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Abstract. A constraint satisfaction problem (CSP) is said to be overconstrained if it does not have a solution,
and its constraints are said to be conflicting. Subsets of constraints conflicting with each other are defined here
as conflict sets. The process of locating conflict sets is termed conflict location. Algorithms to locate conflict
sets in an overconstrained CSP are proposed. It is shown that conflict sets make explicit all the alternative ways
of resolving conflict and thus define a relaxation space. An algorithm to find an optimum relaxation, one that
relaxes the minimum number of constraints to resolve the conflict, is also proposed. A pre-processing
technique is proposed for overconstrained CSP, whereby, relaxation obtained from the conflict sets is used to
resolve conflicts in the CSP. This is shown to improve the performance of branch and bound algorithms.
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1. Introduction

Solving a constraint satisfaction problem (CSP) involves determining an assignment of
values to a set of variables that satisfies the constraints between them. Such an
assignment is called the CSP's solution. A CSP is said to be overconstrained if it does
not have a solution, and its constraints are said to be conflicting or inconsistent with each
other. Overconstrained CSPs can arise in any application of constraints. When a CSP is
overconstrained, an assignment of values, not satisfying all the constraints must be
accepted as a solution. Such an assignment is called a partial solution and the process of
finding it, the partial constraint satisfaction.
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Traditionally over-constrained CSPs are solved by branch and bound methods [2,
11] or heuristic local search [6, 12]. Heuristic methods start with a complete assignment
of values, violating an unspecified number of constraints and improve on the assignment
heuristically, by choosing alternative assignments. Branch and bound methods are
variations of classical backtracking that incrementally extend an assignment of values to
variables while minimizing the number of constraint violations. Branch and bound
methods have a source of inefficiency: they waste computational effort in extending
assignments that in the end turn out to be suboptimal. This paper discusses the reasons
behind this inefficiency and proposes preprocessing techniques to overcome it. An
experimental evaluation of these techniques is also presented.

Branch and bound algorithm, like classical backtracking, incrementally extends
an incomplete solution by assigning values to variables and testing them to check if the
new value satisfies the constraints with the previously assigned variables. But unlike
backtracking does not necessarily backtrack when a new value violates a constraint with
a variable already assigned a value. Instead branch and bound keeps track of the best
solution found so far i.e. one that violates least number of constraints, and backtracks
when the number of constraint violations (along a search path), exceeds those of the best
solution found that far. If it finds a solution violating lesser number of constraints than
the current best solution, it replaces the current best solution with that solution. When the
algorithm terminates, it returns the current best solution as the maximal solution.

While accepting constraint violations, a branch and bound algorithm makes no
distinction between constraints that are conflicting and those that are not, and this leads
to inefficiency. Not all the constraints of an overconstrained CSP are conflicting, and
therefore responsible for the CSP being overconstrained. Leaving a constraint, which is
not responsible for the conflict, unsatisfied in an evolving solution, is unnecessary and
redundant. A maximal (optimal) solution should leave no such constraint unsatisfied. A
branch and bound algorithm has no information about the constraints responsible for the
conflict. It goes on extending an evolving solution, which leaves a constraint not
responsible for conflict unsatisfied. Such an evolving solution turns out to be suboptimal
but after the wasted computational effort of performing some constraint checks. One
could improve the performance of branch and bound algorithms if constraints
responsible for the conflict were known in advance. This information can be used in two
ways: the branch and bound algorithm would immediately backtrack when an evolving
solution violates a constraint not responsible for the conflict; or such constraints could be
relaxed beforehand, yielding a CSP which is not overconstrained. This paper focuses on
the latter approach.

The subsets of conflicting constraints of an overconstrained CSP are defined here
as conflict sets and the process of locating them conflict location. A conflict set is
critical, in the sense that relaxing any one constraint from it, resolves the conflict due to
it. When all the conflict sets of an overconstrained CSP are known, all possible
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alternative ways of resolving conflict become obvious. It is easy to search among these
alternatives, for an alternative that relaxes the minimum number of constraints. Such an
alternative is called an optimal relaxation. An optimal relaxation corresponds to a
maximal solution found by traditional maximal satisfaction techniques and relaxes
exactly the same number of constraints that a maximal solution leaves unsatisfied.

A depth-first search algorithm to locate conflict sets is given here. Experiments
study the cost of locating the conflict sets in comparison to finding a maximal solution
with the branch and bound algorithms. In general locating all the conflict sets is
computationally very hard but locating a subset of conflict sets is easy. We present two
methods to locate a subset of conflict sets. The first method limits search by carrying out
a depth-limited search. The second method searches only in the tightly connected
subproblems of a given CSP. One is not guaranteed to determine an optimal relaxation
with a subset of conflict sets. Our approach is to use the relaxation obtained from the
subset of conflict sets to relax constraints of the overconstrained CSP, and then solve the
resulting CSP using a branch and bound algorithm. The pre-processing is shown to
improve the performance of branch and bound algorithm, which are able to find good
near optimal solutions quickly.

Conflict location is similar in spirit to dependency directed backtracking (also
called backjumping) [1,9] and various consistency techniques for CSPs [5]. All the three
techniques aim at finding the cause of an inconsistency and eliminate it from its source.
The latter two techniques are employed in searching a solution space. Dependency-
directed backtracking limits search, by changing a variable assignment, responsible for
an inconsistency and not the chronologically previous value assigned, which would lead
to the same inconsistency being rediscovered repeatedly during backtrack search; a
source of inefficiency. Consistency techniques preprocess a CSP and remove
inconsistent combinations of values from the variables, which otherwise would lead to a
“thrashing' behavior during backtracking search. Conflict location has a similar role in
solving an inconsistent CSP: to identify sets of constraints that are conflicting with each
other, so that some of them can be relaxed to yield a solvable CSP. Solving
overconstrained CSPs has been viewed as search in a problem space for a solvable CSP
[2]. Conflict location can be used in the problem space search, just as the other two
techniques are used in solution space search.

Section 2 defines conflict sets and simple examples illustrate how conflict in an
overconstrained CSP might be resolved optimally when all its conflict sets are known.
The problem of locating conflict sets is an enumeration problem; the complexity of this
problem is discussed. Algorithms for locating conflict sets, completely and partially, are
presented.

Conflict sets of an overconstrained CSP define a relaxation space. Section 3
presents an algorithm to search the relaxation space and determine an optimal relaxation.
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An optimal relaxation is guaranteed only when all the conflict sets are known. A
relaxation obtained, optimal or suboptimal, can be applied to resolve conflicts in the
given CSP. We discuss how this preprocessing might improve the performance of
branch and bound algorithms.

Section 4 presents the results of the experiments. In general, it is hard to locate all
the conflict sets in an overconstrained CSP compared to solving them by branch and
bound techniques, but results show that it is very easy to locate conflict sets in CSPs
with tight constraints. And it is even easier to determine a subset of the conflict sets for
this class of CSPs. Relaxation determined from these conflict sets, when applied to the
given CSP, improves the performance of the branch and bound algorithms, and good
near optimal solutions can be found easily.

2. Basic Definitions

Here finite CSPs are considered. A finite constraint satisfaction problem (CSP)
consists of a set of problem variables V' = (Xj,...,X,), which take values from a finite
domain of symbolic values D, and a set of constraints C. A constraint Ci},i5,...,iy € C is
a subset of DY, with /< k < n. The constraint Ci,iy,...,i; is said to be of arity k and
between distinct variables Xij, ..., X7, Solving a CSP involves determining an n-tuple
(d,,...,d,) of values such that d; € D;, i=1,...,n and all the constraints are satisfied, that is,
for every constraint Ciji,...,iy € C, (dij,...,diy) € Ciyi,...,ir. The n-tuple is called a
solution of the CSP. Without loss of generality discussion is restricted to only two types
of constraints: unary constraints and binary constraints. Unary constraints are of arity
one and specify values a variable can take; binary constraints are of arity two, and
specify the combinations of values acceptable for the two variables.

A solution n-tuple, satisfying all the constraints in C, is the CSP's complete
solution or simply a solution. A CSP that does not have a complete solution is said to be
overconstrained or inconsistent. For an overconstrained CSP, an n-tuple satisfying only
a subset of the constraints in C, is accepted as a solution and is called a partial solution.
The number of constraints left unsatisfied in a partial solution is the distance of the
partial solution. A CSP's maximal solution, is a partial solution with minimum possible
distance i.e. one that satisfies maximum number of constraints. A graphical
representation of a CSP, with nodes representing variables and arcs the binary
constraints, is called its constraint network. Fig.1, presents an example of a constraint
network, for a CSP with domain D={a,b,c,d,e}, variables V={1,2,3,4,5}, and binary
constraints {C;5,Cy3,Cys5,Cs3,Cry, Cr5,Cs34,Cs5,Cysp € C. Values allowed by the unary
constraints are shown within the nodes, and sets of 2-tuples allowed by the binary
constraints, as arc labels. A constraint C; is a relaxation of a constraint C; if C; allows
more tuples than C;, that is, C; is a superset of C;. In this case, constraint C; is also said to
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be tighter than C;. For example, a binary constraint allowing tuples {ab, ae, bc}, is a
relaxation of the constraint C;;. A constraint is said to be fotally relaxed if it allows all
possible combinations of values. The terms relaxation and total relaxation will be used
interchangeably here. A constraint satisfaction problem CSP; is a relaxation of CSP;, if
CSP; is obtained by relaxing one or more constraints of CSP;.

3. Conflict Location

Conflict location is the process of identifying the conflict sets in an
overconstrained CSP. This section defines the conflict sets and an example is used to
show how conflict might be resolved, when all the conflict sets of a CSP are known.
Computational complexity of the problem of conflict location is discussed. A basic
search algorithm for conflict location is given and the possible search strategies that it
might be use are discussed. A depth-first conflict location algorithm is presented in
detail. Lastly, we present two methods to limit the depth-first search and locate only a
subset of the conflict sets, a process we call partial conflict location.

3.1 Conflict sets

Formally, conflict set of an overconstrained CSP P, is defined as a minimal,
connected subset of constraints of P, which cannot be satisfied together. A conflict set
being minimal, all its proper subsets are consistent and all its supersets are inconsistent.
Thus, if G, = (V,, E.) is the constraint network corresponding to the conflict set with
vertices V, representing the variables, and edges E. the binary constraints, all its sub
networks H, = (W, F;), with W; < V. and F; c E,, are consistent. Conflict due to a
conflict set may, therefore, be resolved by relaxing at least one constraint from the
conflict set. The number of constraints in a conflict set i.e. |E,|, is referred to as the size
of conflict set.

Figure 1 presents examples of conflict sets. Constraint network shown is
overconstrained due to three overlapping conflict sets: {C;,, Cist, {Cys, Cost and {Cis,
Cyst; constraint C;5 being common to them. Relaxing at least one constraint from every
conflict set of an overconstrained CSP yields a consistent CSP. Relaxing a constraint
from a conflict set, in effect, replaces the conflict set by one of its consistent subsets.
Relaxing constraints, that are not members of conflict sets, have no effect on the conflict;
the resulting CSP will still be overconstrained. To resolve the conflict in the constraint
network of Fig. 1, at least one constraint from each of the three conflict sets must be
relaxed. The relaxed CSP obtained is consistent and a backtracking algorithm can find a
complete solution to it. The complete solution of the relaxed CSPs, may be regarded as a
partial solution to the original overconstrained CSP, with the constraints relaxed as those
that the partial solution leaves unsatisfied.
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Fig. 1. Constraint network of an overconstrained CSP with three overlapping.

When all the conflict sets are known, all possible ways of resolving conflict in the
overconstrained CSP become explicit. The CSP of Fig.1 has eight alternative ways of
resolving conflict: relaxing C;; and Cj;, relaxing C;, C;5 and Cys, relaxing C;,, C,5 and
C;s, and so on. Conflict sets can thus be viewed as defining a space of alternative
relaxations or a relaxation space. Each alternative corresponds to a partial solution to the
overconstrained CSP, with distance equal to the number of constraints it relaxes. An
optimal relaxation is an alternative that relaxes minimum number of constraints and it
corresponds to a maximal solution. (Section 4 presents an algorithm that searches the
relaxation space, for an optimal relaxation.) Determining an optimal relaxation is easy if
the conflict sets are disjoint: choosing exactly one constraint to relax from each conflict
set is the optimal relaxation. But for overlapping conflict sets, relaxing a shared
constraint resolves the conflict due to the overlapping conflict sets. So in this case if an
optimal relaxation is desired, constraints must be chosen for relaxation, keeping in view
that it resolves maximum number of conflicts. The conflict sets of Fig. 1 are
overlapping, with the constraint C;s common to them; relaxing this constraint resolves
all the three conflicts. A maximal solution to this problem, found by branch and bound,
leaves just this constraint unsatisfied.

3.2 Conflict location problem
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Locating conflict sets in a CSP is an enumeration problem which can be stated as:
“Given a CSP, find all the subsets of its constraints that are conflict sets”. A consistent
CSP has zero conflict sets, while as an inconsistent CSP has one or more conflict sets. A
brute force method to locate conflict sets will generate subsets of constraints and check if
they are conflict sets. Each subset of constraints of the given CSP, is a sub-problem (also
a CSP), and checking whether it is a conflict set is a decision problem:

CONFLICT-SET Given a CSP, is it the case that the CSP is overconstrained, but
relaxing any single constraint from the CSP yields a consistent CSP.

CONFLICT-SET belongs to a class of problems known as critical problems. Critical
integer programming asking, “Given a system Ax < b is it true that it has no integer
solution, but omitting any single inequality permits a solution.”, is another example of a
critical problem. A slightly better known critical problem is the critical-SAT, which
asks: “Given an instance of SATISFIABILITY, is it the case that it is unsatisfiable, but
deleting any single clause is enough to yield a subset that is satisfiable”. Such an
instance of SATISFIABILITY is known as minimally unsatisfiable formula. Complexity
of critical problems goes beyond NP. These problems belong to the complexity class D",
first introduced in [7]. D® is a class of all languages (or problems) that are the
intersection of a language (or a problem) in NP and a language (or a problem) in co-NP.
(This is not the same as NP M co-NP.) Both NP and co-NP are its subsets i.e. NP, co-NP
< D, CONFLICT-SET is also in D". The problem query has two parts. The first part
asks if the given CSP is inconsistent. This part determines the co-NP language. The
second part asks if removal of any one constraint yields a consistent CSP. This involves
removing e = |C|, constraints, one at a time and testing if the resulting CSP is consistent,
or e instances of CSP. These e instances can be combined into a single instance and
determines the NP language.

Theorem 1 CONFLICT-SET (or critical—CSP) is D"—complete.

Proof. Critical-SAT is a known D’—complete problem [4]. Critical-SAT reduces to
CONFLICT-SET, since SAT can be encoded as a CSP and if SAT is unsatisfiable
(satisfiable) its corresponding CSP is inconsistent (consistent).

Returning to the enumeration problem of conflict location, it appears that there is
no appropriate complexity class for it, and it remains an open problem [8]. One could
consider its membership in the well known complexity class for enumeration problems
#P [3, 4]. An enumeration problem belongs to #P if, for all its instances, and for all
solutions of each instance the size of the solution is less than equal to polynomial of the
instance size, and a solution for an instance can be verified in polynomial time. It is not
possible to verify, for a CSP, whether one of its subsets is a conflict set in polynomial
time. Therefore conflict location cannot be in #P.
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3.3 Possible search strategies

Search space for the conflict location problem consists of 2/ possible subsets of
constraints. A possible organization of this search space is the tree organization, depicted
in Fig. 2 for a simple three variable CSP. The subsets appear in an order of increasing
size from the root to the leaves. At the root of the tree is the null subset, the first level
subsets are of size one, the second level has subsets of size two, and so on. Within a
subset constraints are ordered in the increasing order of their indices. (A constraint
subset may be represented by the indices of its constraints e.g. subset C, Cs Cy4 as (256)).
A useful property of this organization is that a set S, at any node, is a subset of any of its
children S.. The subset S, is said to be subsumed by S,. A conflict location algorithm can
utilize this property to prune search as follows: if a constraint subset at a node is found to
be inconsistent, the subtree rooted at the node (i.e. all the children of the node) is bound
to be inconsistent and need not be searched. This property also enables one to check the
consistency of the constraint subsets incrementally. This is discussed further below.

Adjancency matrix %
1 Y12 Y13 C AN
2 23 C 3

21 2
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Fig.2 The subset search space for a three variable CSP.

The basic conflict location algorithm proposed, generates the subsets in the subset
space, tests them for consistency, and records subsets found to be inconsistent. Since
only the minimal inconsistent subsets are required, only those inconsistent subsets, that
are not subsumed by any other inconsistent subset, are recorded. The children of
inconsistent subset are not generated and tested; they are bound to be inconsistent.
Furthermore, a subset subsumed by a recorded inconsistent subset, is not checked for
consistency and its children are not generated. This prunes search further.

The order in which nodes are generated and tested for consistency is important
for the overall efficiency of the algorithm. A search strategy should aim to generate and
test nodes in an order, so that minimal inconsistent subsets are discovered early during
search. This will ensure maximum pruning of the search space. A search strategy that
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discovers many non-minimal inconsistent subsets first, can be inefficient. These non-
minimal subsets are found to be subsumed by minimal subsets discovered later, and
checking the former subsets for consistency turns out to be a wasted effort.

Standard search strategies can be employed to search the subset space. Each
strategy yields a variant of the basic conflict location algorithm and each strategy has its
merits and drawbacks. Employing a breadth first strategy (bfs), subsets would be
generated and tested for consistency, level by level. In the subset space shown in Fig. 2,
first the root node would be expanded, generating and testing C;, C, and C;. Then from
Cy, subsets C;C, and C;Cj;; and from C,, subset C,C;, would be generated and tested.
Subset C; would not generate any subsets. Lastly, C;C,C; would be generated and tested
from C,;C,. Since subsets get generated and tested in an order of increasing size, minimal
inconsistent subsets are guaranteed to be discovered first and search pruning would be
maximum. Non-minimal inconsistent subsets would never be tested. Thus, if C; is
minimally inconsistent, it would be discovered first and non-minimal subsets C;C,,
C,C;, C,C,C; would never be generated and tested. The strategy from this point of view
is efficient but breadth first strategy has an exponential space complexity, since all the
subsets at a certain level (potentially exponential in number) have to be stored in a
queue, before they are expanded to generate the subsets in the next level. This drawback
simply makes breadth first strategy an impractical strategy.

Depth first strategy (dfs) goes deeper into the search space and in doing so, unlike
breadth first strategy, may discover non-minimal inconsistent subsets. This is a source of
inefficiency. For example, if the minimal inconsistent subset is Cj;, subsets C;C; and
C,C; are tested and later found to be non-minimal when Cj is discovered. The depth first
strategy has modest memory requirements compared to breadth first strategy, since only
the subsets in the current search path must be stored during search. Because of its modest
memory requirement, depth-first strategy and its variant depth-limited strategy, have
been chosen here for experimentation. Other strategies, notably, the best first and the
iterative deepening strategy, are possible. A thorough evaluation of these and other
strategies can be subject of further research.

3.4 A depth first conflict location algorithm

A stack based depth first conflict location algorithm, DFS CL(), appears in
Fig. 3. In it constraint subsets are generated in a depth-first manner and tested for
consistency using an incremental backjumping algorithm, which returns consistent if a
solution is found, otherwise inconsistent. The function generate next combination()
generates the subsets and function check consistency() checks their consistency. The
variable CCombination represents a node in the subset space. It is first initialized to the
root node, corresponding to the null subset. In the inner do-while loop,
generate_next_combination() expands a node and generates its children nodes. This
function takes a subset of size d as input parameter and generates subsets of size d+1, by
appending a constraint index at (d+1)" position, and incrementing this index in each
iteration, until the last constraint index is reached. For example, for a CSP with ten
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constraints, from a parent subset (2 5 6) of size d=3, generate_next_combination() will
generate four subsets of size d=4, in four iterations of the do-while loop, in the order: 2 5
67,2568 2569 and 25 6 10 . On the fifth iteration generate _next_combination()
returns a 'nil', indicating all the children of the parent subset have been generated and the
do-while loop is exited.

Algorithm DFS_CL (CSP)
initialize STACK;
initialize TABLE;
CCombination «—{ };
Push (STACK, CCombination);
while not empty (STACK) {
CCombination < pop (STACK);
Do {
CCombination < generate next combination (CCombination);
if (CCombination is nil) break;
if (not subsumed by inconsistent subsets in TABLE) {
consistent «<— check consistency (CCombination, CSP);
if consistent
push (STACK, CCombination);
else
insert (TABLE, CCombination);
i
} while (true);

}!

Fig.3. The DFS_CL() algorithm.

Constraint subsets found to be inconsistent are recorded in TABLE. Search is
pruned, as mentioned above, by not testing a subset for consistency if it is subset of an
already known inconsistent subset, stored in the TABLE. Depth first strategy searches
deeper in the search space and in doing so may discover non-minimal inconsistent
subsets. Since only the minimal inconsistent subsets are required and need be kept
around, whenever a new inconsistent subset is inserted into the TABLE, previously
stored inconsistent subsets, subsumed by the new subset are deleted from it.

Algorithm DFS CL()'s efficiency can be improved further by exploiting the
properties of the search space. Firstly, disconnected constraint sets need not be tested for
consistency. A disconnected constraint subset has more than one connected components
that do not share any variables, and therefore do not induce any new constraint on each
other. The consistency of the disconnected subset is thus dependent on the consistency of
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its connected components. Its connected components being its subsets, their consistency
gets checked in the upper levels of the subset space tree. It is therefore not necessary to
check the consistency of the disconnected subset. Disconnected subsets' children nodes
may, however, be connected and must be checked for consistency. The disconnected
subsets are therefore not discarded, but are pushed on to the stack without being checked
for consistency and their children are generated. A disconnected subset without children
nodes is discarded. This saves consistency tests. This mechanism is implemented within
the function check consistency(), which treats a connected and a disconnected subset
differently.

Secondly, the consistency of constraint subsets can be checked incrementally.
Solutions found by backjumping algorithm for a consistent constraint subset are
associated and stacked with the subset. When a subsets' children are generated and
checked for consistency, the backjumping algorithm starts working from the recorded
solution of the parent subset and not from the beginning. This avoids repeating constraint
checks already performed in checking the consistency of the parent subset.

3.4.1 Computational complexity

The efficiency of DFS CL() depends on the average size of the overconstrained
CSP's conflict sets. If the CSP has many small-sized conflict sets, large branches of the
search space tree will get pruned early during search, as many subsets generated are
found to be subsumed by the smaller conflict sets already discovered. But for a CSP with
larger conflict sets, not much pruning takes place, and locating conflict sets is more
expensive. The worst case occurs when the overconstrained CSP has just one conflict
set, with all the CSP's constraints as its members. In this extreme case, there is
absolutely no pruning and DFS_CL() must search the complete subset space tree before
coming to a halt with one conflict set.

The algorithm DFS_CL() searches in a subset space. At each node in the subset
space, its computation is mainly checking the consistency of the subset of constraints
associated with the node, through a call to check consistency(). Backtracking procedure
check_consistency(), searches in a backtracking tree, where levels correspond to
variables and nodes to assignments of values to the variables. At each node of the
backtracking tree, its main computational step consists of performing constraint checks
for a value assigned to a variable, with values of previously instantiated variables.
Checking whether values assigned to two variables satisfies the binary constraint
between them is a constraint check. Total number of constraint checks is a standard
measure of a CSP algorithm efficiency, and the computational cost of conflict location
can also be expressed in terms of constraint checks. The maximum number of constraint
checks done at a node in a backtracking search tree by check consistency(), is n-1 or
O(n), where n is the number of variables of the given CSP. The maximum total number

n i .
of nodes backtracking search tree can have is, ZH m' where m = |D | is the number of
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values a variable can take and i represents levels in the backtracking search tree, with
i=0 for the root. Therefore, the total number of constraint checks performed by the
backtracking procedure i.e. check consistency(), at a node in the subset space is bounded

by Z; nm' = O(nm"). The total number of subsets in the subset space being 2°,

where e = |C] is the total number of constraints, and since in the worst case DFS_CL()
tests them all for consistency, the worst case time complexity of DFS_CL() is O(nm"2°).

The space complexity of DFS_CL() is determined by the space required by the
TABLE to record conflict sets. Maximum number of conflict sets an overconstrained

CSP can have, and which TABLE will have to store is ( e ] An upper bound on this
le/2]
figure is O(2°).

3.5 Partial conflict location

Exhaustive search to locate all the conflict sets can be very expensive. Partial
conflict location aims to locate a subset of the conflict sets of an overconstrained CSP,
by limiting search to a portion of the search space. Two methods are discussed below.
The first method, limits search by limiting the depth to which DFS_CL() searches, and
does not locate conflict sets larger than the depth limit. The second method, confines
DFS CL()'s search for conflict sets to tightly connected subproblems of a given
overconstrained CSP.

3.5.1 Depth-limited conflict location

DFS CL() can be made to search only up to a certain depth in the subset space
tree and thus locate conflict sets of size not bigger than that depth. The depth limit may
be passed on as a parameter to generate next combination() and prevent it from
generating subsets bigger in size than the depth limit.

For the depth-limited DFS_CL() with depth limit d, the maximum number of
constraint checks performed at a node within backtracking procedure
check_consistency() is d-1 or O(d), since the number of variables cannot be greater than
the number of constraints in it. The total number of nodes in the backtracking search tree

is Z; m' , where m=|D]|, is the number of values a variable can take and i represents
levels in the backtracking search tree. The total number of constraint checks is therefore
bounded by Zil dm' = O(dm*) . Since the total number of subsets tested by the
depth-limited DFS_CL() is bounded from above by 2°, where ¢ = |C|, an upper bound on
the time complexity of depth-limited DFS_CL() is O(dm“2°).

3.5.2 Conflict location in subproblems
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Another technique to partially locate conflict sets is to look for them in tightly or
densely connected subproblems i.e. those with a high average degree. Since densely
connected subproblems have many constraints per variable, they usually have fewer
solutions and are more likely to be inconsistent, as compared to sparsely connected
subproblems. This technique involves two steps. Firstly, densely connected subproblems
of a given overconstrained CSP are identified; secondly conflict sets are located within
each subproblem. Obviously conflict sets spanning two or more subproblems cannot be
located by this technique.

A scheme based on an efficient triangulation algorithm is used to identify densely
connected subproblems [10]. The algorithm transforms any graph into a chordal graph
by adding edges to it, called the fill-in edges. A graph is chordal if every cycle of length
at least four has a chord i.e. an edge joining two nonconsecutive vertices. The maximal
cliques of the resulting chordal graph, with fill-in edges omitted, are the densely
connected subproblems of the given CSP.

The triangulation algorithm consists of two steps: firstly, an ordering for the
vertices is computed, using maximum cardinality search; secondly, edges are filled in
between any two nonadjacent vertices that are connected through vertices higher up in
the ordering.
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Fig. 4. (a) A constraint network. (b) the ordering produced by the maximum cardinality search and the
dummy edge (shown dashed) added by the fill-in step of the trigulation algorithm. (c) the
densely connected subproblems extracted as maximal cliques.

The maximum cardinality search orders vertices in an increasing order and
assigns the next number to the vertex having the largest set of previously numbered
neighbours. Vertices densely connected to each other get ordered roughly adjacent to
each other. If no edges are added in the second step the original graph is chordal,
otherwise the new filled graph is chordal. The maximal cliques of the constraint graph
can be indexed by the rank of there highest nodes and extracted. The maximum
cardinality algorithm can be implemented in O(n+deg), where n is the number of
variables and deg is the maximum degree. The fill-in step runs in O(n+m') where m' is
the number of arcs in the resultant graph. The ordering produced by the maximum
cardinality search is one of the many possible orderings and not necessarily the one that
produces minimal fill-in, and the optimally densely connected subproblems.

As an example consider the CSP whose constraint network is shown in Fig.4 (a).
Its variables are represented by vertices {/, 2, 3, 4, 5, 6, 7, 8} and the constraints by the
edges between the vertices. The maximum cardinality search orders the vertices as
{1,2,3,6,8,4,5,7}, numbering the vertices from 8 to 1. This numbering is shown in Fig.
4(b), with the ordering numbers shown in the parenthesis. The fill-in step adds the
dummy edge (3,6) to this ordering. The fill-in edge is shown as dashed line in Fig.(b).
The maximal cliques can be extracted by using a property of the fill-in graph that any
vertex V and the vertices connected to it and numbered higher than it, form a clique. The
cliques can be obtained in the increasing order of the numbered vertices, discarding a
newly generated clique that is contained in a previously generated clique. In Fig.(b)
clique (7,2), associated with the vertex 7, which is numbered first in the ordering, is
identified first. Clique (548) associated with vertex 5 is identified next. Clique (48)
associated with vertex 4 is discarded since it is contained in the previous clique (548).
Altogether four cliques are identified and these are shown in Fig.4(c).

4. Conflict Resolution

Conflict sets of an overconstrained CSP define a space of alternative relaxations.
Each relaxation in this space, is a set of constraints which when relaxed in the
overconstrained CSP, alters it into a solvable CSP. An optimal relaxation is the one that
relaxes a minimum number of constraints. If the conflict sets of an overconstrained CSP
are non-overlapping, determining an optimal relaxation is trivial: a constraint chosen
from each conflict set, constitutes an optimal relaxation. However, when the conflict sets
are overlapping, a shared constraint can resolve conflicts due to all the conflict sets it
belongs to. In this situation, relaxing a constraint from every conflict set, relaxes more
constraints than are necessary. Such a relaxation is not optimal and determining an
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optimal relaxation requires some search. This section presents an algorithm,
optimum_relaxation(), that searches the relaxation space for an optimal relaxation.

In general, it is possible for the conflict sets of an overconstrained CSP to overlap in
groups or clusters, that is, the conflict sets within a group overlap each other but conflict
sets belonging to two different groups do not. In this situation, optimal relaxation for
each group must be determined by optimum relaxation(), separately. The overall
optimal relaxation will then consist of the optimal relaxations of the groups.

Conf Set 1 Choices

Fig. 5. The search tree traced by optimum_relaxation(), for the example discussed.

4.1 Optimum_relaxation()

Algorithm, optimum_relaxation(), is a depth-first branch and bound algorithm
that searches the space of alternative relaxations defined by the conflict sets, for an
optimal relaxation. The algorithm builds a relaxation by selecting a constraint to relax
from each conflict set, until constraints have been selected from all the conflict sets. It
keeps track of the smallest relaxation during search and updates it when it finds an even
smaller relaxation. It does not extend a current relaxation, if it becomes clear that the
current relaxation will not be any better than the smallest relaxation found so far. The
algorithm reduces search further by making use of the fact that when a constraint C; from
a conflict set CS,, is relaxed, it also resolves conflict due to all other unconsidered
“future' conflict sets of which C; is a member, say, CS,, CS,,.... Therefore, when C; is
selected by the algorithm and included in the current relaxation, future conflict sets CS,,
CS,, ... need not be considered during search because conflict due these sets will already
have been resolved. These conflict sets are, therefore, disabled and no constraint is
selected from them. However, when the algorithm backtracks and selects a new
constraint C;, from the conflict set CS,,, the disabled conflict sets CS,, CS,,... must be
restored.' The following example illustrates the operation of the algorithm.

! This has some resemblance with the forward checking algorithm for constraint satisfaction.
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An overconstrained CSP with following conflict sets: (1) C,, Cy, (2) C;, Cs Co,
(3) C3, Cs, Cy, (4) C;, Cy, C7,(5) Cy, C3, Cg, and (6) C,, C,, C, is considered. The search
tree traced by the algorithm is shown in Fig. 5. Constraint C, is selected first from the
first conflict set. Since it does not figure in any 'future' conflict sets, none of them is
disabled. Next, constraint C; is selected from the second conflict set; third and fifth
conflict sets get disabled and no constraints will be selected from them as long as Cj is
selected. Constraint C; is selected next from the fourth conflict set; the sixth conflict set
is disabled. At this point there are no more conflict sets left and the first complete
relaxation is obtained. This is recorded as the best relaxation. The algorithm backtracks
now and retracts the previous selection from the fourth conflict set i.e. constraint C; and
selects the next alternative Cy from it. In retracting the selection C; it must also restore
the conflict sets for whose disablement the constraint C; was responsible. The sixth
conflict set is therefore, enabled. As a result of the new selection no conflict sets get
disabled. However, at this point, there are three constraints selected in the current
relaxation; this is equal to the size of the best relaxation known and it is clear that further
selections along this path will not lead to a better relaxation. Therefore, search is cut at
this point. Search also gets bounded when C; is considered. Since there are no further
constraints left to consider, the algorithm backs up one level, where the choices C4 and
Cy are tried from the second conflict set. None of these yields a better relaxation than the
one already known. Ultimately after further backing up constraint Cy is selected from the
first conflict set; this disables the second, third and fourth conflict sets. And when C; is
selected from the fifth conflict set, a smaller relaxation is obtained; this replaces the
current best relaxation and finally turns out to be the optimal relaxation.

4.1.1 Time complexity

It is easy to notice that optimum_relaxation()'s time complexity depends on the
following characteristics: the number of conflict sets, the size of the conflict sets and the
amount of overlap among the conflict sets. Large number of conflict sets and large sized
conflict sets, are likely to make the search tree deeper and broader, respectively. The
more the overlap among conflict sets, the more conflict sets are likely to get disabled
when constraints are selected, and the smaller will be the search tree traced by the
algorithm. For a certain number and size of conflict sets, the procedure
optimum_relaxation() performs worse when the overlap between the sets is minimum.
An example of such a situation is provided by the following set of conflict sets: (C, ...,
C)(C,...C), (C,....C), (C,...,C). The set forms a “chain' in which adjacent conflict
sets are linked by a single shared constraint. The procedure will search almost the whole
search space to determine an optimal relaxation. Incidentally, in this example it is easy to
figure out the optimum relaxation without this algorithm.

At any node in the search tree, the key step the procedure performs consists of
selecting a constraint from a particular conflict set and checking if the chosen constraint
figures in any unconsidered, future conflict sets. The maximum number of checks the
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procedure can make at a node is #-1 or O(#), where ¢ is the total number of conflict sets. If
[ 1s the size of the conflict sets, the total number of nodes, in the search tree, at which the

-1 .
checks are made is bounded by Z;ll . (It is assumed that no checks are done at the

root and the leaves of the search tree.) Hence the worst case time complexity is bounded

by Y =1l ~1)(I-1)=0(").

4.2 Partial conflict resolution

When all the conflict sets of an overconstrained CSP are known, the relaxation
space is completely known and algorithm optimum_relaxation() is guaranteed to find an
optimal relaxation. An optimal relaxation applied to the CSP, results in a solvable CSP.
With only a subset of conflict sets known, the relaxation space is partially known, and an
optimal relaxation is not guaranteed. Partial conflict resolution aims to apply the
relaxation obtained from the subset of conflict sets, to the overconstrained CSP. The
resulting CSP may still be overconstrained but this can improve subsequent search for a
solution, with a branch and bound algorithm, as follows.

The branch and bound algorithms' performance depends on the upper bound. If
the algorithm starts with a good upper bound (i.e. a distance closer to the maximal
distance), or discovers good near-optimal bounds quickly, large amount of search space
gets pruned early, resulting in a better performance. Branch and bound algorithms
perform better with CSPs having loose constraints and poorly for problems with tighter
constraints [2]. The former type of problems have larger sized conflict sets and many
near-solutions as compared to the latter, and the branch and bound algorithm finds
distances closer to the optimal quite rapidly, pruning the search space and finding a
maximal solution quickly. Relaxing constraints can thus improve the performance of
branch and bound algorithm by reducing the number of conflict sets and increasing the
number of near-solutions in the CSP. The total number of constraints relaxed i.e. those
during the preprocessing and those in the maximal solution found after the
preprocessing, may not be optimal.

An analogy may again be drawn with consistency techniques [5]. Consistency
techniques are used to preprocess CSPs to achieve a certain level of consistency in the
CSP and improve the performance of the backtracking algorithms. Here preprocessing of
overconstrained CSPs is suggested, to reduce the number of conflicts and improve the
performance of branch and bound.

5. Experiments

The aim of the experiments was to compare, the methods of solving
overconstrained CSPs through conflict location, with the traditional branch and bound
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methods. Two main experiments were carried out. In the first experiment, the cost of
locating conflict sets completely and partially with DFS CL(), was compared with the
cost of finding a maximal solution with forward checking branch and bound algorithm,
P-FCI1 [2]. The second experiment was carried out to study the overall performance gain
resulting from the pre-processing to partially resolve conflicts.

Randomly generated overconstrained CSPs with varying structural characteristics
were used. The structural characteristics of problems, such as: the number of constraints
in a problem, the number of domain values and satisfiability (or tightness) of the
constraints, were the independent variables of the experiments. The cost was measured
in terms of the total number of constraint checks. Variations in the number of conflict
sets and the average size of conflict sets, with the above mentioned problem parameters
were also studied.

The cost of locating all the conflict sets was found to be exorbitantly high
compared to the cost of determining a maximal solution with P-FC1. Experiments with
partial conflict location, yielded some interesting results. Using depth-limited DFS CL()
with depth limits of three and four, it was found that the cost of locating conflict sets was
a fraction of the cost of finding a maximal solution with P-FC1. This was more so for the
problems with tight constraints, for which it is very hard to find a maximal solution with
P-FCI. For this class of problems, determining an optimal solution after pre-processing
was found to be almost guaranteed. Pre-processing to partially resolve conflicts
improves the performance of branch and bound algorithms, and lowers the cost of
finding an optimal solution by more than one half.

5.1 Random problems

In the experiments, random overconstrained CSPs were generated using
probability of inclusion method, as described in [2]. Four problem characteristics can be
varied: number of variables, n; number of constraints, ¢; domain size, d; and satisfiablity
(complement of tightness) of a constraint (i.e. the number of value pairs allowed by a
constraint), p. Sets of problems were generated for the experiments and each set had a
certain value for the above parameters. The number of variables was fixed at ten for all
sets. The maximum domain size was fixed at ten as well. The values of d and p were
varied, from one problem set to the other, by varying their respective probabilities of
inclusion, p, and p,. Values of 0.1, 0.2 and 0.3 were used for p, and values of 0.2, 0.4
and 0.6 were used for p,. The probability of inclusion of a constraint, p., was always set
equal to 0.3. (Identical values have been used in the experiments described in [2].) It was
ensured that a generated problem had variables with the value of d at least equal to one,
and constraints with the value of p at least equal to one. This meant that the problems
generated would never have conflict sets of size one. The problem generation method
also ensured that each problem generated had a connected graph.

5.2 Complete conflict location
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The first experiment compared, complete and partial conflict location, with the
forward checking branch and bound algorithm P-FC1. For complete conflict location
sets of twenty problems were used. The parameter p, took the values 0.1, 0.2 and 0.3 and
D, took the values 0.2, 0.4 and 0.6; nine sets were generated, one for each of the nine
combination of values. The total number of constraint checks was averaged over the
problems in each set.
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Fig. 6. (a). The cost of finding a maximal solutions with P-FC1, and locating conflict sets partially with
DFS_CL() vs. domain size p,, and constraint satisfiability, p,.(b). the cost of locating all the
conflict sets with DFS_CL() vs. domain size, p, and constraint satisfiability, p,.
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The results of this experiment are depicted in Fig. 6(a) and (b). The cost of locating all
the conflict sets with DFS CL()was exorbitantly expensive compared to finding a
maximal solution with P-FC1. The cost of locating conflict sets increased very rapidly
with increasing domain size, exactly as it does for P-FC1. However, the cost decreased
rapidly with increasing tightness (or decreasing satisfiability) of the constraints. This was
in total contrast with the behaviour of P-FC1, where it became costlier to find a maximal
solution with increasing tightness. It was therefore relatively very easy to locate conflict
sets for problems for which it was very difficult to find maximal solution using P-FC1.
This can be intuitively explained as follows.

Algorithm DFS CL() prunes large branches of the search space tree if
inconsistent subsets are small in size and are discovered early. The cost of locating
conflict sets is therefore less for overconstrained CSPs having smaller conflict sets
compared to ones having larger conflict sets. In the latter case, DFS_CL() spends more
time going deeper into the search space tree and perform more constraint checks. The
likelihood of a CSP having smaller conflict sets decreases with increasing domain size
and increasing constraint satisfiability, as more and more tuple values are likely to be
consistent with the constraints. Therefore, CSPs with higher values of domain size and
satisfiability tend to have larger conflict sets. For such problems, pruning in DFS_CL()
is lesser, with the result that a higher cost is incurred in locating the conflict sets.

In the same experiment, for each problem the number of conflict sets, the average
size of the conflict sets, and the distance of maximal solution found were also recorded.
The averages of these variables are plotted in Fig. 7 and Fig. 8. The plot for average size
of conflict sets supports the above intuitive explanation: with increasing domain size and
constraint satisfiability values the average size of the conflict sets increases.
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Fig. 7. Mean conflict set sizes and the mean total conflict sets vs. domain size and satisfiability.
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Fgi. 8. Mean optimal distances vs. increasing domain size and satisfiability.

The total number of conflict sets for problems, increased with increasing values
of domain size; but with increasing values of satisfiability, the number first increased
from p,=0.2 to p,=0.4 and then decreased with p,=0.6. This can be attributed to two
reasons. Firstly, as stated above, with increasing domain size and satisfiability the
possibility of a problem having smaller conflict sets decreases and larger and larger sized
conflict sets become more likely. Secondly, among the 2" subsets a set of n constraints
can have, the number of middle-sized subsets, is more than the small-sized subsets or the
large-sized subsets. For example, for a set of ten constraints:

[10) - S(10) - ... Z(10

1 s 10

Middle-sized subsets being more in number, the likelihood having more middle-sized
conflict sets is proportionally more, compared to smaller or larger sized conflict sets.
This explains why the number of conflict sets increase with increasing values of p,, for
each value of p,. This explanation also seems to suggest that the total number conflict
sets should start decreasing with still higher values of p,, as large-sized conflict sets
become more and more likely. This was not verified. However, decrease in the number
of conflict sets was clear for the values of p,: the number of conflict sets peaks for p, =
0.4 and decreases for p, = 0.6.

Optimal distances decreased (i.e. maximal solutions become better) with
increasing domain size and satisfiability. Average distances of maximal solutions found
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by branch and bound algorithms are plotted for each problem set in Fig. 8. This is to be
expected; because with increasing domain size and satifiability average conflict set size
increases. Larger conflict sets tend to overlap more; and with many overlapping conflict
sets it becomes possible to resolve the conflict optimally with fewer constraint
relaxations and hence the lower distances. That the distances of maximal solutions
decrease with increasing average size was supported by the results of an experiment in
which, a set of one hundred problems was generated with p,=0.2 and p,=0.4. From this
set, problems with a total number of conflict sets between ten and fifteen, where taken
and their average conflict set size and distance distributions plotted against each other.
The plot appears in Fig. 9; it shows a decrease in the mean optimal distances with
increasing mean conflict set size.
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Fig. 9. Mean optimal distances vs. mean conflict set size.

5.3 Partial conflict location

For partial conflict location the first experiment was repeated, with forty
problems in each set. The two methods tried were: depth-limited DFS_CL() and search
in tightly connected sub-problems. The results are plotted in Fig. 6(a). The depth limits
tried were three and four. For both the limits the cost of locating conflict sets increased
with increasing values of p,, for each value of p,. The cost of locating conflict sets of
size up to three was always smaller than the cost of obtaining maximal solution with P-
FC1; the difference being more pronounced for p, = 0.2 and p,=0.4. The cost of locating
conflict sets up to size four was smaller than that of P-FCI1 for only p,=0.2. It was
noticed that the cost for both the limits decreased slightly from p,=0.4 to p,=0.6. This
happens because with increasing satisfiability, not only do the small sized conflict sets
become less likely but also smaller consistent subsets of constraints tend to have more
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solutions, thereby increasing the chances of backjumping algorithm finding a solution to
the consistent subsets quickly.

The percentage of the total conflict sets located by DFS CL() for both the depth
limits and sub-problems search, was recorded and the plot appears in Fig. 10. Since for
lower values of p, and p, the average conflict set length is small, a very high percentage
of the total conflict sets were located by DFS_CL() under both the depth limits and
through sub-problem search. The percentage of the conflict sets located decreased with
increasing values of py and p, as the average conflict set length increased. The
percentage of conflict sets located under depth limit four was always more than or equal
to that located under depth limit three and through sub-problems search.
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Fig.10. The percentage of the total conflict sets, located by DFS_CL() with depth limits of three and four,
and by search in sub-problems, plotted against the values of domain size and satisfiability.

5.4 Preprocessing

The second experiment was to study the overall cost of solving overconstrained
CSPs through conflict location. The relaxation obtained from the partially located
conflict sets was applied to the overconstrained CSPs, and every constraint in the
relaxation was totally relaxed in the CSP. The relaxed CSPs were then solved using P-
FCI. The results of the experiment appear in Fig. 11, where the average fotal cost of
solving the CSPs (i.e. the cost of locating conflict sets partially and cost of branch and
bound search with P-FC1), is plotted against the domain size and constraint satisfiability.
The pre-processing was found to improve the performance of P-FCI1 and lower the
overall cost of solving the CSP. The maximum gain was for problem sets with p, = 0.2.
Conlflict location with depth limit of three, almost always yielded the best results. But
where optimal solutions always found?
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As mentioned earlier, relaxation obtained from a subset of conflict sets may not
be optimal and applying it to an overconstrained CSP may relax more constraints than
necessary. This does not guarantee that the number of constraints relaxed in pre-
processing and those left unsatisfied in the solution found by P-FC1, equals the distance
of the maximal solution. We computed, for each problem, the sum of the constraints
relaxed in pre-processing and the distance of the solution obtained subsequently with P-
FCI, and compared it with the distance of the maximal solution for the problem. The
sum was found to equal the maximal solution distance in majority of the cases, for all the
three methods, indicating that obtaining optimal solutions is highly likely. The results are
plotted in Fig.12. Conflict location with depth limit of four yields the best results. The
quality of the suboptimal solutions, in terms of total constraints relaxed, was not bad
either. The total distance of the solutions, exceeded the optimal as follows. For depth-
limited conflict location, with a depth limit of four and three, it exceeded the optimal at
the most by one and two, respectively. For conflict location in the subproblems it
exceeded the optimal at the most by three.
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Fig. 11. The performance of P-FC1, before and after pre-processing.
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Fig. 12. The number of cases in which optimal solutions were found after preprocessing.
6. Conclusion

The reasons for a CSP being overconstrained are one or more, minimal subsets of
constraints that cannot be satisfied together. These subsets were called the conflict sets.
Conflict sets define a space of alternative relaxations and make explicit all possible ways
of resolving conflict in the overconstrained CSP. This relaxation space can be searched
for an optimal relaxation, which corresponds to a maximal solution. Algorithms were
proposed to locate conflict sets and search for an optimal relaxation in the relaxation
space defined by the conflict sets. There is scope for further work. One may consider and
evaluate alternative search strategies for conflict location. The relation between problem
structure and the difficulty of locating conflict, also needs to be looked into. Problems of
a certain structure may define subclasses of easy problems.

The experimental results showed that locating all the conflict sets of an over-
constrained CSP is very hard in general, but for problems with tight constraints, it is
easy. Locating conflict sets of size up to four or less in these problems, is even easier. It
is hard to determine a maximal solution with branch and bound algorithms for this class
of CSPs. These size limited conflict sets constitute the majority of conflict sets in this
class of problems and experimental results show that one is certain to find an optimum
relaxation from this subset of conflict sets. The relaxation, optimal or sub-optimal,
obtained from the subset of conflict sets, was used to resolve conflicts in the given
overconstrained CSP. Experimental results show that this pre-processing improves the
performance of branch and bound algorithms and good near optimal solutions can be
found easily.

In summary, the paper presents a technique of preprocessing overconstrained
CSPs, which improves the performance of branch and bound algorithms used to solve
them, and is particularly suited to problems with tight constraints.
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