
J. King Saud Univ., Vol. 16, Comp. & Info. Sci., pp. 65-80 (A.H. 1424/2004) 

65 

Global GAMMA: A Distributed Implementation of GAMMA 
Using Global Computing  

 
Salim Ghanemi and Ahmed A. Al Damegh 

Department of Computer Science, College of Computer & Information Sciences 
King Saud University, Riyadh, Saudi Arabia 

 

 
(Received 23 February 2003; accepted for publication 29 July 2003) 

 
Abstract. It is commonly known that writing and debugging parallel programs is more difficult than sequential 
programs (using traditional imperative or functional programming languages). Gamma, which is formalism for 
programming by multiset transformation, was suggested with the idea that programs are expressed in very 
abstract way. This makes Gamma very suitable for writing “correct” parallel programs. Gamma is a 
specification model, which is far away from a real architecture, thus designing reasonably efficient 
implementation of the language is not straightforward. The main goal of the GLOBAL GAMMA project is to 
develop a parallel distributed implementation of Gamma on the Internet (on a Global computing environment), 
which will exploit the idle time of Internet-connected computers. 
 

Keywords: Parallelism; Gamma; Distributed gamma; Chemical reaction model; Multiset transformation; Very 
high-level languages; Global computing; Distributed Processing. 
 
 

1.  Introduction 
 

The rapid penetration of computers into commerce, science, and education owed much 
to the early standardization on a single machine model, the von Neumann computer. The 
von Neumann machine model assumes a processor to be able to execute “sequences” of 
instructions. While it is possible to program a computer in terms of this basic model by 
writing machine language, this method is for most purposes prohibitively complex. 
Hence, modular design techniques are applied, and higher-level programming languages 
are developed. 

Parallelism makes programming task more difficult in terms of writing and 
debugging programs especially using traditional imperative or functional programming  



Salim Ghanemi and Ahmed A. Al Damegh 

 

66 

 

languages, because the programmer has to mentally manage several threads of control 
[1]. 
 

J-P. Banatre et al proposed Gamma [1] in 1986, a formalism for programming by 
multiset transformation, in which programs are expressed in very abstract way, leaving 
any artificial sequentiality and details. This makes it very suitable for parallel 
programming. Also due to its abstractness, abstract specifications of programs can easily 
be transformed into Gamma programs, which lead to easy construction of “correct” 
parallel programs [5]. 
 

Gamma is a specification language, thus a Gamma program is far away from a 
real architecture, and designing reasonably efficient implementation of the language is 
not straightforward. Several attempts have been made to the implementation of Gamma 
on different platforms (multiprocessor computers, network of workstations…) but, as far 
as we know, no implementation of Gamma introduced to utilize the power of the huge 
number of Internet-connected computers as one computational resource. But on the other 
hand, there have been several studies on Global computing [7]. Global computing 
systems harvest the idle time of Internet connected computers which may be widely 
distributed across the world, to run a very large and distributed application. 
 
1.1 Project goal 

The main goal of this project is to develop a parallel implementation of Gamma 
on the Internet or on a Global-computing infrastructure. The idea is to provide 
programmers with an environment to write correct Gamma programs and have these 
programs executed in an implicitly parallel way on the underlying Global computing 
infrastructure, without having the programmer to care about this parallelism of 
execution. 
 

The underlying Global computing infrastructure used is constituted from 
computers of volunteers who have the interest to join the Global-computing 
environment. The solution should ensure easy and secure participation of volunteers. In 
short, we seek utilizing Global computing techniques to derive a parallel-distributed 
implementation of Gamma. So, we will refer to this project as “GLOBAL GAMMA”. 
 
1.2 Paper organization 

The remainder of this paper is organized as follows: in section 2 we introduce the 
Gamma formalism. Section 3 provides a review of Global Computing Systems. GLOBAL 
GAMMA specifications are highlighted in section 4. In section 5 we give a high level 
design of GLOBAL GAMMA. 
 



Global GAMMA: A Distributed Implementation of GAMMA…… 

 

67

 

2.  Programming with Gamma 
2.1 Introduction 

Gamma [1] (General Abstract Model for Multiset mAnipulation) is a kernel 
language for describing programs in terms of multiset transformation. It is a high-level 
language that has been introduced intuitively from the chemical reaction metaphor. It 
allows the description of programs in a very abstract way without introducing 
unnecessary sequentiality [5], i.e., sequentiality that is not required by program logic. 
Also it is based on the distinction between the correctness and efficiency of programs, 
with correctness being the primary concern in program development. To illustrate this, 
let us consider the example of finding the maximum element of a set. To solve this 
problem using an imperative language, the set can be represented as an array a[1..n] and 
the program is 
 

m := a[1]; 
i := 1; 
while i < n 
 { i := i + 1 ; 
   m := max (m, a[i]) ; } 

 
While the condition i < n holds, index i is incremented and m is computed. This solution 
imposes a strict ordering between comparisons of elements, the first is compared with 
the second, and then their maximum is compared with the third…and so on.  
 
Using Gamma the solution can be obtained by performing the comparisons with any 
order and in an abstract form. A possible Gamma program can be: 
 

Max(s): Γ((R,A)) (s) where 
   R(x,y) = x ≤ y  

   A(x,y) = {y} 
 
Meaning, while there are at least two elements, select two elements, compare them, and 
remove the smaller one. 
 

A Gamma program is a pair of reaction condition R and action A. Execution 
proceeds by replacing the multiset elements satisfying the condition R by the product of 
the application of the action A. This is analogous to chemical reactions as the set being 
the chemical solution, R being the reaction condition to be satisfied by the reacting 
elements, and A describes the result of the reaction. The computation terminates when a 
stable state is reached, i.e., when no elements in the set satisfy the reaction condition. 
 

In case of several disjoint pairs of elements satisfy the condition; comparisons 
and replacements can be done in parallel. Thus, Gamma involves implicit parallelism. 



Salim Ghanemi and Ahmed A. Al Damegh 

 

68 

 

The only data structure used in Gamma is the multiset or the bag. The essential feature 
of multisets is that data is no longer seen as a hierarchy that needs to be walked through 
or decomposed in order to extract atomic values. Instead, atomic values are gathered into 
one single bag and the computation is the result of their interactions. 
 

Another feature of Gamma is the locality property: independent elements can 
interact with each other and produce new elements in completely independent (or 
simultaneous) way. Hence, a reaction condition should not include any global condition 
on the multiset, such as properties on the cardinality of the multiset [2]. This property is 
the basic reason why Gamma programs do generally exhibit a lot of potential parallelism 
[1, 4]. 
 
2.2 Gamma programming style 

In Gamma, a program is no longer a sequence of instructions modifying a state, 
or a function applied to its arguments but rather a multiset transformer operating on all 
the data at once. The development of Gamma programs entails the choice in data 
representation and the choice in the type of transformation applied to this data. 
 

Let us consider the problem of prime number generation. The task is to produce 
all prime numbers less than a given N. The solution is based on the fact that the (i+1)th 
prime (i ≥ 1) is the smallest integer exceeding the ith prime that is not divisible by the 
first i primes. Integers greater than √N that have not been eliminated by divisions by 
integers less than √N are primes [1]. 
A Gamma solution is: 

PrimeNumbers(N) = Γ((R,A))({2,…,N}) where 
    R(x,y) = multiple(x,y) 
    A(x,y) = {y} 

Here, multiple (x, y) determines weather x is a multiple of y or divisible by y. 
 

Imperative solutions to this problem are intricate, because they give a detailed 
description of the execution order. But the Gamma solution is easier and concise, 
because computational details are left unspecified. 
 
2.2.1 Data decomposition 

The first step for designing a Gamma program is to find a suitable representation 
of data as a multiset, since the multiset is the only data structure. If the program, for 
example, has to operate on basic values, such as integers, a suitable decomposition of 
these values has to be found. The prime numbers example above decomposes its 
argument N into a multiset {2…N}. Complex data such as sequences, trees or graphs can 
be flattened into multisets in a straightforward way. For example, a sequence can be 
decomposed in a multiset of (index, value) pairs. Flat multisets make all the components 
of the data structure directly accessible, regardless of their position in the structure. 



Global GAMMA: A Distributed Implementation of GAMMA…… 

 

69

 

Gamma has a topological view of data types in contrast to the recursive view of data type 
where a walk through is necessary to access a particular component [1]. 
2.2.2 Relaxation 

Relaxation is a method used to solve problems in an iterative way. First, an initial 
multiset is produced as an estimate of the solution, and then a series of actions used to 
decrease and “relax” errors in the initial estimate until a proper solution is found. In the 
Prime Number example, the initial multiset is {2,…,N}, which is a rough estimate of 
primes less than N, and the computation continues to remove non-primes.  
 
2.2.3 Data expansion and reduction 

Data expansion and reduction are two other Gamma programming techniques. 
Data expansion means the decomposition of multiset elements into a collection of items. 
Computation stops when the multiset is a collection of indivisible elements. Data 
reduction, on the other hand, corresponds to the case where a multiset of items is 
reduced to a singleton by successive application of the action. The following program 
explains these two concepts. It computes Fibonacci function, which is defined as:  

Fibonacci(n) = if n ≤ 1 then 1  else Fibonacci(n – 1) + Fibonacci(n – 2) 
Fib(n) = m where 
  {m} = sigma(gen({n})) 
  
gen(n) = Γ((R1, A1),(R2, A2))(n) where 
  R1(n) = n > 1 
  A1(n) = {n - 1,n – 2} 
  R2(0) = true 
  A2(0) = {1}  
sigma(M) = Γ(R, A)(M) where 
  R(x, y) = true  
  A(x, y) = {x + y}  

gen(n) in the above example performs a data expansion, multiset {n} is expanded to a 
multiset of indivisible elements, which are ones. sigma(M) performs a data reduction, the 
multiset {1,…,1} is transformed into a singleton multiset, which is the value of 
Fibonacci(n), by a series of sums. 
 

Relaxation, compared to data expansion and data reduction, does not transform 
the structure of the multiset but proceeds by successive refinements. Those three 
programming techniques are the building blocks for writing Gamma programs.  
 
2.3 More examples 

In this section we give more examples to show the expressivity of Gamma and its 
ability to accommodate different types of problems. We refer the reader to [1] for more 
examples. 



Salim Ghanemi and Ahmed A. Al Damegh 

 

70 

 

 
2.3.1 Factorial 

The following program computes n!: 
fact(n) = Γ((R,A)) ({1, … ,n}) where 
  R(x, y) = true 
  A(x, y) = {x * y} 

 
Here, the reduction technique is used to solve the problem. Here also we stress on the 
fact that no constraint is put on the order of multiplication. 
 
2.3.2 Sorting 

To sort elements of an array in ascending order, we use a multiset of pairs (index, 
value) and the program exchanges ill-ordered values until all values are well-ordered. 

 
Sort(array) = Γ((R, A)) (array)  where 
  R((i, v),(j, w))=(i > j) and (v < w) 
  A((i, v),(j, w))={(i, w), (j, v)}. 
 

2.3.3 The majority element 
The majority element of a multiset M is an element occurring more than |M|/2 times 

in the multiset. Assuming the solution exists, the following program finds it: 
MajElem(M) = Γ(R, A)(M) where 
  R(x, y) = x ≠ y 
  A(x, y) = {} 

 
The computation proceeds by having non-equivalent elements cancel each other out. The 
resulting multiset will have at least one instance of the majority element. 
 
 

3. Global Computing Systems 
3.1 Introduction 

The key idea of Global Computing is to harvest the idle time of Internet 
connected computers which may be widely distributed across the world, to run a very 
large and distributed application. All the computing power is provided by volunteer 
computers, which offer some of their idle time to execute a piece of the application. 
Thus Global Computing extends the cycle stealing model across the Internet [3, 6, 7, 11]. 
 

Indeed Internet is pervasive and the number of connected devices is constantly 
growing. The challenge is to exploit the so many unused resources to build a very large 
parallel computer [8] or a global computer. 
 

Due to the limitation in network performance, GCS target mainly applications 
that can be broken into coarse grain tasks, either independent or scarcely communicating 



Global GAMMA: A Distributed Implementation of GAMMA…… 

 

71

 

[7]. By going back to Gamma, we see that this requirement is satisfied by Gamma model 
due to the locality property described earlier. 
3.2 Global computing issues: 
 
3.2.1 GCS architecture  

A GCS is logically organized as a 3-tier system, see Fig. 1. The request layer 
submits a job. The broker layer marshals the request, then maps and schedules work, and 
the service layer actually computes. While the 3-tier organization is fairly common, GCS 
have two major originalities. First, the logical architecture does not have to map exactly 
the physical one, i.e., requesting, servicing and ultimately brokering (the logical 
architecture) are provided by the same resources (the physical architecture), the Internet 
links and the collaborating computers. Second, the resources are highly volatile and 
users untrustworthy. Computers can come and go freely, and the same is true for users; 
the bandwidth, latency and security of Internet connections is highly variable [7]. 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 

Fig. 1. GCS architecture. 
 
 
3.2.2 Performance 

Scheduling is the key for application performance in the context of a GCS 
environment. 
 

Static information is inadequate for the development of efficient schedulers. The 
obvious reason is that a Global Computer is essentially a shared resource, with external 
(with respect to the scheduler) users of the computing power and externally generated 

client client 

broker 

worker worker worker 

Request layer 

Broker layer 

Service layer 



Salim Ghanemi and Ahmed A. Al Damegh 

 

72 

 

network traffic. Dynamic information on all resources of the Global Computer must be 
embodied in the performance-modeling scheme, so as to provide forecasts that are one of 
the inputs of adaptive schedulers [7]. 
 

Predictions about processor and network workload will be used to map and 
schedule the tasks on a GCS. Due to the long-term unpredictable nature of this system, 
scheduling should be a dynamic process iterated many times as external conditions 
change. Scalability of the scheduling algorithm itself is a main concern, both with 
respect to the number of tasks and the size of the GCS. Two possible alternative can 
happen: If the number of resource shrinks, then we have to do with what is currently 
available and hope that this situation will change in the near future. However, if the 
number of resources increases then it means that our solution will be reached faster than 
predicted. 
 
3.2.3 Fault tolerance 

GCS largely stretch the concept of Fault Tolerance. The issue becomes how to 
compute efficiently in an environment where faults are normal, not exceptional, events 
[7]. Fault tolerance is an issue both at the broker and the service level. When physically 
distributed, the broker level should maintain a consistent view of a distributed data 
space, which is a classical problem. Full P2P systems devoted to file storage and 
retrieval have implemented broker fault-tolerance based on redundancy.  
 

At the worker (service) level, a GCS has to ensure that the computation will make 
some progress, as long as functional resources are available. However, defining what is a 
functional resource is somehow blurred in such systems. The most traditional way is to 
consider only online resources, that is, workers currently registered in the GCS. As soon 
as they do no appear as registered anymore (they go offline), they are declared as faulty 
and they are not functional. Thus, their assigned task(s) is lost, and it must be restarted 
from scratch, except for checkpointing. In another way, one may consider that resources 
come and go, and that it does not make sense to base the policy on them, but only of the 
tasks to perform. If there exists a registration system, this allows computations to carry 
on offline, when a computer is technically faulty. 
 

With offline systems, the problem is now how to deal with truly faulty (never 
coming back) resources. One solution has been proposed in the framework of parallel 
computing, with the concept of eager scheduling [7]. Eager scheduling is not a specific 
scheduling policy, but a layer over such policy. When all available work has been 
assigned, unfinished tasks are re-assigned to workers, which become idle. This principle 
has been implemented in Javelin [10]. 
 

Another important issue is long-running tasks. To guarantee their progress in a 
volatile environment, some form of checkpointing [7] must be implemented. In essence, 



Global GAMMA: A Distributed Implementation of GAMMA…… 

 

73

 

checkpointing is any technique that allows for saving the state of the computation so as 
to restart it from the reached point. Long-running applications generally include a simple 
form of checkpointing through files. In the online scheme, these files should be saved 
through the network, while in the offline scheme they could be written only locally. 
 
3.2.4 Security 

In the P2P scheme, workers will run completely untrusted code, which may be 
malicious or erroneous. Encryption techniques, such as SSL, provide reliable data and 
code transmission, but this is only a small, if mandatory, step, to security. Moreover, the 
privacy of the host running the worker must be guaranteed. This level of protection 
requires the worker to be run in an environment that isolates it from the physical host 
resources. 
 

Java has been the first integrated and modular sandboxing solution. A pointer-
safe language executed in a virtual machine with extended dynamic type and array-
bound checking protects against malicious or erroneous use of processor resources. 
Security models allow limiting access to the network and peripherals (displays and files), 
in a configurable way. Since Java 1.2 many Global Computing projects have used the 
most secure Java framework, namely Applets [9, 10], or Java applications with 
adequately configured security policy. 

 
 

4. GLOBAL GAMMA Specifications 
 

As mentioned in section 2, due to its abstractness, it is easy to construct correct 
parallel programs using Gamma from abstract specifications of programs. Also, Gamma 
programs exhibit a lot of potential parallelism and our goal of this project is to develop a 
parallel implementation of those Gamma programs on Internet-connected computers (or 
a global computing system) utilizing their idle time.  
 

In the followingو we highlight the specifications that GLOBAL GAMMA should meet. 
 Gamma development environment: An environment should be developed for 

the programmer to write and run Gamma programs. He should be able to 
declare and initialize multisets, as well as, defining reaction conditions and 
actions. The syntax used should be close to the syntax of the basic Gamma 
presented in section 2 as possible. 

 Compile and run Gamma programs: When the programmer finishes writing 
his Gamma program, he should be able to easily compile the program and then 
have it executed in parallel on the underlying global computing environment in 
a transparent way, as if he uses a single machine. 



Salim Ghanemi and Ahmed A. Al Damegh 

 

74 

 

 Presentation of results: After the completion of the computation, the resultant 
multiset is presented to the programmer and may be some other statistical 
information, such as execution time; number of reactions took place…etc. 

 Easy volunteer participation method: The underlying global computing 
environment is constituted from volunteers' machines (or workers). So, it 
should be easy for the volunteer to contribute with his machine. 

 Security: One important requirement is ensuring security of hosts. Workers 
should run safe code that will not lead to worker crashes. 

 Scalability: Hosts come and go to and from the system, thus, the system should 
be able to accommodate any number of participating hosts and should 
dynamically adjust it self to variations of hosts numbers. 

 Fault-tolerance: As noticed, a fault in a global computing environment is a 
rule not an exception. A host can fail at any moment. The system should be able 
to determine faulty hosts and recover from this fault by reassigning that host's 
task to another free host. 

 
 

5. Global GAMMA Design 
 

In this section we give the overall design of GLOBAL GAMMA that should 
accommodate the requirements. Fig. 2 shows the overall GLOBAL GAMMA structure. It 
consists of four layers as generally explained below. 

 
The requirements dictates having a Gamma programming environment, which 

will be used by the programmer to write, compile, and run Gamma programs, as well as 
presenting computation results to him. 
 

A Gamma Machine should take the compiled Gamma program and execute it. It 
will be responsible for initializing and maintaining the multiset. By maintaining the 
multiset we mean removing and adding elements to the multiset. It is also has the 
responsibility for choosing elements for reactions (computations), and the detection of 
computation termination. It works as the request layer in a GCS. 
 

Global Computer layer, acts like broker layer in GCSs. It maintains a list of 
registered computers (hosts) that are willing to run computations. It receives 
computation tasks from the Gamma Machine and assigns them to workers. 
 

Worker computers constitute the service layer and run the Gamma program, 
which does the computation on worker computers. It receives tasks from Global 
Computer, executes them, and sends the results back to the Global Computer. 



Global GAMMA: A Distributed Implementation of GAMMA…… 

 

75

 

 
5.1. Gamma program 

The input to the system is a Gamma program written by the programmer in the 
Gamma Programming Environment. The Gamma program consists of four sections: 



Salim Ghanemi and Ahmed A. Al Damegh 

 

76 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Global GAMMA structure. 
 

1. Multiset element type definition: a multiset element can be either 
simple, like an integer (as in Max example shown earlier) or complex 
tuple of the form (v1, v2, …vn) as (value, index) pair of Sort example. 
Element type will be defined as a tuple of (value: type) pairs, as 
follows: 
Element Type = ( value1: type1; value2: type2; …; valuen: 
typen) 
In the Sort example, the element type definition will be: 
Element Type = ( value: real; index: integer) 

Gamma Programming Environment (GPE) 

Editor Compiler Result viewer 

Gamma machine (GM) 

M M Temp FC 

Multiset manager Result manager 

Gamma program Resultant M 

Extract  Lookup  Add  Add  

Global computer (GC) 

Finished tasks New tasks 

Scheduler Worker list Registrar 

Extract  Add  

Worker 

Add task Extract task  

Gamma program 

Task done Do task  Register 



Global GAMMA: A Distributed Implementation of GAMMA…… 

 

77

 

2. Multiset initialization: a multiset initially empty. The programmer 
needs to specify how it will be initialized in the multiset initialization 
section. 

3. Reaction condition: a k-ary reaction condition. By k-ary we mean a 
condition that tests a number of k elements, or takes k elements as its 
arguments. Reaction condition will be declared in a similar way like 
the examples shown in chapter 2. 

4. Reaction Action: Also a k-ary action specifying the transformation 
needs to be applied to the multiset. 

 
In the current design we will consider only Gamma programs with only one 

reaction condition and action pair.  
 

Java will be used to internally represent Gamma programs. The selection of Java 
is due to its interoperability and security model. When a Gamma program is compiled, 
an intermediate Java code is generated which then gets compiled to Java byte code by a 
Java compiler. 
 

The reaction condition and action code is compiled along with other control code 
into a Java applet, which is the Gamma Client that will be executed by workers. 
 
5.2. Gamma program execution 

The execution of a Gamma program proceeds in three stages: initialization, 
computation, and termination. 
In the following subsections we illustrate generally what happens at each stage. 
 
5.2.1 Initialization 

Once the Gamma program is compiled and ready for execution, Gamma Machine 
creates and initializes the multiset. At the other end of the system, workers download 
Gamma Client and register to the Global Computer.  
 
5.2.2 Computation 

During this stage, the computation or multiset transformation takes place. The 
computation will proceed as follows: 

1. Multiset manager randomly extracts k elements from multiset M that 
do not form a Failed Combination, i.e., the same set of k elements has 
not previously tested against the reaction condition R and failed. 
Gamma Machine keeps track of failed combinations of elements in FC 
list. 

2. The k elements are packed into a Task object and passed to Global 
Computer for computation by adding it to the New Tasks queue. 



Salim Ghanemi and Ahmed A. Al Damegh 

 

78 

 

3. Multiset manager continues extracting k-combination of elements and 
passes them to Global Computer until (|M| < k), or there are no more 
elements that can constitute a computation task. 

4. Global Computer in its turn schedules those computation tasks 
according to the available workers. It keeps track of assigned and 
unassigned tasks. Whenever a worker joins the environment or finishes 
its task it is assigned a new task. Faulty workers need to be determined 
and their pending tasks are reassigned to free online hosts. 

5. When a worker receives a computation task (or k elements (x1, 
x2,…,xk)), it proceeds by testing R(x1, x2,…,xk) trying all possible k! 
permutations of elements x1, x2,…,xk one by one until: 

a. R(x1, x2,…,xk) is satisfied: in this case the action A(x1, 
x2,…,xk) is applied on the elements in the same order as they 
appear in R(x1, x2,…,xk) 

b. All k! permutations are exhausted with no one satisfying 
R(x1, x2,…,xk) 

6. as a result of the application of the action, elements are removed from 
M, returned back to M, or new elements are generated and added to M.  
In case of (a) the worker will tag the resulting elements as removed, 
returned, or new then sends them back to the Global Computer and 
indicates that the reaction took place. 
In case of (b), all elements are tagged as returned by the worker and 
sent back to the Global Computer. The worker also indicates that the 
combination of elements failed to react. 

7. Global Computer passes the results back to the Gamma Machine by 
placing them into the finished tasks queue which in its turn does the 
following: 

a. In case of successful reaction (case (a) above): 
i. returned and new elements added to MTemp (a 

temporary multiset) 
ii. removed elements are discarded and all the failed 

combinations in FC that reference them are deleted. 
b. In case of failed combination (case (b)): 

i. returned elements are added back to MTemp. 
ii. their combination is added to FC. So, it is not 

selected for computation again. 
8. when the number of elements in M becomes less than k (or |M|<k) 

Gamma Machine engine move elements from MTemp into M, or M = 
M U MTemp, and continues computations. 



Global GAMMA: A Distributed Implementation of GAMMA…… 

 

79

 

 
5.2.3 Termination 

In Gamma the reaction continues until a stable condition is reached, i.e., when all 
elements (or all combinations of elements) do not satisfy the reaction condition. 
In the context of GLOBAL GAMMA this happens when  

i.     = |FC|  ; and 
 
ii.   no elements are out of M for computation. 

 
This means that all the combinations of elements of M are failed combinations, 

because the number of all possible combinations of elements of M (    ) equals the 
number of failed combinations in FC (|FC|), considering that FC always holds all failed 
combinations of live elements in M. by live we mean elements that have not been 
removed from M. 
 

Part (ii) of the termination condition above ensures that all elements are in M and 
there are no elements that are out of M participating in a reaction. Or in other words, the 
Global Computer scheduler has no in-progress or unassigned tasks. 
 

When termination is detected the resulting multiset M is passed to Gamma 
Programming Environment and the programmer is provided with the result. 
 

6. Conclusion 
 

In this paper, we mainly discussed some implementation issues for the Gamma 
Formalism using the globally available processing power as termed by the Global 
Computing. Many similar works are found on the literature. They all used conventional 
parallel machines with limited processing power but none have attempted to use the 
global computing. We believe that the huge available processing power would give 
better performance figure, in the sense that most of the possible reactions could be tested 
in parallel. At this stage, we are in the process of implementing the Global Gamma. 
Another interesting idea that we found is the possibility of testing all the possible 
conditions at once, each on a different processor. We are exploring this direction by 
having each processor generating one possible permutation in O(1).  
 
 

References 
 
[1] Jean-Pierre and Banâtre, Daniel Le Métayer. "Programming by Multiset Transformation." CACM 36, 

No.1 (1993), 98-111. 
[2] Jean-Pierre Banâtre, Pascal Fradet and Daniel Le Métayer. "Gamma and the Chemical Reaction Model: 

Fifteen Years After." WMP 2000: 17-44. 
[3] Almasi, G. and Gottlieb, A.  Highly Parallel Computing.  2nd ed. The Benjamin/Cummings Publishing 

(1994). 

|M| 
k

|M| 
k 



Salim Ghanemi and Ahmed A. Al Damegh 

 

80 

 

[4] Pascal Fradet and Daniel Le Métayer. "Structured Gamma." Science of Computer Programming 31, No. 
2-3 (1998), 263-289. 

[5] Gladitz, Katia and Kuchen, Herbert. "Shared Memory Implementation of the Gamma-Operation," JSC 
21, No. 4 (1996), 577-591. 

[6] Hong, Lin. "Chemical Reaction Model Based Parallel Programming: Synthesis, Semantics, and 
Implementation." PhD Thesis, University of Science and Technology of China (1997). 

[7] Germain, Cécile, Fedak. Gille, Néri, Vincent and Cappello, Franck. "Global Computing Systems." 
LSSC (2001), 218-227. 

[8] Germain, Cécile, Néri. Vincent, Fedak, Gille and Cappello, Franck. "XtremWeb: Building an 
Experimental Platform for Global Computing." GRID (2000), 91-101. 

[9] Nisan, Noam, London, Shmulik, Regev, Oded and Camiel, Noam. "Globally Distributed Computation 
over the Internet - The POPCORN Project." ICDCS (1998), 592-601. 

[10] Christiansen, Bernd O., Cappello, Peter, Ionescu, Mihai F., Neary, Michael O., Schauser, Daniel Wu, 
Klaus E. "Javelin: Internet-based Parallel Computing using Java." Concurrency - Practice and 
Experience 9, No.11 (1997),1139-1160. 

[11] Alexandrov, A. D., Ibel, M., Schauser, K. E. and Scheiman, C. J. "SuperWeb: Towards a Global Web-
based Parallel Computing Infrastructure." 11th International Parallel Processing Symposium (IPPS'97), 
Geneva, April 1997. 

 



Global GAMMA: A Distributed Implementation of GAMMA…… 

 

81

 

 
 
 

 جاما العالمية : تطوير متوازي وموزع لجاما باستخدام الحوسبة العالمية
 

 سليم غانمي و أحمد الدامغ
 ٥١١٧٨الملك سعود، ص.ب جامعة ،  كلية علوم الحاسب والمعلومات، قسم علوم الحاسب

 ، المملكة العربية السعودية١١٥٤٣الرياض 
 

 م)٢٩/٠٧/٢٠٠٣م؛ وقبل للنشر في ٢٣/٠٢/٢٠٠٣(قدّم للنشر في 
 

وتصحيحها أكثر صعوبةً و تعقيدا من كتابة و   من المتعارف عليه إن كتابة و تصحيح البرامج المتوازية ملخص البحث.
تصحيح البرامج التسلسلية التقليدية، وذلك عند استخدام لغات البرمجة التقليدية. جاما، أو النموذج اĐرّد العام لتحويل 

و مفهوم تم طرحه لكتابة البرامج بشكل عالي التجريد خال من تفاصيل (و ) هGAMMAاĐموعات المتعددة (
تسلسل) التنفيذ لهذه البرامج. هذا التجريد العالي في وصف البرامج يجعل من جاما وسيلة مناسبة لكتابة برامج متوازية 

 صحيحة.

وذج فون نيومان التسلسلي الذي جاما، عبارة عن نموذج وصفي لايوجد له بنية حاسبية مقابلة لتطبيقه، على عكس نم
 يقابله بنية الحاسبات التقليدية، لهذا السبب فإن تصميم نموذج لتطبيق جاما ليس بالأمر السهل.

الهدف الرئيس لهذا المشروع  هو تطوير تطبيق متوازي و موزع لجاما باستخدام الشبكة العالمية  لاستغلال الوقت المهدر 
 للحاسبات المتصلة بالإنترنت.

 




