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Abstract. A characterization study of analyzing dynamic instruction traces to characterize program parallelism 
is conducted. This study supports that the experimental design of supercomputer and parallel computers calls 
for quantifiable methods to evaluate the requirements of different workloads within an application domain. 
Such methods can help establish the basis for scientific design of parallel computers driven by application 
needs, to optimize performance to cost. In addition, the application characteristics can be used early in the 
design process to identify bottlenecks such as not having enough resources, not having enough parallelism in 
the instruction stream, or using a too restrictive scope of concurrency detection. The selection of which features 
to include in a new computer system depends on the needs of the workloads the system will execute. The 
number and type of functional units are among the most important design decisions. Therefore, this paper 
presents an instruction-level characterization for analyzing dynamic traces using a trace-driven simulator. It 
investigates the parallel system needs for a class of contemporary benchmarks taken from NASA/NAS Parallel 
Benchmarks (NPB) suite. The NPB represents an implementation independent problem set, representative of 
Computational Aeroscience workload computations. The NPB workloads have been implemented on nearly 
every parallel platform and results have been reported by the vendors. Data is presented for NBP requirements 
of these resources. The requirements suggest upper limits on the resources needed for efficient processors. In 
this study, we also examine non-uniformities in the distribution of instruction-level parallelism. Several non-
uniformities in instruction-level parallelism are investigated including variation between benchmark class and 
by instruction class within benchmark. In addition, the average instruction class distribution as well as the 
shortest path a workload would be executed on a parallel machine will be shown. The results confirm that 
workloads in NPB represent a wide range of non-redundant applications with different characteristics. 
 
Keywords: Instruction-Level Parallelism; Workload Characterization; Benchmarking NASA NPB; Parallel 
Processing; Smoothability. 
 

1.  Introduction 
 

The advances of computer architectures are generally affected by two things: a better 
understanding of program execution, and new or better implementation technologies. It 
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is therefore very important to understand the dynamics of program execution when 
considering the design of future-generation architectures. Hence, experimental design of 
parallel computers calls for quantifiable methods to evaluate the requirements of 
different workloads within an application domain. Such methods can help establish the 
basis for scientific design of parallel computers driven by application needs, to optimize 
performance to cost [1, 13, 15, 16]. The selection of which features to include in a new 
computer system depends on the needs of the workloads the system will execute. Also, a 
critical factor in the design and development of high-performance computing 
architectures and applications is to understand and to characterize their performance and 
the corresponding requirements of computing and network resources [11, 15, 16]. 
 

It follows quite natural (and has been observed in the history of performance 
evaluation) that changes in the computing environment (parallel and distributed 
computing, network computing, mobile computing, etc.) and new system features 
(security and reliability mechanisms, agent-based systems, intelligent networks, adaptive 
systems, etc.) pose new challenges to performance evaluation by raising the need for 
new analysis methodologies. From a load modeling point of view, the difference in using 
computing resource has changed the type of model for workload characterization. While 
in the early days of computing (70s) the typical systems were used in batch or interactive 
mode, static workload models could adequately represent the user behavior. In the 80s, 
dynamic workload models were introduced, which were able to represent variabilities in 
user behavior. Within the last years, generative workload models have been proposed as 
a suitable method for bridging the gap between the user's application oriented view of 
the load and the actual load (physical, resource oriented requests) submitted to the 
system [9, 10]. 
 

Therefore, the viability of a parallel processing system depends heavily on the 
presence of parallelism in the application programs expected in the workload of that 
system. Since the scientific applications domain designated as the primary beneficiary of 
parallel processing, there have been several attempts to make parallel machines targeted 
for scientific applications. In each case, the claim for the optimality of the machine 
design is based on the assumptions about the amount of parallelism present in the 
applications and its nature. In this paper, the Numerical Aerodynamic Simulation (NAS) 
Parallel Benchmarks (NPB) developed at NASA Ames [2, 14] are used in order to 
quantify their resource needs for parallel processing. The NPB represents an 
implementation independent problem set, representative of Computational Aeroscience 
workload computations. The requirements suggest upper limits on the resources needed 
for efficient processors. In this study, we also examine non-uniformities in the 
distribution of instruction-level parallelism. Several non-uniformities in instruction-level 
parallelism are investigated including variation between benchmark class and by 
instruction class within benchmark. We also consider the behavior of programs under the 
constraint that at most a certain number of operations can be performed simultaneously 
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[15]. We use a metric called "smoothability" [3] to show how evenly parallelism can be 
distributed. Therefore, smoothability is a metric designed to capture the parallelism 
profile around the average degree of parallelism. This metric also quantifies how 
efficiently a parallel program can run on a multiprocessor with limited processors. 
 

The parallel execution model of our study is based on a dataflow model where 
any two operators can execute in parallel, unless one actually provides data directly or 
indirectly to the other. We decided to base the analysis on traces of workloads executed 
on Sun SparcStations [4] at NASA Goddard Space Flight Center. The Sparc architecture 
was chosen for the testbed because it is representative of present-day RISC processors. 
 

This paper is organized as follows: next section presents the parallel execution 
model of the study. The experimental tools used in this study will be presented in section 
2, too. Section 3 provides an overview of the NAS Parallel Benchmarks suite. Section 4 
shows the methodology and the analysis process. Sections 5 and 6 present and analyze 
some of the experimental results conducted in this study. Finally, conclusions are in 
section 7. 

 
 

2. NAS Parallel Benchmarks 
 

The NAS Parallel Benchmarks (NPB) suite, which is an interesting alternative to 
traditional benchmarking suites, were devised by the Numerical Aerodynamic 
Simulation (NAS) Program of the National Air and Space Administration (NASA) for 
the performance evaluation and analysis of highly parallel supercomputers. While the 
NPB suite is rooted in the problems of computational fluid dynamics and computational 
aerosicences, they are valuable in the evolution of parallel computing [12], since they are 
rigorous and as close to real applications as may be reasonably expected from a 
benchmarking suite. Therefore, using the NPB suite is a great deal more difficult than 
using something like SPEC, because it involves writing a set of tuned parallel 
applications. However, the suite gives manufacturers a chance to demonstrate what their 
machines can do in a way that is impossible with more traditional benchmarks [9, 12]. 
 

The NPB is a set of eight benchmark problems that are designed to measure the 
sustained performance of highly parallel computer systems for a subset of algorithms 
that characterize various computationally intensive aerophysics applications. The eight 
problems consist of five kernels and three simulated computational fluid dynamics 
(CFD) application benchmarks. This benchmark suite successfully addresses many of 
the problems associated with benchmarking parallel machines. It represents the principal 
computational and data movement requirements of modern CFD applications. Table 1 
lists the numerical problems solved in each benchmark (the embar and buk benchmarks 
are not listed in this table because they are non-numerical benchmarks). The following 
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Table 1 describes each benchmark along with the architectural properties exercised by 
the benchmark. It should be noted that NPB is a “paper and pencil” benchmark that 
specifies the benchmarks only algorithmically. An exhaustive description of these NPB 
problems is given in [2, 14]. 
 
Table 1. Numerical problems solved in the NAS parallel benchmarks 

Numerical problem Benchmark 
sparse linear system solvers  cgm:          conjugate gradient benchmark 

lu, sp, bt:   simulated CFD applications 
fast Fourier transforms  fftpde:        3-dimensional FFT benchmark 
elliptic problem solvers  lu, sp, bt:   simulated CFD applications 
multigrid schemes  mgrid:       3-dimensional multigrid benchmark 
 
The following Fig. 1 gives an overview of the NPB problems. The first five are the 
parallel kernel benchmarks, and the last three are the simulated CFD application 
benchmarks intended to accurately represent the principal computational and data 
movement requirements of modern CFD applications. 
 

An Overview of the NAS Parallel Benchmarks 

embar is an "embarrassingly parallel" kernel, which evaluates an integral by means of 
pseudorandom trails. It is a typical of many Monte Carlo applications: Two-dimensional statistics 
accumulated from a large number of Gaussian pseudorandom numbers, generated according to a 
scheme that well suited for parallel computation. 
 

mgrid executes four iterations of the V-cycle multigrid algorithm to obtain an approximate 
solution to the discrete Poisson problem  = v on a 256 x 256 x 256 grid with periodic boundary 
conditions. 
cgm is a conjugate gradient method that computes an approximation to the smallest eigenvalue of 
a large, sparse, symmetric positive definite matrix of order 14,000 with a random pattern of 
nonzeros. This problem is typical of unstructured grid computations and it uses sparse matrix-
vector multiplication. 
fftpde uses FFT's on 256 x 256 x 128 complex array to solve a three-dimensional partial 
differential equation. This benchmark represents the essence of many "spectral" codes or eddies 
turbulence simulations 
buk is a large integer sort. This kernel performs a sorting operation that is important in "particle 
method" codes. It is similar to "particle in cell" physics applications, where particles are assigned 
to cells and may drift out. This problem is unique in that floating-point arithmetic is not involved. 
applu uses a symmetric, successive over-relaxation numerical scheme to solve a regular sparse, 
block (5 x 5) lower and upper triangular system. A complete solution of this benchmark requires 
250 iterations. 
appsp is a solution of multiple, independent systems of non-diagonally-dominant, scalar 
pentadiagonal equations. A complete solution requires 400 iterations. 
appbt is a solution of multiple, independent systems of non-diagonally-dominant, block tridiagonal 
equations with a (5 x 5) block size. A complete solution requires 200 iterations. 

 
Fig. 1. An overview of the NAS parallel benchmarks. 
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3. Parallel Execution Model and Measurement Tools 
 
 

To be universally applicable, the system characterization measurements must be 
based on a uniform model of execution for parallel computations so that the results of an 
experiment can be related to previous and future experiments. Hence, the architecture 
undergoing this study would be the oracle model architecture. 
 
3.1 Parallel computation model 

This model presents the most ideal machine that has unlimited processors and 
memory (infinite resources). It does not incur any overhead in scheduling tasks and 
managing machine resources, does not incur any communications (with 0-cycle cost) 
and synchronization overheads, and detects and exploits all the parallelism present in a 
program (no resources/synchronization induced constraints on parallelism). This 
machine should have perfect memory disambiguation (a language which resolves 
ambiguities), unlimited register and memory renaming (with single-cycle latency), no 
barriers due to control dependencies, perfect branch prediction, and no window size 
limitations. Thus, this abstract machine model is called the oracle model [3, 5]. 
 

The Sparc architecture instruction set [4] was chosen for the testbed because it is 
representative of present-day RISC processors. Sparc is a CPU instruction set 
architecture (ISA), derived from a reduced instruction set computer (RISC) lineage. As 
an architecture, Sparc allows for a spectrum of chip and system implementations at a 
variety of price/performance points for a range of applications, including 
scientific/engineering, programming, real-time, and commercial. A Sparc processor 
logically comprises an integer unit, a floating-point unit, and an optional coprocessor, 
each with its own registers. This organization allows for implementations with maximum 
concurrence between integer, floating-point, and coprocessor instruction execution. 
 

Instructions in Sparc are accessed by the processor from memory and are 
executed, annulled, or trapped. Instructions are. There are 69 basic instruction operations 
encoded in three 32-bit formats and can be partitioned into five general categories: 
load/store, arithmetic/logical/shift, control transfer, read/write register, and floating-point 
operate instructions. More details about the Sparc instruction set are found in [4]. 
 
 
3.2 Measurement and experimental tools: Sparc performance analyzer package tool 

The Sparc Performance Analysis (Spa) package is a set of tools which run on 
Sparc systems and are used to analyze the performance of Sparc binary application 
programs on the Sparc station-1 and Sparc station-2 [6]. The Spa package can be used on 
any Sun4 architecture machine running a SunOS 4 (preferably 4.1) operating systems. 
The main component of the Spa package is a Sparc simulator and trace generator. The 
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Spa tools include spy a program that traces the execution of a command and can 
generate spat address traces, spanner a tool that converts an spat address trace into spic 
instruction count files, splice a tool that combines spic instruction count files, and spout 
a tool that displays a spic instruction count. 
 

However, the Spa package does not predict overall system performance. I/O 
latency is not taken into consideration, nor is the effect of more than process being active 
at any one time. Although Spa has some other deficiencies as well, it includes tool that is 
shown to be convenient to build around: spy that traces the execution of a command. It 
can be used to generate an address trace which can then be passed directly to a trace 
analyzer-it runs about 600 times slower than normal, and/or list the system calls 
performed by that command. For each system call, the attributes of the process being 
traced, the address of the system call, the name of the routine being called, and some 
other useful information are extracted. 
 
Sequential instruction trace analyzer tool 

The Sequential Instruction Trace Analyzer ( Sita) is a tool package developed at 
the McGill university to measure the amount of parallelism which theoretically exists in 
a given workload [3]. Sita takes a dynamic trace generated from a sequential execution 
of a conventional program, and schedules the instructions according to how they could 
be executed on an idealized architecture while respecting all relevant dependencies 
between instructions. This architecture can vary according to parameters set by the user, 
who can select such features as the number of processors or the method of branch 
prediction used. This allows comparisons between competing architectures that use 
specific benchmarks to be placed in context, shows designers a glimpse of how much 
parallelism can be exposed by adding various features to their machines, and gives 
algorithm designers a tool for comparing implementations of alternative algorithms. 
 

Currently, Sita is used to analyze Sparc executables and is designed to work with 
spy tool, which is the only tool needed from the Spa package [6]. Sita tool includes a 
pre-analyzer (sitapa), a control-dependence analyzer (sitadep), and a trace scheduler 
(sitarun). Sita tools are mentioned below in the order they are used to extract parallelism 
figs: 
 

Sita pre-analyzer (sitapa): is an auxiliary tool providing a total of four functions 
that can be desired. Its primary function is to analyze a dynamic trace to determine the 
boundaries of the basic blocks (a basic block is a sequence of instructions that is always 
entered at the beginning and exited at the end without any branch or jump), and to record 
the frequencies of branch outcomes. This function will also record some useful statistics 
about the trace: the total number of executed and annulled instructions; the number of 
memory accesses; the number of floating-point operations; deepest depth reached at the 
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stack; the total number of basic blocks in the workload, both static in the workload and 
dynamic in the trace. 

Sita control-dependent analyzer (sitadep): performs control-dependence analysis 
on a list of basic blocks which is generated by sitapa. It produces an annotated list of 
basic blocks and control-dependency information which consist of , among others, the 
total number of procedures, the number of instructions in the longest basic block, the 
most common distinctions from the blocks, and the critical blocks (those on which other 
blocks are control dependent). 

 
Sita trace scheduler (sitarun): reads in a dynamic trace and schedules the 

instructions according to an idealized parallel machine(s) based on user-definable 
parameters. The total instruction level of parallelism is measured and reported along 
with the description of the model and some statistics on prediction rates and speculation 
depth. The parallelism is computed by dividing the total number of useful sequential 
instructions (the work) by the number of parallel instructions needed to schedule these 
sequential instructions (the time), which are both given in the output. Certain options 
may cause sitarun to output additional information. 
 
 

4. Methodology and Analysis Process 
 

Characterization of a workload requires the measurement of its runtime behavior. 
The behavior we measure is in terms of an idealized architecture. This abstract system is 
general enough to include many system designs as special cases and then measure 
workload performances in terms of this abstract system, whose instruction set is the 
compiler intermediate code. These instructions are interpreted by an oracle model 
simulation, and the results are used to produce the workload characteristics. In order to 
explore the inherent parallelism in workloads, instructions traced are scheduled for the 
oracle model architecture. This model presents the most ideal machine that have 
unlimited processors and memory, and does not incur any overhead while respecting all 
relevant dependencies between instructions. 
 

In our NAS Parallel Benchmarks characterization study, trace analysis begins 
with a trace of the execution of a benchmark on the oracle model architecture. This trace 
consists of a stream of operations representing the actual order of instructions executed 
(not the static object code). For each executed operation, the trace gives the opcode, PC 
address, memory-access address (if any), and the destination of a branch or jump. 
Thereafter, the analyzer reads the operations from the stream and schedules them 
according to the oracle model. As the analyzer reads each operation in the trace, it inserts 
the operation into the earliest parallel instruction possible, while simultaneously 
respecting the dependencies between that operation and all operations. Thus, the 
scheduled instructions are packed into parallel instructions. 
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Our analysis process of a workload takes four steps. First, a Sparc executable file 

is created, using the desired optimization level. All workloads are compiled with 
optimization using the Fortran compiler, f77, of SunOS 4.1.1. The results will be more 
meaningful if the program is statically linked. This eliminates the spurious instructions 
used in linking a program to the libraries. Then a dynamic execution trace of the 
workload is captured using the spy tool. This trace fed directly to the pre-analyzer 
(sitapa) to extract a list of basic blocks and frequencies of the workload, which is then 
read by the control-dependence analyzer (sitadep) to produce an annotated list, as the 
third step. This annotations include control-dependency relationships between the blocks 
and destination frequencies. Finally, the scheduler (sitarun) is run with the annotated list 
as input, and generally with spy and executable. The scheduler produces output 
indicating the parallelism available for the given input trace under the given oracle 
model. If spy is used with a trace analyzer, such as sitapa or sitarun, the system will run 
400-600 times slower than normal. 
 
 

5.  Measurements and Experimental Results 
 

In order to keep traces and analysis time within practical limits, we have used the 
short input files provided by the NAS Parallel Benchmark suite. The sample Fortran-77 
codes implementing the benchmarks, provided by NAS, actually solve scaled-down 
versions of the NPB problems that run on many current-generation high performance 
workstations. The standard input sizes for the NPB suite referred to as the Class A and 
Class B size problems. Table 2 lists the problem size [2] and the dynamic operation 
counts of: the Sample code problems, the Class A problems, and Class B problems. 
Operation counts are obtained using the spy tool [6] on a Sun workstation at NASA 
Goddard Space Flight Center. 
 

Note that in the case of mgrid the grid size is unchanged, but a greater dynamic 
operation count results from changes in the inner loop iterations. An explanation of the 
entries in the problem size column found in the corresponding sections describing the 
benchmarks in [2]. 

 
Table 2. Dynamic operation counts for NPB running on a sparc processor 

Benchmark Problem size Dynamic operation count (109 ) 
Sample Class A Class B Sample Class A Class B 

Embar 224 228 230 8.9811 26.68 1008.8 
Mgrid 323 2563 2563† 0.1154 3.905 18.81 
Cgm ≈105 14,000 75,000 0.5103 1.508 54.89 
Fftpde 643 2562x128 2562x512 1.5230 5.631 71.37 
Buk 216 223 x 219 225 x 221 0.0768 0.7812 3.150 
Applu 123 643 1023 0.5200 64.57 319.6 
Appsp 123 643 1023 0.8920 102.0 447.1 
Appbt 123 643 1023 1.1157 181.3 721.5 
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† Code is different from Class A [2]. 
 

There exists a number of parameters for characterizing programs, including 
instruction class mix, average basic block length, and dynamic instruction trace length. 
Static and dynamic basic block counts and average basic block lengths of NPB 
workloads are shown in Graphs 1,2, and 3, respectively. Quite a disparity exists between 
the average basic block lengths of the benchmarks from a high of about 68 for appbt to a 
low of 8 for buk. Tables 3 and 4 show the total number of dynamic sequential and 
parallel instructions exhibited by the different NPB workloads for Sample and Class A 
input sizes, respectively. In addition, Graphs 4 and 5 exhibit the average degree of 
parallelism of the NPB workloads for Sample and Class A input sizes, respectively. The 
instruction class mix for NPB is presented in Graph 6 for Sample input size and Graph 7 
for Class A input size. In the oracle machine, parallel instruction count is also the critical 
path length. Useful instruction count sums all the dynamic sequential instructions that 
are not annulled or delay operations. However, the dynamic instruction counts as well as 
the degree of parallelism for some of the NPB workloads with Class A input size have 
been extrapolated due to the limitation of memory space. Also, the average degrees of 
parallelism of NPB workloads are presented in Graphs 4 and 5 for Sample and Class A 
input size, respectively. 
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Graph 1. Static basic block count for sample of NAS parallel benchmarks. 
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Graph 2. Dynamic basic block count for sample of NAS parallel benchmarks. 
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Graph 3. Average basic block length for sample of NAS parallel benchmarks. 
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Table 3. Sequential and parallel instruction counts for the NPB sample 
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Graph 4. Average degree of parallelism for the NPB sample. 

 
 
 
Table 4. Sequential and parallel instruction counts for the NPB class A 

Benchmark Useful instructions Parallel instructions 
Embar 144,673,149,700   522,192,548   
Mgrid 56,042,127,780   928,827,554   
Cgm 825,571,323    3,440,844 
Fftpde 22,559,399,470   58,755,984   
Buk 9,738,763,264    1,862,852,960 

 
 
 

Benchmark Useful instructions Parallel instructions 
Embar 9,042,071,827 46,650,326 
Mgrid 114,729,462 1,818,865 
Cgm 508,804,545 2,697,227 
Fftpde 1,503,948,608 3,672,249 
Buk 72,576,990 14,553,108 
Applu 516,405,728 253,377 
Appsp 874,045,757 47,804 
Appbt 1,114,870,145 237,225 
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Graph 5. Average degree of parallelism for the NPB class A. 
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Graph 6. Operation counts for each instruction type in the NPB “sample” in millions. 
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Graph 7. Operation counts for each instruction type in the NPB “class A” in millions. 
 

 
6. Non-uniformities in Instruction-level Parallelism 

 
This section examines non-uniformities in the distribution of instruction-level 

parallelism. The non-uniformities in instruction-level parallelism include variations 
between workloads and variations by instruction class. The first non-uniformity in 
instruction-level parallelism we considered is variation in instruction-level parallelism 
from workload to workload. The NPB workloads actually have different amounts of 
instruction-level parallelism. The performance improvement in each workload when 
executed on an ideal architecture, oracle model, of unlimited parallelism is given in 
Graphs 4 and 5 for Sample and Class A input size, respectively. buk benchmark has the 
least amount of instruction-level parallelism whereas appbt has the most amount of 
instruction-level parallelism. Although similar benchmarks will exhibit similar average 
parallelism on a given machine, the converse is not true; similar average parallelism does 
not indicate that benchmarks are similar [7, 13]. This is because such benchmarks could 
be requiring different types of resources for their parallel operations. Graphs 4 and 5 
show the average degree of parallelism for the NAS benchmarks with Sample and Class 
A input size, respectively. 
 

Graphs 8 and 9 show the average parallelism within typical instruction classes. 
This data was obtained by simulating an unlimited issue oracle machine. Characterizing 
the inherent parallelism in programs is important insofar as it allows us to infer the 
behavior of the program on a realistic machine, i.e., a machine with finite number of 
processors. However, average parallelism can be a misleading indicator of performance. 
In this section, we focus on the question of whether a given program has sufficient 



Abdullah I. Almojel 

 

60 

 

parallelism for a p processor machine, where p equals the average degree of parallelism 
in a benchmark. We present a technique to characterize the behavior of programs on a 
finite number of processors by modifying the oracle machine to constrain the program to 
execute a finite number of operations in each step. Therefore, smoothability [3] is a 
metric designed to capture the parallelism profile variability around the average degree 
of parallelism. It is defined as the ratio of execution time with no restriction on the 
number of processors to the execution time when the number of available processors is 
limited to the average degree of parallelism. The interest in smoothability stems from the 
fact that the first step towards a realistic execution model, a limited of p operations is 
imposed to be executed during each step. 
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Graph 8. Average parallelism within instruction classes for the NPB “sample”. 
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Graph 9. Average parallelism within instruction classes for the NPB “class A”. 
 
 

In Graph 10 we list the parallelism results for the NAS Parallel Benchmark 
workloads running on the oracle model architecture with one restriction: the maximum 
number of processors are limited to the higher integer of the average degree of 
parallelism, and present the smoothability values. Our results indicate that the 
parallelism obtained has a relatively smooth temporal profile which exhibits a high 
degree of uniformity in the parallelism except for the cgm benchmark whose 
smoothability is 68%. In all cases, but the cgm benchmark, the smoothability is better 
than 83%. 
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Graph 10. The smoothability values (%) for NAS parallel benchmarks. 

 
 

7.  Conclusion 
 

This paper characterizes the structure and resource requirements of the NAS 
Parallel Benchmarks(NPB), a popular benchmark suite used to evaluate various parallel 
computers. The model is used to obtain parameter values. These quantitative parameters 
are useful in the design and evaluation of various parallel computers. In this paper, we 
have presented a method for quantifying the parallelism in real programs developed in 
the context of a dataflow model. It allows programs to be studied in full detail, without 
biasing their behavior by implementation constraints. 
 

This allows us to draw a clear distinction between the parallelism inherent in a 
program and the speedup achieved under any specific implementation. In this study we 
have investigated the instruction-level parallelism for the NAS Parallel Benchmarks. The 
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oracle model architecture was used as the parallel execution model with the Sparc 
instruction set for our study. Different input sizes were used to produce the experimental 
results: the Sample and Class A input size problems. This paper has also presented 
design information useful for designs high-performance processors. A method for 
selecting function unit needs based on unlimited resource usage simulation was 
presented and suggested design parameters. 

 
We have measured the length of the critical path of computation through the 

programs, and measured the average parallelism. These studies indicated that there is a 
useful amount of parallelism in most of benchmarks. Several non-uniformities in 
instruction-level parallelism were investigated including variations between benchmarks 
and by instruction class within benchmark. The results confirm that workloads in NPB 
represent a wide range of non-redundant applications with different characteristics. 
This study has shown that typical real-life applications, such as those represented by 
NPB, have high smoothability. 
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 بالنسبة للمقارنة المرجعية ILPخصائص توزيع التوازي بمستوى التعليمات 
 المتوازية الخاصة بناسا ناس 

 
 عبداالله إبراهيم المعجل

 ،٢٠٤٥الملك فهد للبترول والمعادن، ص ب الحاسب، جامعة  هندسةقسم 
 ، المملكة العربية السعودية٣١٢٦١الظهران 

 
 م)٢٩/٠٧/٢٠٠٣لنشر في م؛ وقبل ل٢٦/٠١/٢٠٠٣(قدّم للنشر في 

 
الإيعازات النشطة لوصف التوازي البرمجي. وهذه الدراسة تدعم الرأي   تم عمل دراسة تحليلية لمسلسل ملخص البحث.

القائل بأن التصميم التجريبي للسوبر كمبيوتر وأجهزة الكمبيوتر الموازية يدعو إلى توفير طرق قابلة للقياس لتقويم 
تياجات المختلفة ضمن نطاق برنامج ما. هذه الطرق يمكن أن تساعد على توفير الأسس المتطلبات الخاصة بالاح

اللازمة لإيجاد التصميم العلمي الخاص بالكمبيوترات المتوازية التي تعمل حسب احتياجات البرنامج، وتساعد أيضاً على 
امج) يمكن أن يتم استخدامها مبكراً في تحسين الأداء بالنسبة للتكاليف. وعلاوة على ذلك، فإن مزايا التطبيق (البرن

عملية التصميم لتحديد مناطق الاختناقات (المشكلات) التي يمكن أن تتمثل في عدم توفر المصادر، أو عدم توفر 
التوازي اللازم في مسلسل الإيعازات أو استخدام نطاق شديد التقيد بالنسبة لاكتشاف التزامن. إن اختيار المزايا التي 

 بها في أي نظام كمبيوتر جديد يعتمد على حاجة العمل الذي سيقوم الجهاز بتنفيذه. يجب تركي
يعتبر نوع الوحدات الوظيفية وعددها هو ضمن أهم القرارات الخاصة بالتصميم. ولذلك فإن هذه الدراسة 

مل بنظام تعقب قامت بتقديم وصف لمستوى الإيعازات الخاصة بتحليل الآثار النشطة باستخدام برنامج محاكاة يع
 الإيعازات (أي مقاد بالأثر).

يقوم الجهاز بتقصي احتياجات النظام المتوازية لفئة من المقارنات المرجعية المعاصرة مأخوذة من نظام المقارنة  
شكلات المرجعية المتوازية بوكالة الفضاء والطيران الأمريكية (ناسا) ناس، ويمثل هذا النظام تنفيذ Đموعات مستقلة من الم

الممثلة Đموعة حسابات كموبتيشنال إيروساينس. وتم تنفيذ أعمال المقارنة المرجعية المتوازية على برنامج مماثل كما تم 
إبلاغ النتائج من قبل البائعين. وقد تم تقديم البيانات المطلوبة لاحتياجات المقارنة المرجعية المتوازية لهذه المصادر. وقد 
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 الحدود العليا للمصادر المطلوبة للعمليات الفعّالية. وفي هذه الدراسة، كذلك، نقوم بدراسة أشارت الاحتياجات إلى
عدم التماثلات في توزيع التوازي بمستوى التعليمات. وقد تم التقصي عن العديد من الأمور غير المتماثلة في نظام التوازي 

رجعية وفئة التعليمات الثانوية ضمن المقارنة المرجعية. إضافة إلى بمستوى التعليمات بما في ذلك التباين بين فئة المقارنة الم
ذلك يتم عرض معدل توزيع فئة التعليمات وكذلك أقصر طريق يمكن من خلاله تنفيذ العمل على أجهزة متوازية. وقد 

  المكررة بمزايا مختلفة.أكدت النتائج أن حجم العمل في المقارنة المرجعية المتوازية يمثل تشكيلة عريضة من التطبيقات غير




