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Abstract. A new technique for text-independent speaker recognition for noisy speech is presented. This
technique is based on finding the ratio of the singular values of the feature vectors of the unknown speaker and

each of the N reference features stored in the constructed database. The " reference feature that gives the
largest ratio is considered the feature of the unknown speaker.

An overall correct recognition accuracy of 94% for clean speech and 32% for noisy speech of 0 dB
SNR was obtained. A further step was conducted to enhance the noisy features by series expansion. The
improvement in the recognition rate using the proposed SVD-based algorithm is compared with other distance
measure algorithms. It is found that the proposed technique when cepstral features are used outperforms the
conventional matching measure such as the Euclidean, the Weighted and the Mahalonobis distances,
respectively.

1. Introduction

Speaker recognition is the process of automatically recognizing the identity of the
speaker on the basis of information obtained from his/her speech waves. This technique
will make it possible to verify the identity of persons accessing systems, that is, access
control by voice, in various services. These services include voice dialing, banking
transactions over a telephone network, telephone shopping, database access services,
information and reservation services, voice mail, security control for confidential
information areas, and remote access to computers. Speaker recognition can be divided
into speaker identification and speaker verification. Speaker identification is the process
of identifying a speaker from a group of N registered speakers. Speaker verification is
the process of accepting or rejecting a person claimed identity from his voice.
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In other words, speaker identification system attempts to answer the question,
"Who are you?" Speaker verification system attempts to answer the question, "Are you
whom you claim to be?”

Speaker recognition methods can also be divided into text-dependent and text-
independent methods. The former requires the speaker to provide utterances of the key
words or sentences having the same text, whereas the latter does not rely on a specific
text being spoken. The text-dependent methods are usually based on template matching
techniques in which the time axis of an input speech sample and each reference template
or reference model or registered speakers are aligned, and the similarity between them,
accumulated from the beginning to the end of the utterance, is calculated. The structure
of text-dependent recognition systems is, therefore, rather simple. Since this method can
directly exploit the voice individuality associated with each phoneme or syllable, it
generally achieves higher recognition performance than the text-independent method.

An important step in the speaker identification process is how to extract sufficient
information for good discrimination, and at the same time, the size of this information
should be amenable to effective modeling. This process is called feature extraction.
After feature extraction, a classification technique is used to compare between the test
feature and the registered features in the database.

Different techniques are used for classification and we can split them into two
broad types: template matching and probabilistic algorithms [1-3]. In the template
matching, or termed statistical features averaging, we mean the comparison of an
average computed on test data to a collection of stored averages developed for each of
the speakers in the database [4-8]. In probabilistic, the speakers are modeled by
probability distribution rather than by average features and in this case a log-likelihood
score is computed instead of distance measure [9-10]. The common techniques used in
this type are: Hidden Markov Model (HMM) [8-11], Artificial Neural Network (ANN)
[12-13], Linear Vector Quantization (LVQ) and others [3,14-15 ].

The matching algorithms are much simpler and less expensive than the
probabilistic algorithms. Moreover, the time required for training the models is much
longer. But, the recognition accuracy is better to some extent. In our study, we consider
the first type, and the comparison is made with the same matching measure techniques.

In previous research on speaker recognition, researchers used the same features
used in speech recognition such as linear prediction and cepstral coefficients [1-3]. Atal
[4] studied the effectiveness of prediction coefficients, impulse response,
autocorrelation, and cepstrum coefficients for automatic speaker identification and
verification. He concluded that the cepstrum coefficients give better overall recognition
accuracy. The weighted cepstral distance measure for a speaker-independent isolated
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word recognition system using dynamic time warping was tested in [5]. It is found that
the weighted cepstral distance outperformed the Euclidean cepstral distance and the log-
likelihood distance measure. In [6], a comparison between four distance measures for
text-independent speaker identification was presented and it was found that the weighted
Euclidean distance performed better than the others. On the other hand, the Mahalonobis
distance measure was inferior to the other methods despite the fact that it was
computationally more complex. In [7], different distance measures were compared for
Multidimensional Autoregressive (MAR) model instead of the one dimensional that is
often used. It is shown that the optimal order of AR process is approximately 2 or 3. In
the previous techniques [4-7], the Euclidean, Mahalonobis and/or the weighted distances
are used as a pattern matching.

In [8], the SVD of the energy and the zero crossing are used as a pattern matching
for text-dependent speaker identification. Only one sentence, uttered by 3 male and 2
female speakers, is used in both the training and the test sessions. An overall
identification score of 80% was obtained for clean speech.

In [9], two identification algorithms, based on LPC and LPC-cepstral feature
extractors, followed by a Continuous Density Hidden Markov Model (CD-HMM)
classifier, have been implemented and tested on the Italian database. This database
consists of 360 phone calls made by 20 speakers. The performance of closed set text-
independent speaker identification is evaluated. It is found that the LPC-cepstral based
system performs better than the LPC-based one.

Although speaker recognition has reached the state of launching commercial
products, operational systems still face the problem of maintaining high recognition
performance in adverse environment. The degradation to recognition performance is
typically attributed to the mismatch between training and testing conditions.

Robust recognition methods include signal enhancement techniques as a front-
end and/or feature space transformations that reduce variability due to noise are
addressed in [11, 16-18]. The effect of noise is still an open problem and some extra
work in this direction must be conducted to overcome this problem and this is what we
will try to do in this paper.

In this paper, a robust closed set text-independent speaker identification algorithm
based on LPC and/or cepstral coefficients is presented. The pattern matching used here
depends on the ratio of singular values of the average test feature vector X and each of

1 . « th .
the N reference features z'*) stored in the database. The [ reference feature that gives
the largest ratio is considered closest to the unknown speaker.
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The robustness of the proposed technique is evaluated, in terms of the recognition
scores, by adding white noise to the test speech. The overall correct accuracy varies
between 94% for clean speech (recorded in an office environment) and 32% for noisy
speech of 0 dB SNR. The experimental results show that the template-matching
algorithm based on SVD is superior to those algorithms based on distance metrics such
as Euclidean, Weighted and Mahalonobis distances. The result of this paper is an
extension to a previous work [19], where here, we doubled the database population size.
Also, the time duration of the test utterance is investigated and how can this duration
affects the recognition rate when it is short. Moreover in this paper, we propose an
algorithm to enhance the noisy features of the test speakers using series expansion.

This paper is organized as follows: In Section 2 some preliminaries regarding the
LPC and cepstral coefficients are presented. Also, in this section, we showed that the
coefficients vary nonlinearly with the noise power. In Section 3, the noisy coefficients
are enhanced or modified by Taylor series expansion to obtain an estimate of almost free
noise coefficients. The singular value decomposition as a matching measure between the
test and the template vectors is presented in Section 4. Moreover, in this section a simple
procedure is presented to compute the singular values. In Section 5, the proposed
algorithm is evaluated on a constructed database. A comparison between the proposed
algorithm and the other distance measures algorithms is given also in this section.
Finally, Section 6 presents the conclusions.

2. Preliminaries and Problem Formulation

Figure 1 shows the basic structure of speaker identification system. The speech
signal is band-limited with a 6™ order Butterworth bandpass filter, with [60 Hz — 4 kHz]
passband. Then it is sampled at a rate of 8§ kHz with 8 bits/sample. This sampled signal is
processed by high frequency pre-emphasis filter (1—0.95z"), and then partitioned into

frames of 32 ms using Hamming window with 50% overlap. From the experiments that
we conducted in this study, we found that the energy and zero crossing result in
satisfactory classification of the speech frame into voiced and unvoiced. In the feature
extraction, the LPC and/or the LPC derived cepstral coefficients are used as the speaker
specified feature. To determine the LPC coefficients, the clean speech §(72)can be

modeled as an Autoregressive (AR) model:

p
s(n) =G e(n) - Y a;s(n i) (1)
i=l
Or equivalently, its z-transform is:
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Fig. 1. Basic structure of speaker identification system.
Where p is the prediction order, a,, i= I,...,p are the linear prediction

coefficient; e(n) is the excitation and G is a gain scaling factor.

The LPC coefficients can be obtained by using standard LPC analysis [1,2] such
as the autocorrelation method. Thus, the LPC coefficients are determined by solving the
p linear equations, which can be written in a matrix form as:
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rO rl r2 ...... rp—l al rl

rl I'O r] ...... I'p72 a ) r2

I I Ip oo Tp3 a3 |=|13 (3
_rp—l rp—2 rp—3 ...... rO ] _ap ] _rp ]

Where 7, are the time-averaged estimates of the autocorrelation at lag 7 , and it can be

expressed as:

M-l-t

I, = ZS(H)S(II+T), t=0,1,...,p—1 @)
n=0

where M is the frame size. Now equation (3) can be solved efficiently using Durbin's
algorithm [1-2].
The cepstral vector ¢ = |_C1 c, v CpJ can be obtained by solving the

recursive equation:

15, .
c,=a, +—Z:(n—1)cn,i a; ,n=12,...,p (5)
nig

Now, suppose that the noisy speech Xx(#)is composed of the original clean speech

s(n) and an additive uncorrelated white noise W(7) with zero mean and power ¢ ,
then:

x(n) =s(n) +w(n) (6)
The autocorrelation of x(7) is defined as:
Mot rp+¢ fort=0
0
= +7) = 7
r, (T n§:0 x(n) x(n + 1) {rr or 120 (N

Therefore the autocorrelation matrix of the noisy speech is:

_ro +C rl r2 ...... rp—l
rl I'O + C r] ...... rp72
R, (&=| n I s | = [R+¢1] (8)
| rp—l rp_2 rp_3 ...... ro + C
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The LPC vector of the noisy speech,
a(0=[a,0)  a,©) . a,&)] ©)

is determined by solving the linear equation:
[R+cT]ag)=r (10)
where R is a p-by-p matrix and r is a p-by-1 vector as defined in (3).

Again equation (10) can be solved by Durbin's algorithm. Similarly, the noisy cepstral
vector is given by:

n-1
e ($) =an<c:)%Zm—i)cn_i@)ai@ n=12,..p (11)
i=1

In this paper, we will assume that the reference feature vectors ( LPC or cepstral
coefficients ) are noise free, while the test feature is noisy.

3. Noisy Feature Modification Using Taylor Series Expansion

In this section the noisy feature a({) and ¢({) derived in the previous section is
enhanced from noise by estimating the almost free noise feature. This is done as follows:

First, let us rewrite equation (8) as:

o, +C q n Tt o,(1+m) il n L1
5 o,+8 g A I G (1+m) T
Ry@)=| 1 I o +C - 1 = I I o(l+m) - 1,3
Lo Lo 3 o, +( Lo Lo o3 ... o(l+m)
(12)
where 0, =¥, , the speech signal power and 77 = (7_ the noise to signal ratio (NSR).

N

Thus, the LPC vector @ is a function of NSR. Now both the correlation matrix R (&)

and the vector @ can be rewritten as a function of 77 as follows:
Ry,(Mm)a () =r (13)
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Now, if a(7) is differentiable with respect to 77 , then Taylor series expansion of
a(n) in the neighborhood of 77 = 0 is given by:

a(n(=a0) + 1 0) + 2. n* a)0) + a0 + O ') (14)
where @(0) is the estimated feature vector at 77 =0 , @*!(0) is the k" derivative of
a(n) when 17 =0 and O(1*) is the error of order 4.

To find the derivative terms in equation (14), take the differentiation of both side of

d
equation (13). Now, since in (7)=o0,1 and ar _ 0, we have
d dn

da(n)
R (M)——=-o,aMn) (15)
on
Repeat the differentiation of both sides of (15) to obtain:
0%am) _ ,_ 2a(m)

R, (1) 5" =20, (16)
on

on

The k™ order can be computed as:
R, m)atm)=-ko, a* ) (17)
Thus, the derivatives at 77 =0 can be computed recursively. Notice again that

equation (17) can be solved efficiently using Durbin's algorithms. Now, the Taylor series
can be approximated as:

1 1
atm)=a©)+n )| +=n?aPlm) +—n’aPlm) _ +om*)
n=0 2! n=0 3! n=0
Thus, the estimated vector, @ is given by:
a=a(0) ~ [I—ncs R 412 63 RZ—q? 03 R73]71 a(m)
(18)

Equation (18) is the formula to modify the prediction coefficients up to the third order
with respect to the noise to signal ratio, 77. Higher order is possible, but it is found that

the third order gives sufficient approximation.

Now, the estimated cepstral coefficients ¢ = |_51 c, - ¢ pJ are given by:
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1 n—1

C, =4, +E2(n—1) Coi @ n=12,...,p (19)
i=1

Where a ; is the i" element of the vector, @ . These modified LPC and cepstral features

are used as a test features and the recognition rate are recalculated and the result is
compared with the case of unmodified features.
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4. Singular Value Decomposition (SVD) as A Matching Measure

In this section we will show how the singular value decomposition is used as a
measure of matching instead of the conventional distance measure.

For an m X n real matrix A ofrank 7, the SVD is defined as:

A=UAV'=>"c;u;v] (20)
=1

where Uand 7 are orthogonal matrices of dimensions mXxm and nxn,
respectively. The singular values, © ;» are ordered in a descending order,
G, 20, 2. 20, > (0. The column vectors u; andvj are the jth left and
right singular vectors, respectively.

In our experiment, let us define A as:

A =29 xm( ., i=1.2....N 1)

where N is the number of references, z® represents the i™ reference speaker

features aorc and  Xx(77) represents the test speaker features
a(nyora and c(n)orc.

Since A7 is a P %2 matrix, the singular values are computed rather simpler than

what we did in [19], in which we applied the general algorithm for computing the SVD
[20]. Here, we compute the singular values as follows:

First, let us drop the supscript i from the vector z and the matrix A . Thus,

A=[z x@).

Assume that,
4l = | = £ (22)
Where |||| denotes the norm. Notice that equation (22) can always be met by scaling the

two vectors.

ol =1;(ATA), j=1,2 (23)

where A, () denotes the /* eigenvalue . Therefore,
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or =L* +z"x(n) (24)
and
o3 =L*—z'x(m) (25)
From equations, (24) and (25)

o. 1+cos@ .
— = ———— , where 0 is the angle between the two vectors, z and x(77).
o, 1-cosd

T
Since 0, 2 0, >0, 0 takes values over the range ‘:0,5} .

1
I /—+ €059 _ ot(0/2) (26)
G, 1—cos

The ratio p defined by equation (26) is calculated for each reference vector, 7" , L.e.

Thus the ratio,

p([) for all i. The decision rule that we have considered for classification is to find, the

i" speaker that maximizes the following function:
argmax (p”) 27)

1
5. Experimental Results

The performance of the SVD matching algorithm is tested on a constructed
database of twenty speakers (four females and sixteen males). Those speakers are used in
the training data as reference templates. The training data consists of three sessions.
Each session contains 4 different Arabic sentences, recorded through a desktop
microphone at approximate nominal time interval of 2-3 weeks, the duration of the
sentences is about 3-6 seconds. In the test, each of the twenty speakers utters 20
different, from the one recorded in the training, Arabic sentences of duration of 1-3
seconds. Each sentence is segmented into a frame of 32 ms with (16 ms overlap). The
voiced frames are retained and LPC and cepstral coefficients are extracted from these

frames. The average test feature vector X(77) is computed for each sentence. Thus,

twenty test vectors are computed for each speaker for clean speech (an office
environment) and for the noisy speech of 0 to 20 dB SNR. The noisy speech is obtained
manually by adding white noise to the clean speech. The total number of tests is,
therefore, 400 tests for clean speech and these numbers of tests are repeated at different
noise power (SNR of 0 to 20 dB). Notice here that, based on the background noise
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associated with the recording process, the clean speech is considered to be of 30 dB
SNR.

The proposed algorithm is compared with other template-matching algorithms
such as Euclidean, Weighted and Mahalonobis distances. The Euclidean, Weighted and

Mahalonobis distances to the i” reference speaker are defined, respectively as

' P
% - JZ@?) )’ -
=1
. L 2
A = [Z 60 -5, 0, >
j=1
a =V @0 —x) " 270 —xm) G0

Where Zﬁ.i) and X;(77) are the j™ clement of the feature vectors z'”

and x(77) , respectively. w; is the variance of the j™ element of ¥ and X is the p-

by-p covariance matrix of the template features. The test sentences duration is made
short intentionally because it is known that template matching algorithm depends on
averaging the feature vectors extracted from the utterance. As it is known, the accuracy
of the average-estimate is dependent on the utterance duration. The recognition rate
would have been better than what we obtained in this paper if we had increased the
duration of the utterance. It is worth to notice that the computational complexity of
Mabhalonobis is more than the other algorithms. Yet, the proposed SVD-based algorithm
gives better result for the noisy speech when cepstral coefficients are used.

Table 1 shows the overall correct recognition using Euclidean distance (ED),
Weighted distances (WD), Mahalonobis distance (MD) and the SVD-based algorithm.
Notice that the Mahalonobis distance is performed better in case of LPC coefficients
while the proposed algorithm outperforms the other algorithms in case of cepstral
coefficients. The difference in performance gets better in favor of the SVD-based
algorithm as the noise power increases.
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Table 1. Results of the text-independent experiments using Euclidean distance (ED), weighted distance

(WD), mahalonobis distance (MD) and SVD-based algorithm for clean and noisy speech

Recognition rate

Recognition rate

Recognition rate

Recognition rate

using ED using WD using MD using SVD

LPC Cepstral LPC Cepstral LPC Cepstral LPC Cepstral

Clean speech 88.25%  91.75%  87.75% 92.50% 93% 94.75% 88.75% 94%
SNR=20dB  28.50% 78.50%  29.25% 80.25% 87.50%  81.75% 71.25% 88.25%

SNR=15 dB 18.25% 55.25% 19% 52.75% 65.50%  57.25% 56.75% 80%
SNR=10 dB 15.25% 31% 11.50% 34.50% 35.75%  32.25% 36% 64.50%
SNR=5 dB 13.75% 21.25% 5.50% 25.25% 22% 11.25% 12% 45.25%

SNR=0 dB 10% 11.5% 5% 21% 5.5% 5% 5.25% 32%

Table 2 illustrates the overall recognition rate when the procedure of section 3 is
employed to enhance the noisy features. Again, Mahalonobis distance outperforms the
others when the LPC features are used. For cepstral features the proposed SVD-based
algorithm gives better recognition rate than the others. Moreover, the modification
features algorithm improves the recognition rate when the distance measures are used.
But for the SVD-based algorithm, the improvement is marginal which means that the
extra modification step, which requires extra computational work, is not needed. Notice

Table 2. Results of the text-independent experiments using Euclidean distance (ED), weighted distance
(WD), Mahalonobis distance (MD) and SVD-based algorithm for noisy speech after feature
modification

Recognition rate

Recognition rate

Recognition rate

Recognition rate

using ED using WD using MD using SVD
LPC Cepstral LPC Cepstral LPC Cepstral LPC Cepstral
SNR=20 dB 29%75 80.25% 30% 82.25% 89.50% 82.50% 72.25% 88.25%
SNR=15 dB 18% 60.25% 19.5% 57.25% 73.75% 60% 57.50% 80%
SNR=10 dB 16% 36.25% 13% 39.50% 50.25% 37.25% 37% 65.50%
SNR=5 dB 1375 26.25% 7.5% 30.75% 33.75% 20.25% 13.75% 49.50%

%
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SNR=0 dB 12% 17.25 5.5% 23.75% 5.5% 5% 5% 35.50%

that, even with this extra step, the results of Table 1 for the proposed algorithm is better
than what is obtained by the conventional algorithms with modified features. Figs. 2 and

3 illustrate the correct recognition rate (%) versus the SNR for cepstral and LPC
coefficients, respectively.
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Fig. 2. Recognition rate (%) of ED, WD, MD and SVD-based algorithm using noisy cepstral coefficients.

Figures 4 and 5 are the same as 2 and 3, but with applying the features
modification of Section 3. As we notice in Fig. 1, the features modification is optional
and as mentioned before, it will not add that much to the recognition rate when the
proposed algorithm is used. Comparison between Figs. 2 and 4 confirms the fact that the
proposed SVD-based algorithm gives better performance than what is achieved by the
conventional distance measure algorithms even with modified features. On the other
hand if we compare Figs. 3 and 5, it is clear that the Mahalonobis distance performs
better with LPC coefficient. Also, applying the modification algorithm of Section 3
would give substantial improvement in the recognition rate. The question now is, why is
the Mahalonobis distance performs better with LPC coefficients? This is a difficult
question, but from the observation that we noticed during our study, we may pinpoint to
the following reasoning: In Mahalonobis distance, the underlying assumption is that the
features of the speakers are Gaussian distributed and the covariance matrix is a sort of
weighting, or compensating the variability of features in the training and testing. So, if
the distribution of the features in the training and testing is not Gaussian, then we should
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not expect a good performance with Mahalonobis. So, it seems to me that the
distribution of the LPC fits the Gaussian distribution and even with adding white noise to
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Fig. 3. Recognition rate (%) of ED, WD, MD and SVD-based algorithm using noisy LPC coefficients.
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Fig. 4. Recognition rate (%) of ED, WD, MD and SVD-based algorithm using modified cepstral

coefficients.
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Fig. 5. Recognition rate (%) of ED, WD, MD and SVD-based algorithm using modified LPC coefficients.

the speech signal, the features are still fitting the Gaussian distribution. Future works
must be conducted to investigate this phenomenon.

Finally, it is worth mentioning here that in a previous work [19], we obtained
better recognition rate when the test utterance is longer than what is considered here (2-4
seconds versus 1-3 seconds here, in this paper). This confirms the assumption that the
accuracy of the features and their relevance to the speaker is dependent on the number of
the voiced frames obtained from the test utterance.

6. Conclusion

In this paper a new technique for text-independent speaker recognition in noisy
environment is presented. This technique is based on finding the ratio of the singular
values of a matrix formed from the test feature and the average reference features of
every speaker in the constructed data base. The proposed SVD-based algorithm is
compared with the conventional distance measure algorithms in case of clean speech and
noisy speech of 0 dB to 20 dB SNR. It is found that the proposed algorithm outperforms
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the conventional algorithms and it is more robust against noise. Moreover, it is found
that the features extracted from the voiced frames give better overall recognition rate
than the ones extracted from the whole frames. This means that the voiced frames carry
more precise speaker information. In Section 3, we attempted to enhance the noisy
features by series expansion in order to obtain a better recognition rate. Again, the
comparison with the other algorithms is conducted to show the significance of the
proposed algorithm.
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