
J. King Saud Univ., Vol. 16, Comp. & Info. Sci., pp. 45-63 (A.H. 1424/2004)

45

Characterization of ILP Distribution for NASA NAS
Parallel Benchmarks

Abdullah I. Almojel

Department of Computer Engineering
King Fahd University of Petroleum and Minerals,

P.O. Box 2045,Dhahran 31261, Saudi Arabia

(Received 26 January 2003; accepted for publication 29 July 2003)

Abstract. A characterization study of analyzing dynamic instruction traces to characterize program parallelism
is conducted. This study supports that the experimental design of supercomputer and parallel computers calls
for quantifiable methods to evaluate the requirements of different workloads within an application domain.
Such methods can help establish the basis for scientific design of parallel computers driven by application
needs, to optimize performance to cost. In addition, the application characteristics can be used early in the
design process to identify bottlenecks such as not having enough resources, not having enough parallelism in
the instruction stream, or using a too restrictive scope of concurrency detection. The selection of which features
to include in a new computer system depends on the needs of the workloads the system will execute. The
number and type of functional units are among the most important design decisions. Therefore, this paper
presents an instruction-level characterization for analyzing dynamic traces using a trace-driven simulator. It
investigates the parallel system needs for a class of contemporary benchmarks taken from NASA/NAS Parallel
Benchmarks (NPB) suite. The NPB represents an implementation independent problem set, representative of
Computational Aeroscience workload computations. The NPB workloads have been implemented on nearly
every parallel platform and results have been reported by the vendors. Data is presented for NBP requirements
of these resources. The requirements suggest upper limits on the resources needed for efficient processors. In
this study, we also examine non-uniformities in the distribution of instruction-level parallelism. Several non-
uniformities in instruction-level parallelism are investigated including variation between benchmark class and
by instruction class within benchmark. In addition, the average instruction class distribution as well as the
shortest path a workload would be executed on a parallel machine will be shown. The results confirm that
workloads in NPB represent a wide range of non-redundant applications with different characteristics.

Keywords: Instruction-Level Parallelism; Workload Characterization; Benchmarking NASA NPB; Parallel
Processing; Smoothability.

1. Introduction

The advances of computer architectures are generally affected by two things: a better
understanding of program execution, and new or better implementation technologies. It

Abdullah I. Almojel

46

is therefore very important to understand the dynamics of program execution when
considering the design of future-generation architectures. Hence, experimental design of
parallel computers calls for quantifiable methods to evaluate the requirements of
different workloads within an application domain. Such methods can help establish the
basis for scientific design of parallel computers driven by application needs, to optimize
performance to cost [1, 13, 15, 16]. The selection of which features to include in a new
computer system depends on the needs of the workloads the system will execute. Also, a
critical factor in the design and development of high-performance computing
architectures and applications is to understand and to characterize their performance and
the corresponding requirements of computing and network resources [11, 15, 16].

It follows quite natural (and has been observed in the history of performance
evaluation) that changes in the computing environment (parallel and distributed
computing, network computing, mobile computing, etc.) and new system features
(security and reliability mechanisms, agent-based systems, intelligent networks, adaptive
systems, etc.) pose new challenges to performance evaluation by raising the need for
new analysis methodologies. From a load modeling point of view, the difference in using
computing resource has changed the type of model for workload characterization. While
in the early days of computing (70s) the typical systems were used in batch or interactive
mode, static workload models could adequately represent the user behavior. In the 80s,
dynamic workload models were introduced, which were able to represent variabilities in
user behavior. Within the last years, generative workload models have been proposed as
a suitable method for bridging the gap between the user's application oriented view of
the load and the actual load (physical, resource oriented requests) submitted to the
system [9, 10].

Therefore, the viability of a parallel processing system depends heavily on the
presence of parallelism in the application programs expected in the workload of that
system. Since the scientific applications domain designated as the primary beneficiary of
parallel processing, there have been several attempts to make parallel machines targeted
for scientific applications. In each case, the claim for the optimality of the machine
design is based on the assumptions about the amount of parallelism present in the
applications and its nature. In this paper, the Numerical Aerodynamic Simulation (NAS)
Parallel Benchmarks (NPB) developed at NASA Ames [2, 14] are used in order to
quantify their resource needs for parallel processing. The NPB represents an
implementation independent problem set, representative of Computational Aeroscience
workload computations. The requirements suggest upper limits on the resources needed
for efficient processors. In this study, we also examine non-uniformities in the
distribution of instruction-level parallelism. Several non-uniformities in instruction-level
parallelism are investigated including variation between benchmark class and by
instruction class within benchmark. We also consider the behavior of programs under the
constraint that at most a certain number of operations can be performed simultaneously

Characterization of ILP Distribution for NASA NAS……

47

[15]. We use a metric called "smoothability" [3] to show how evenly parallelism can be
distributed. Therefore, smoothability is a metric designed to capture the parallelism
profile around the average degree of parallelism. This metric also quantifies how
efficiently a parallel program can run on a multiprocessor with limited processors.

The parallel execution model of our study is based on a dataflow model where
any two operators can execute in parallel, unless one actually provides data directly or
indirectly to the other. We decided to base the analysis on traces of workloads executed
on Sun SparcStations [4] at NASA Goddard Space Flight Center. The Sparc architecture
was chosen for the testbed because it is representative of present-day RISC processors.

This paper is organized as follows: next section presents the parallel execution
model of the study. The experimental tools used in this study will be presented in section
2, too. Section 3 provides an overview of the NAS Parallel Benchmarks suite. Section 4
shows the methodology and the analysis process. Sections 5 and 6 present and analyze
some of the experimental results conducted in this study. Finally, conclusions are in
section 7.

2. NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) suite, which is an interesting alternative to
traditional benchmarking suites, were devised by the Numerical Aerodynamic
Simulation (NAS) Program of the National Air and Space Administration (NASA) for
the performance evaluation and analysis of highly parallel supercomputers. While the
NPB suite is rooted in the problems of computational fluid dynamics and computational
aerosicences, they are valuable in the evolution of parallel computing [12], since they are
rigorous and as close to real applications as may be reasonably expected from a
benchmarking suite. Therefore, using the NPB suite is a great deal more difficult than
using something like SPEC, because it involves writing a set of tuned parallel
applications. However, the suite gives manufacturers a chance to demonstrate what their
machines can do in a way that is impossible with more traditional benchmarks [9, 12].

The NPB is a set of eight benchmark problems that are designed to measure the
sustained performance of highly parallel computer systems for a subset of algorithms
that characterize various computationally intensive aerophysics applications. The eight
problems consist of five kernels and three simulated computational fluid dynamics
(CFD) application benchmarks. This benchmark suite successfully addresses many of
the problems associated with benchmarking parallel machines. It represents the principal
computational and data movement requirements of modern CFD applications. Table 1
lists the numerical problems solved in each benchmark (the embar and buk benchmarks
are not listed in this table because they are non-numerical benchmarks). The following

Abdullah I. Almojel

48

Table 1 describes each benchmark along with the architectural properties exercised by
the benchmark. It should be noted that NPB is a “paper and pencil” benchmark that
specifies the benchmarks only algorithmically. An exhaustive description of these NPB
problems is given in [2, 14].

Table 1. Numerical problems solved in the NAS parallel benchmarks

Numerical problem Benchmark
sparse linear system solvers cgm: conjugate gradient benchmark

lu, sp, bt: simulated CFD applications
fast Fourier transforms fftpde: 3-dimensional FFT benchmark
elliptic problem solvers lu, sp, bt: simulated CFD applications
multigrid schemes mgrid: 3-dimensional multigrid benchmark

The following Fig. 1 gives an overview of the NPB problems. The first five are the
parallel kernel benchmarks, and the last three are the simulated CFD application
benchmarks intended to accurately represent the principal computational and data
movement requirements of modern CFD applications.

An Overview of the NAS Parallel Benchmarks

embar is an "embarrassingly parallel" kernel, which evaluates an integral by means of
pseudorandom trails. It is a typical of many Monte Carlo applications: Two-dimensional statistics
accumulated from a large number of Gaussian pseudorandom numbers, generated according to a
scheme that well suited for parallel computation.

mgrid executes four iterations of the V-cycle multigrid algorithm to obtain an approximate
solution to the discrete Poisson problem = v on a 256 x 256 x 256 grid with periodic boundary
conditions.
cgm is a conjugate gradient method that computes an approximation to the smallest eigenvalue of
a large, sparse, symmetric positive definite matrix of order 14,000 with a random pattern of
nonzeros. This problem is typical of unstructured grid computations and it uses sparse matrix-
vector multiplication.
fftpde uses FFT's on 256 x 256 x 128 complex array to solve a three-dimensional partial
differential equation. This benchmark represents the essence of many "spectral" codes or eddies
turbulence simulations
buk is a large integer sort. This kernel performs a sorting operation that is important in "particle
method" codes. It is similar to "particle in cell" physics applications, where particles are assigned
to cells and may drift out. This problem is unique in that floating-point arithmetic is not involved.
applu uses a symmetric, successive over-relaxation numerical scheme to solve a regular sparse,
block (5 x 5) lower and upper triangular system. A complete solution of this benchmark requires
250 iterations.
appsp is a solution of multiple, independent systems of non-diagonally-dominant, scalar
pentadiagonal equations. A complete solution requires 400 iterations.
appbt is a solution of multiple, independent systems of non-diagonally-dominant, block tridiagonal
equations with a (5 x 5) block size. A complete solution requires 200 iterations.

Fig. 1. An overview of the NAS parallel benchmarks.

Characterization of ILP Distribution for NASA NAS……

49

Abdullah I. Almojel

50

3. Parallel Execution Model and Measurement Tools

To be universally applicable, the system characterization measurements must be
based on a uniform model of execution for parallel computations so that the results of an
experiment can be related to previous and future experiments. Hence, the architecture
undergoing this study would be the oracle model architecture.

3.1 Parallel computation model

This model presents the most ideal machine that has unlimited processors and
memory (infinite resources). It does not incur any overhead in scheduling tasks and
managing machine resources, does not incur any communications (with 0-cycle cost)
and synchronization overheads, and detects and exploits all the parallelism present in a
program (no resources/synchronization induced constraints on parallelism). This
machine should have perfect memory disambiguation (a language which resolves
ambiguities), unlimited register and memory renaming (with single-cycle latency), no
barriers due to control dependencies, perfect branch prediction, and no window size
limitations. Thus, this abstract machine model is called the oracle model [3, 5].

The Sparc architecture instruction set [4] was chosen for the testbed because it is
representative of present-day RISC processors. Sparc is a CPU instruction set
architecture (ISA), derived from a reduced instruction set computer (RISC) lineage. As
an architecture, Sparc allows for a spectrum of chip and system implementations at a
variety of price/performance points for a range of applications, including
scientific/engineering, programming, real-time, and commercial. A Sparc processor
logically comprises an integer unit, a floating-point unit, and an optional coprocessor,
each with its own registers. This organization allows for implementations with maximum
concurrence between integer, floating-point, and coprocessor instruction execution.

Instructions in Sparc are accessed by the processor from memory and are
executed, annulled, or trapped. Instructions are. There are 69 basic instruction operations
encoded in three 32-bit formats and can be partitioned into five general categories:
load/store, arithmetic/logical/shift, control transfer, read/write register, and floating-point
operate instructions. More details about the Sparc instruction set are found in [4].

3.2 Measurement and experimental tools: Sparc performance analyzer package tool

The Sparc Performance Analysis (Spa) package is a set of tools which run on
Sparc systems and are used to analyze the performance of Sparc binary application
programs on the Sparc station-1 and Sparc station-2 [6]. The Spa package can be used on
any Sun4 architecture machine running a SunOS 4 (preferably 4.1) operating systems.
The main component of the Spa package is a Sparc simulator and trace generator. The

Characterization of ILP Distribution for NASA NAS……

51

Spa tools include spy a program that traces the execution of a command and can
generate spat address traces, spanner a tool that converts an spat address trace into spic
instruction count files, splice a tool that combines spic instruction count files, and spout
a tool that displays a spic instruction count.

However, the Spa package does not predict overall system performance. I/O
latency is not taken into consideration, nor is the effect of more than process being active
at any one time. Although Spa has some other deficiencies as well, it includes tool that is
shown to be convenient to build around: spy that traces the execution of a command. It
can be used to generate an address trace which can then be passed directly to a trace
analyzer-it runs about 600 times slower than normal, and/or list the system calls
performed by that command. For each system call, the attributes of the process being
traced, the address of the system call, the name of the routine being called, and some
other useful information are extracted.

Sequential instruction trace analyzer tool

The Sequential Instruction Trace Analyzer (Sita) is a tool package developed at
the McGill university to measure the amount of parallelism which theoretically exists in
a given workload [3]. Sita takes a dynamic trace generated from a sequential execution
of a conventional program, and schedules the instructions according to how they could
be executed on an idealized architecture while respecting all relevant dependencies
between instructions. This architecture can vary according to parameters set by the user,
who can select such features as the number of processors or the method of branch
prediction used. This allows comparisons between competing architectures that use
specific benchmarks to be placed in context, shows designers a glimpse of how much
parallelism can be exposed by adding various features to their machines, and gives
algorithm designers a tool for comparing implementations of alternative algorithms.

Currently, Sita is used to analyze Sparc executables and is designed to work with
spy tool, which is the only tool needed from the Spa package [6]. Sita tool includes a
pre-analyzer (sitapa), a control-dependence analyzer (sitadep), and a trace scheduler
(sitarun). Sita tools are mentioned below in the order they are used to extract parallelism
figs:

Sita pre-analyzer (sitapa): is an auxiliary tool providing a total of four functions
that can be desired. Its primary function is to analyze a dynamic trace to determine the
boundaries of the basic blocks (a basic block is a sequence of instructions that is always
entered at the beginning and exited at the end without any branch or jump), and to record
the frequencies of branch outcomes. This function will also record some useful statistics
about the trace: the total number of executed and annulled instructions; the number of
memory accesses; the number of floating-point operations; deepest depth reached at the

Abdullah I. Almojel

52

stack; the total number of basic blocks in the workload, both static in the workload and
dynamic in the trace.

Sita control-dependent analyzer (sitadep): performs control-dependence analysis
on a list of basic blocks which is generated by sitapa. It produces an annotated list of
basic blocks and control-dependency information which consist of , among others, the
total number of procedures, the number of instructions in the longest basic block, the
most common distinctions from the blocks, and the critical blocks (those on which other
blocks are control dependent).

Sita trace scheduler (sitarun): reads in a dynamic trace and schedules the

instructions according to an idealized parallel machine(s) based on user-definable
parameters. The total instruction level of parallelism is measured and reported along
with the description of the model and some statistics on prediction rates and speculation
depth. The parallelism is computed by dividing the total number of useful sequential
instructions (the work) by the number of parallel instructions needed to schedule these
sequential instructions (the time), which are both given in the output. Certain options
may cause sitarun to output additional information.

4. Methodology and Analysis Process

Characterization of a workload requires the measurement of its runtime behavior.
The behavior we measure is in terms of an idealized architecture. This abstract system is
general enough to include many system designs as special cases and then measure
workload performances in terms of this abstract system, whose instruction set is the
compiler intermediate code. These instructions are interpreted by an oracle model
simulation, and the results are used to produce the workload characteristics. In order to
explore the inherent parallelism in workloads, instructions traced are scheduled for the
oracle model architecture. This model presents the most ideal machine that have
unlimited processors and memory, and does not incur any overhead while respecting all
relevant dependencies between instructions.

In our NAS Parallel Benchmarks characterization study, trace analysis begins
with a trace of the execution of a benchmark on the oracle model architecture. This trace
consists of a stream of operations representing the actual order of instructions executed
(not the static object code). For each executed operation, the trace gives the opcode, PC
address, memory-access address (if any), and the destination of a branch or jump.
Thereafter, the analyzer reads the operations from the stream and schedules them
according to the oracle model. As the analyzer reads each operation in the trace, it inserts
the operation into the earliest parallel instruction possible, while simultaneously
respecting the dependencies between that operation and all operations. Thus, the
scheduled instructions are packed into parallel instructions.

Characterization of ILP Distribution for NASA NAS……

53

Our analysis process of a workload takes four steps. First, a Sparc executable file

is created, using the desired optimization level. All workloads are compiled with
optimization using the Fortran compiler, f77, of SunOS 4.1.1. The results will be more
meaningful if the program is statically linked. This eliminates the spurious instructions
used in linking a program to the libraries. Then a dynamic execution trace of the
workload is captured using the spy tool. This trace fed directly to the pre-analyzer
(sitapa) to extract a list of basic blocks and frequencies of the workload, which is then
read by the control-dependence analyzer (sitadep) to produce an annotated list, as the
third step. This annotations include control-dependency relationships between the blocks
and destination frequencies. Finally, the scheduler (sitarun) is run with the annotated list
as input, and generally with spy and executable. The scheduler produces output
indicating the parallelism available for the given input trace under the given oracle
model. If spy is used with a trace analyzer, such as sitapa or sitarun, the system will run
400-600 times slower than normal.

5. Measurements and Experimental Results

In order to keep traces and analysis time within practical limits, we have used the
short input files provided by the NAS Parallel Benchmark suite. The sample Fortran-77
codes implementing the benchmarks, provided by NAS, actually solve scaled-down
versions of the NPB problems that run on many current-generation high performance
workstations. The standard input sizes for the NPB suite referred to as the Class A and
Class B size problems. Table 2 lists the problem size [2] and the dynamic operation
counts of: the Sample code problems, the Class A problems, and Class B problems.
Operation counts are obtained using the spy tool [6] on a Sun workstation at NASA
Goddard Space Flight Center.

Note that in the case of mgrid the grid size is unchanged, but a greater dynamic
operation count results from changes in the inner loop iterations. An explanation of the
entries in the problem size column found in the corresponding sections describing the
benchmarks in [2].

Table 2. Dynamic operation counts for NPB running on a sparc processor

Benchmark Problem size Dynamic operation count (109)
Sample Class A Class B Sample Class A Class B

Embar 224 228 230 8.9811 26.68 1008.8
Mgrid 323 2563 2563† 0.1154 3.905 18.81
Cgm ≈105 14,000 75,000 0.5103 1.508 54.89
Fftpde 643 2562x128 2562x512 1.5230 5.631 71.37
Buk 216 223 x 219 225 x 221 0.0768 0.7812 3.150
Applu 123 643 1023 0.5200 64.57 319.6
Appsp 123 643 1023 0.8920 102.0 447.1
Appbt 123 643 1023 1.1157 181.3 721.5

Abdullah I. Almojel

54

† Code is different from Class A [2].

There exists a number of parameters for characterizing programs, including
instruction class mix, average basic block length, and dynamic instruction trace length.
Static and dynamic basic block counts and average basic block lengths of NPB
workloads are shown in Graphs 1,2, and 3, respectively. Quite a disparity exists between
the average basic block lengths of the benchmarks from a high of about 68 for appbt to a
low of 8 for buk. Tables 3 and 4 show the total number of dynamic sequential and
parallel instructions exhibited by the different NPB workloads for Sample and Class A
input sizes, respectively. In addition, Graphs 4 and 5 exhibit the average degree of
parallelism of the NPB workloads for Sample and Class A input sizes, respectively. The
instruction class mix for NPB is presented in Graph 6 for Sample input size and Graph 7
for Class A input size. In the oracle machine, parallel instruction count is also the critical
path length. Useful instruction count sums all the dynamic sequential instructions that
are not annulled or delay operations. However, the dynamic instruction counts as well as
the degree of parallelism for some of the NPB workloads with Class A input size have
been extrapolated due to the limitation of memory space. Also, the average degrees of
parallelism of NPB workloads are presented in Graphs 4 and 5 for Sample and Class A
input size, respectively.

0

500

1000

1500

2000

2500

em
ba

r
mgri

d
cg

m
fft

pd
e

bu
k

ap
plu

ap
psp ap

pb
t

Graph 1. Static basic block count for sample of NAS parallel benchmarks.

Characterization of ILP Distribution for NASA NAS……

55

0
100000000
200000000
300000000
400000000
500000000
600000000
700000000
800000000
900000000

1000000000

em
ba

r
mgri

d
cg

m
fft

pd
e

bu
k

ap
plu

ap
psp ap

pb
t

Graph 2. Dynamic basic block count for sample of NAS parallel benchmarks.

0

10

20

30

40

50

60

70

em
ba

r
mgri

d
cg

m
fft

pd
e

bu
k

ap
plu

ap
psp ap

pb
t

Graph 3. Average basic block length for sample of NAS parallel benchmarks.

Abdullah I. Almojel

56

Characterization of ILP Distribution for NASA NAS……

57

Table 3. Sequential and parallel instruction counts for the NPB sample

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

em
ba

r
mgri

d
cg

m
fft

pd
e

bu
k

ap
plu

ap
psp ap

pb
t

Graph 4. Average degree of parallelism for the NPB sample.

Table 4. Sequential and parallel instruction counts for the NPB class A

Benchmark Useful instructions Parallel instructions
Embar 144,673,149,700 522,192,548
Mgrid 56,042,127,780 928,827,554
Cgm 825,571,323 3,440,844
Fftpde 22,559,399,470 58,755,984
Buk 9,738,763,264 1,862,852,960

Benchmark Useful instructions Parallel instructions
Embar 9,042,071,827 46,650,326
Mgrid 114,729,462 1,818,865
Cgm 508,804,545 2,697,227
Fftpde 1,503,948,608 3,672,249
Buk 72,576,990 14,553,108
Applu 516,405,728 253,377
Appsp 874,045,757 47,804
Appbt 1,114,870,145 237,225

Abdullah I. Almojel

58

0

50

100

150

200

250

300

350

400

em
ba

r
mgri

d
cg

m
fft

pd
e

bu
k

Graph 5. Average degree of parallelism for the NPB class A.

0
500

1000
1500

2000
2500

3000
3500

4000

embar mgrid cgm fftpde buk

MemOps

ALUops

FTops

TransOps

OthersOps

Graph 6. Operation counts for each instruction type in the NPB “sample” in millions.

Characterization of ILP Distribution for NASA NAS……

59

0
20
40
60
80

100
120
140
160
180
200

embar mgrid cgm fftpde buk

MemOps
ALUops
FTops
TransOps
OthersOps

Graph 7. Operation counts for each instruction type in the NPB “class A” in millions.

6. Non-uniformities in Instruction-level Parallelism

This section examines non-uniformities in the distribution of instruction-level

parallelism. The non-uniformities in instruction-level parallelism include variations
between workloads and variations by instruction class. The first non-uniformity in
instruction-level parallelism we considered is variation in instruction-level parallelism
from workload to workload. The NPB workloads actually have different amounts of
instruction-level parallelism. The performance improvement in each workload when
executed on an ideal architecture, oracle model, of unlimited parallelism is given in
Graphs 4 and 5 for Sample and Class A input size, respectively. buk benchmark has the
least amount of instruction-level parallelism whereas appbt has the most amount of
instruction-level parallelism. Although similar benchmarks will exhibit similar average
parallelism on a given machine, the converse is not true; similar average parallelism does
not indicate that benchmarks are similar [7, 13]. This is because such benchmarks could
be requiring different types of resources for their parallel operations. Graphs 4 and 5
show the average degree of parallelism for the NAS benchmarks with Sample and Class
A input size, respectively.

Graphs 8 and 9 show the average parallelism within typical instruction classes.
This data was obtained by simulating an unlimited issue oracle machine. Characterizing
the inherent parallelism in programs is important insofar as it allows us to infer the
behavior of the program on a realistic machine, i.e., a machine with finite number of
processors. However, average parallelism can be a misleading indicator of performance.
In this section, we focus on the question of whether a given program has sufficient

Abdullah I. Almojel

60

parallelism for a p processor machine, where p equals the average degree of parallelism
in a benchmark. We present a technique to characterize the behavior of programs on a
finite number of processors by modifying the oracle machine to constrain the program to
execute a finite number of operations in each step. Therefore, smoothability [3] is a
metric designed to capture the parallelism profile variability around the average degree
of parallelism. It is defined as the ratio of execution time with no restriction on the
number of processors to the execution time when the number of available processors is
limited to the average degree of parallelism. The interest in smoothability stems from the
fact that the first step towards a realistic execution model, a limited of p operations is
imposed to be executed during each step.

0
20
40
60
80

100
120
140
160
180
200

embar mgrid cgm fftpde buk

MemOps
ALUops
FTops
TransOps
OthersOps

Graph 8. Average parallelism within instruction classes for the NPB “sample”.

0
20
40
60
80

100
120
140
160
180

embar mgrid cgm fftpde buk

MemOps

ALUops

FTops

TransOps

OthersOps

Characterization of ILP Distribution for NASA NAS……

61

Graph 9. Average parallelism within instruction classes for the NPB “class A”.

In Graph 10 we list the parallelism results for the NAS Parallel Benchmark
workloads running on the oracle model architecture with one restriction: the maximum
number of processors are limited to the higher integer of the average degree of
parallelism, and present the smoothability values. Our results indicate that the
parallelism obtained has a relatively smooth temporal profile which exhibits a high
degree of uniformity in the parallelism except for the cgm benchmark whose
smoothability is 68%. In all cases, but the cgm benchmark, the smoothability is better
than 83%.

0
10
20
30
40
50
60
70
80
90

100

em
ba

r
mgri

d
cg

m
fft

pd
e

bu
k

ap
plu

ap
psp ap

pb
t

Graph 10. The smoothability values (%) for NAS parallel benchmarks.

7. Conclusion

This paper characterizes the structure and resource requirements of the NAS
Parallel Benchmarks(NPB), a popular benchmark suite used to evaluate various parallel
computers. The model is used to obtain parameter values. These quantitative parameters
are useful in the design and evaluation of various parallel computers. In this paper, we
have presented a method for quantifying the parallelism in real programs developed in
the context of a dataflow model. It allows programs to be studied in full detail, without
biasing their behavior by implementation constraints.

This allows us to draw a clear distinction between the parallelism inherent in a
program and the speedup achieved under any specific implementation. In this study we
have investigated the instruction-level parallelism for the NAS Parallel Benchmarks. The

Abdullah I. Almojel

62

oracle model architecture was used as the parallel execution model with the Sparc
instruction set for our study. Different input sizes were used to produce the experimental
results: the Sample and Class A input size problems. This paper has also presented
design information useful for designs high-performance processors. A method for
selecting function unit needs based on unlimited resource usage simulation was
presented and suggested design parameters.

We have measured the length of the critical path of computation through the

programs, and measured the average parallelism. These studies indicated that there is a
useful amount of parallelism in most of benchmarks. Several non-uniformities in
instruction-level parallelism were investigated including variations between benchmarks
and by instruction class within benchmark. The results confirm that workloads in NPB
represent a wide range of non-redundant applications with different characteristics.
This study has shown that typical real-life applications, such as those represented by
NPB, have high smoothability.

Acknowledgment: I would like to acknowledge the King Fahd University of Petroleum
and Minerals for their support. This work has been supported by the Center of
Excellence in Space Data and Information Sciences at NASA Goddard Space Flight
Center under Grant No. NAS5-30428. This work has been supported by NASA High-
performance Computing and Communications (HPCC) program through
CESDIS/USRA, Grant No. NAS5-30428.

References

[1] Meajil, A.I., El-Ghazawi, T. and Sterling,T. “A Quantitative Approach for Architecture-Invariant

Parallel Workload Characterization.” Workshop on Applied Parallel Computing in Industrial
Problems and Optimization (PARA’96), Lyngby, Denmark (August, 1996), 18-21.

[2] Bailey, D. et al. The NAS Parallel Benchmarks, RNR Technical Report RNR-94 007, March 1994,
NASA Ames Research Center, Moffett Field, CA.

[3] Theobald, K.B., Gao, G.R. and Hendren, L.J. "On the Limits of Program Parallelism and Its
Smoothability." Proceedings of the 25th Annual International Symposium on Micro-architecture
(MICRO-25), Portland, Oregon (December 1992), 10-19.

[4] The SPARC Architecture Manual. Version 8, Menlo Park, CA: SPARC Int'l, Inc., 1991.
[5] Nicolau, A. and Fisher, J.A. "Measuring the Parallelism Available for Very Long Instruction Word

Architectures." IEEE Transactions on Computers, 33, No.11 (Nov. 1984), 968-976.
[6] Irlam, G. The Spa Package, Version 1.0, October 1991.
[7] Meajil, A.I. “An Architecture-Independent Workload Characterization Model for Parallel Computer

Architectures.” Technical Report No. GWU-IIST 96-12, Department of Electrical Engineering and
Computer Science, George Washington University, July 1996.

[8] Almojel, A. “Numerical Aerodynamic Simulation Parallel Benchmarks: A Characterization Study.” The
Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, SIAM
Activity Group on Supercomputing, Order Code # PR 0094. (March 14-17,1997), 97

Characterization of ILP Distribution for NASA NAS……

63

[9] Haring Günter, Kosits Gabriela and Raghavan, S.V. “Workload Characterization in High-performance
Computing Environments.” Proceedings of the Sixth International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS '98), Montreal, Canada (July
1998).

[10] Frumkin, M., Wijngaart, Van Der. “NAS Grid Benchmarks: A Tool for Grid Space Exploration.”
Proceedings of SC2001 Conference on High Performance Networking and Computing, Denver, CO,
IEEE Computer Society Press (Nov., 2001).

[11] Sun, Y., Wang, J. and Xu, Z. “Architectural Implications of the NAS MG and FT Parallel
Benchmarks.” 1997 Advances in Parallel and Distributed Computing Conference (APDC '97), National
Center for Intelligent Computing Systems(NCIC) Chinese Academy of Sciences, Shanghai, China
(March 19 - 21, 1997).

[12] Yoo, A. Jette, M. “The Characteristics of Workload on ASCI Blue-Pacific at Lawrence Livermore
National Laboratory.” 1st International Symposium on Cluster Computing and the Grid, Brisbane,
Australia (May 15 - 18, 2001).

 [13] Almojel, A. “An Architecture-Independent Workload Characterization Model For Parallel Computer
Architectures.” a Doctoral Dissertation and was published by NASA Goddard Space Flight Center,
Dissertation Series, CESDIS TR-97-204 (June 1997).

 [14] http://www.nas.nasa.gov/NAS/NPB.
 [15] Wong, F., Martin, R., Arpaci-Dusseau, R. and Culler, D. “Architectural Requirements and Scalability

of the NAS Parallel Benchmarks.” Proceeding of SC99 Conference on High Performance Networking
and Computing, IEEE Computer Society Press, Portland, OR. (Nov. 1999).

 [16] Cantonnet, F. “UPC Performance and Potential: A NPB Experimental Study.” Proceeding of SC2002
Conference on High Performance Networking and Computing, Baltimore, MD., IEEE Computer
Society Press (Nov. 2002).

Abdullah I. Almojel

64

 بالنسبة للمقارنة المرجعية ILPخصائص توزيع التوازي بمستوى التعليمات
 المتوازية الخاصة بناسا ناس

 عبداالله إبراهيم المعجل

 ،٢٠٤٥الملك فهد للبترول والمعادن، ص ب الحاسب، جامعة هندسةقسم
 ، المملكة العربية السعودية٣١٢٦١الظهران

 م)٢٩/٠٧/٢٠٠٣لنشر في م؛ وقبل ل٢٦/٠١/٢٠٠٣(قدّم للنشر في

الإيعازات النشطة لوصف التوازي البرمجي. وهذه الدراسة تدعم الرأي تم عمل دراسة تحليلية لمسلسل ملخص البحث.

القائل بأن التصميم التجريبي للسوبر كمبيوتر وأجهزة الكمبيوتر الموازية يدعو إلى توفير طرق قابلة للقياس لتقويم
تياجات المختلفة ضمن نطاق برنامج ما. هذه الطرق يمكن أن تساعد على توفير الأسس المتطلبات الخاصة بالاح

اللازمة لإيجاد التصميم العلمي الخاص بالكمبيوترات المتوازية التي تعمل حسب احتياجات البرنامج، وتساعد أيضاً على
امج) يمكن أن يتم استخدامها مبكراً في تحسين الأداء بالنسبة للتكاليف. وعلاوة على ذلك، فإن مزايا التطبيق (البرن

عملية التصميم لتحديد مناطق الاختناقات (المشكلات) التي يمكن أن تتمثل في عدم توفر المصادر، أو عدم توفر
التوازي اللازم في مسلسل الإيعازات أو استخدام نطاق شديد التقيد بالنسبة لاكتشاف التزامن. إن اختيار المزايا التي

 بها في أي نظام كمبيوتر جديد يعتمد على حاجة العمل الذي سيقوم الجهاز بتنفيذه. يجب تركي
يعتبر نوع الوحدات الوظيفية وعددها هو ضمن أهم القرارات الخاصة بالتصميم. ولذلك فإن هذه الدراسة

مل بنظام تعقب قامت بتقديم وصف لمستوى الإيعازات الخاصة بتحليل الآثار النشطة باستخدام برنامج محاكاة يع
 الإيعازات (أي مقاد بالأثر).

يقوم الجهاز بتقصي احتياجات النظام المتوازية لفئة من المقارنات المرجعية المعاصرة مأخوذة من نظام المقارنة
شكلات المرجعية المتوازية بوكالة الفضاء والطيران الأمريكية (ناسا) ناس، ويمثل هذا النظام تنفيذ Đموعات مستقلة من الم

الممثلة Đموعة حسابات كموبتيشنال إيروساينس. وتم تنفيذ أعمال المقارنة المرجعية المتوازية على برنامج مماثل كما تم
إبلاغ النتائج من قبل البائعين. وقد تم تقديم البيانات المطلوبة لاحتياجات المقارنة المرجعية المتوازية لهذه المصادر. وقد

Characterization of ILP Distribution for NASA NAS……

65

 الحدود العليا للمصادر المطلوبة للعمليات الفعّالية. وفي هذه الدراسة، كذلك، نقوم بدراسة أشارت الاحتياجات إلى
عدم التماثلات في توزيع التوازي بمستوى التعليمات. وقد تم التقصي عن العديد من الأمور غير المتماثلة في نظام التوازي

رجعية وفئة التعليمات الثانوية ضمن المقارنة المرجعية. إضافة إلى بمستوى التعليمات بما في ذلك التباين بين فئة المقارنة الم
ذلك يتم عرض معدل توزيع فئة التعليمات وكذلك أقصر طريق يمكن من خلاله تنفيذ العمل على أجهزة متوازية. وقد

 المكررة بمزايا مختلفة.أكدت النتائج أن حجم العمل في المقارنة المرجعية المتوازية يمثل تشكيلة عريضة من التطبيقات غير

