the extremal contour for the top view. The extremal contours are not clear because the 
surface of the object was glossy and the lights are harsh. In the top view an inner circle is 
formed because the object is hallow. 
After getting the data for extremal contours the coefficients of the quadratic surface have 
been found to be:    
a =  1.0 ; b =  1.001 ;  c =  1.061 ; d = -0.163 ; e =  0.138 ; f = -0.0343 ; g =  9.358 ; h = 
0.059 ; 
 i =  155.8 ;  j = 5696 ; λ = 79.5 cm 
The curvature characteristics are obtained as: 
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Kps = 0.0133 ; Kpt = 45.42 ; Ks = 0.0002506 ; Kt = 0.6209 ; K = 0.0001556; H = 0.3106 
K1= 0.0003; K2= 0.6209 
 

 
Fig. 5a. Front view of the real object. 

 

 
Fig. 5b. Top view of the real object. 

   

 
Fig. 6a. Extremal contour of the front view. 

 

 
Fig. 6b. Extremal contour of the top view. 

 
 
Since K1 0, this indicates that the nature of surface is parabolic as is the case at the 
point of interest. The coefficients of the quadratic equation provides the structure of the 
middle portion of the object and the other two portions could not be modeled for non-
accessibility of corresponding extremal contours from the second view. However, these 
can be obtained from the first view as the chosen object belongs to solids of revolution. 
 
 

4. Conclusion 
 

The proposed method gives a new way of finding surface parameters at a point 
formed by two intersecting painted curves. While determining these parameters the fact 
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that the normal to the contour generator is the same as the normal to the apparent contour 
at the extremal boundary has been made use of. 
 

The first view and the second view need not be orthogonal. They could be at any 
angle; this would only change (2.34) to (2.40). These equations can be generalized for 
any angle of rotation. For the special case of solids of revolution, only a single view is 
enough. This view should be perpendicular to the axis of rotation. 
 

Although the proposed method is powerful in terms of yielding surface 
reconstruction it cannot provide information on concave surface patches since the curves 
painted on them cannot be observed as the extremal contours. In such cases, the 
information from other curves is extremely important though this information is not as 
powerful as that from the extremal contour case.  The present method is also not suitable 
for highly unsymmetric surfaces for which a large portion of the grid painted on it would 
be invisible when the rays from camera graze it.  
 
Acknowledgement. The authors wish to express their thanks to Mr.J.S.Kodamala for the 
computational assistance provided during the implementation of the proposed 
methodology. 
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 م. فامسي كرشنا**و  ف. شانتا رام*، مداسو هانماندلو
 سايبر جايا، سيلانجر، ماليزيا ٦٣١٠٠ملتي ميديا ، جالان ملتي ميديا،  امعة ف. أو. أي ، ج

 غرب شارع جيفرسون،١٢٦٥٥* قسم تكنولوجيا المعلومات، الجامعة الأمريكية عبر القارات، 
 لوس انجلوس ، الولايات المتحدة الأمريكية 

 ، اندرابراديش، الهند٥٢٣٠٠١** قسم الاتصالات والإلكترونيات، كلية س. س. ن.، انجولو 
 

 م)٢/١/٢٠٠٢م؛ وقبل للنشر في ١٢/٠٨/٢٠٠٠(قدّم للنشر في 
 

للخط القائم المحسوب لمحيط الخط القائم على محيط جسم ثلاثي الأبعاد مماثل  ملخص البحث.
الصورة ذو المسقط على الكرة الأحادية من جراّء الأشعة الساقطة على المحيط الخارجي. تستعمل هذه 
الحقيقة في العمل الحالي لاستخراج متغيرات المساحات الرباعية. نحتاج إلى ثلاثة مشاهد لنقطة التقاطع 

د المشاهد الثلاثة مختار بحيث تكون محيطات بين منحنيين مرسومين على جسم. يجب أن يكون أح
صور المنحنيات ظاهرة بقرب المحيطات الخارجية. بعد ذلك، يمكن ربط القوائم على محيطات الصورة 
بالقوائم على مساحة المنحنيات بواسطة التفاضل الرسمي لإعطاء تمثيل رباعي للمساحة عند النقطة 

 المرغوبة.
 




