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Abstract. Although the neural inverse model controllers have demonstrated high potential in the non- 
conventional branch of non-linear control, their sensitivity to parameter variations and/or parameter 
uncertainties usually discourage their applications in industry. Indeed, when the controlled system is subject to 
parameter variations or uncertainties, unsatisfactory tracking performances are obtained. To overcome this 
problem, a neural inverse model is added to the control scheme and an online update of the weights is 
provided. Simulations have been carried out to show the robustness of this control algorithm. Moreover, this 
adaptive neural inverse model controller is implemented on a temperature control system. Good tracking 
performances are obtained for different set points regulation. The large parameter variations and disturbances 
have no effect on the tracking performance since they have been compensated online. 
 
Keywords: Neuro-control of non-linear systems, Neural inverse model, Adaptive control, Temperature control 
system. 
 
 

1.  Introduction 
 

Making the output of a system track a given reference trajectory is a common industrial 
problem. To obtain satisfactory performances, the dynamics of controlled systems are 
usually simple (e.g. linear) and explicitly known so that modern control strategies can be 
successfully applied. However, when the structure of the plant is unknown or the 
parameter variation is excessive, the effectiveness of modern control theory diminishes. 
For instance, when a fixed controller setting is employed in an industrial drive system 
with widely changing environment, unsatisfactory performance often occurs. Even 
though it is possible to develop a reasonably accurate model, the resulting control 
algorithm is so computationally intensive that it becomes infeasible to implement in a 
real-time control environment. According to the performance exhibited by an 
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experienced human operator, it is believed that a controller should be designed to have 
abilities to learn from experience and to use the knowledge gained during the training 
process. 
 

Several tracking control techniques are evolving such as the sliding mode control 
[1], feedback linearization [2], and self-tuning and model reference adaptive controls [3]. 
The sliding mode control and feedback linearization control systems require a valid 
model dynamics of the plant being controlled. Thus, they are not robust in the sense that 
the controller is, mainly due to structured uncertainty of the controlled plants, sensitive 
to large parameter variations and noise. In addition, conventional adaptive control 
schemes require information about the plant structure and may not guarantee the stability 
of the system in the presence of unmodeled dynamics and noises. 
 

In the recent years, an emerging technique that mimics the adaptive distributed 
architecture in the human brain, namely artificial neural networks (ANN), provides 
potential alternatives to tackle the ask mentioned above. Indeed, the incredible learning 
and adaptive capability of biological neural mechanisms have inspired many scientists 
and engineers to apply control methodologies on the biological counterparts. It is well 
known that a multilayer neural network model is basically a non-linear extension of a 
linear adaptive model. It possesses many advantages in the controller design, compared 
with conventional control methods, such as the capability of approximating arbitrary 
non-linear function, fault-tolerance, parallel computing and so on [4, 5]. Therefore, 
applications of  neural networks have received considerable attention in the control of 
complex systems. One of the simplest approaches for the implementation of the neuro-
controller is the direct inverse model control approach pioneered by Widrow and Stearns 
[6] and Psaltis et al. [7]. In the Psaltis et al. scheme, referred to as a general learning, a 
multi-layered neural network is first trained offline using a back-propagation algorithm 
to learn the inverse dynamic model of a plant and, once trained, it is configured as a 
direct controller to the plant.  
 

Khalid et al. [8] compared the inverse model neural controller to three other 
control algorithms: fuzzy logic control, generalized predictive control and proportional-
integral control. Experimental results showed that the neural controller performs very 
well and offers encouraging advantages. Moreover, according to the experimental 
studies, the best performances may be obtained by combining the neural controller with 
other classes of control systems. 
 

Although, neural networks have been used for inverse modeling in number of 
applications, these controllers are not robust with respect to model uncertainties and 
parameter variations. Hence, many authors have integrated an adaptive mechanism to 
overcome this problem [9]. Indeed, in [10], the authors have proposed the inverse NN 
adaptive control that allows the controller to respond online to changes in the plant 
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dynamics. However, this approach is complex and more computationally complicated. In 
[11], the authors developed an adaptive neural network by using back stepping method 
and higher order neural network. However, this approach is applied only for a class of 
discrete MIMO non-linear systems with triangular form inputs. 
 

In this paper, we present a tracking control design using neural networks, and we 
will show by simulation that the neural inverse control is sensitive to parameter 
uncertainties and unsatisfactory tracking performances are obtained. To overcome this 
problem, an adaptive neural inverse model is added to the structure and tracking 
performances are enhanced. Moreover, to validate the effectiveness of this control 
scheme, the neural controller is applied to control a temperature system. The control 
algorithm is performed on real-time by using C++ language.  
 

The remaining part of this paper is arranged as follows. Section 2 describes the 
neural network structure and learning scheme. Section 3 describes the non-linear inverse 
model control and it is shown that this kind of non-linear controller is sensitive to 
parameter uncertainties. To overcome this problem, the adaptive non-linear inverse 
model control is described in Section 4. In Section 5, the adaptive non-linear neural 
controller is applied to real-time control of temperature system. Finally, conclusions are 
given in Section 6. 

 
 

2. Network Structure and Learning Scheme 

 
2.1. Multilayer neural network 

Although several ANN architectures have been applied to process control, most 
of them concentrate on multilayer neural networks (MNNs) (Fig. 1). MNNs are 
particularly attractive to control complex systems due to the following reasons: 

 MNNs are essentially feedforward structures in which the information flows 
forward, from the inputs to outputs, through hidden layers. 

 MNNs with one hidden layer using arbitrary sigmoidal activation function are 
able to perform any non-linear mapping between two finite-dimensional 
spaces to any desired degree of accuracy, provided there are enough number 
of hidden units [12]. 

 The basic algorithm for learning in MNNs, the back-propagation (BP) 
algorithm, belongs to the broad class of gradient methods largely applied in 
optimal control. 
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Fig. 1. Structure of multi-layer neural networks. 

 
 

In this paper, the network used for this study is a two-layer feedforward neural 
network with the error back-propagation learning algorithm [4] that consists of input, 
two hidden and output layers. Each layer contains several processing elements or 
perceptrons with sigmoid non-linearities, expect for the output neurons where saturated 
linear functions are used.   
 
2.2. Learning scheme 

Back propagation algorithm:  This algorithm, which performs a stochastic 
gradient descent, provides an effective method to train a feedforward neural network to 
approximate a given continuous function over a compact domain D. Let u  D be a 
given input. The network approximation error for this input is given by: 

 
)()()( uNNufte                                                 (1) 

 
Training NN(.) to closely approximate f(.) over D is equivalent to minimizing the 
objective function: 
 

Cj
j neJ )(

2
1 2                                                       (2) 
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where the set C includes all the neurons in the output layer of the network. Let wji(n) 
denote a weight between neuron i and neuron j, the correction  )(nwji  applied to 
wij(n) is defined by [4, 5]: 
 

ji
ji w

Jnw )(                                                      (3) 

where  is the learning parameter of the back propagation algorithm.  
 

The correction  )(nwji  can be written as: 

)()()( nynnw ijji                                               (4) 

where 
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Note that (.) is the activation function. In this work, a logistic function is used and it is 

given by: 
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3. Non-linear Inverse Control 
 
The representation of discrete-time dynamical system (single-input/single-output) 

using difference equation is currently well known. Let the controlled system be 
represented by: 

 
)(......,),1(),(),1(),.....,1(),()1( qkukukupkykykyfky  (6) 

 
where y    denotes the output, u   is the input, k is the discrete time index, p and q 
are non-negative integers and f(.) is a non-linear function. In many practical cases, the 
plant input is limited in amplitude, i.e. there exits umin and umax such that, for any k: 

maxmin )( utuu . 
 

It is assumed that the only available a priori acknowledge about the plant is that p 
and q are known.  
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The task is to learn how to control the plant described in Eq. (6) in order to follow 
a specified reference yd(k), minimizing some norm of the error: 

)()()( kykyke d                                                            (7) 
 
Neural networks have been used for inverse modeling in a number of control 

applications [17]. With reference to the general non-linear system of Eq. (6), it would 
seem that the inverse function generating u(k) could be represented by: 

 

 
))(),...,1(),(),....,(),1((

))(......,),1(),(......,),(),1(()( 1

qkukupkykykyNN
qkukupkykykyfku

      (8) 

 
The structure for identification of an inverse plant model is shown in Fig. 2 and 

requires that the error between the neural output u(k) and the desired set point yd(k) be 
back propagated. In this case, the cost function to be minimized is: 

k
d kukyJ 2)(ˆ)(

2
1

 

 

Unknown system

Neural Network
Inverse Model

yd(k)

û

e(t)

y(k)

 
Fig. 2. Inverse model training block diagram. 
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The inverse model is subsequently applied as a controller for the process by 
inserting the desired output or reference signal yd(k+1) instead of the output y(k+1). 
Figure 3 shows the direct inverse control scheme. 

ProcessNN
Inverse Model

(k)û

q-1

q-1

q-1

q-1

y(k+1)yd(k+1)

 
Fig. 3. Direct inverse control structure. 

 
Learning an inverse model was one of the more viable techniques in the 

application of neural networks for control. An inverse model, unlike a forward model, 
has immediate utility for control. There has been some application of direct inverse 
model control and this requires non-parameters variations or no disturbances in the 
process. Unfortunately, process control systems are often non-linear and difficult to 
control accurately. Their dynamic models are more difficult to derive and they are 
subject to parameters variations and disturbances. In this part, we will show that this 
kind of processes, with direct inverse model controller, fails to achieve a good tracking 
performance. 
 
Simulation example: Let the process model given by [13]: 
 

)(
)1()(1

5.1)()1()()1( 22 kua
kyky
kykykyky                                   (9)  

The structure of the neural network is: 3,7,10,1  since the control signal is given by: 

( ) ( 1), ( ), ( 1)u k NN y k y k y k  
 
and the input signal is given by: 
  

)250/2sin(4.0)100/2sin(8.0)( kkku . 
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During the learning phase, the parameter a is set to 1. The inverse neural model 

(Fig. 2) has been trained using a selection of training patterns taking from the open-loop 
plant response with learning rate set to 0.25. Afterwards, the inverse neural model is 
used as a direct controller of the plant as it is shown in Fig. 3, but without delayed 
control signal. 
 

Figure 4 depicts the desired reference signal. Figures 5 and 6 show the good 
tracking performance achieved by the controller in the matched case (a=1).  In the 
mismatched case, the parameter a is set to 1.5 and, by using the same neural controller, 
the simulation results are illustrated in Figs 7 and 8. Theses figures depict the tracking 
performances with high tracking error. Hence, we conclude that the direct inverse 
control is sensitive to parameter variations. 
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Fig. 4.  The desired signal. 
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Fig. 5. The desired signal and the output of MNN when a=1. 
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Fig. 6. The tracking error in matched case. 
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Fig. 7. The tracking performance in mismatched case (a=1.5). 
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Fig. 8. Tracking error performance (a=1.5). 
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4. Adaptive Neural Inverse Control 
 

In last years, numerous adaptive control techniques [3] have been proposed to 
replace the conventional classical methods. The ability to adapt to variations in plant 
dynamics and environment automatically has made such adaptive controllers 
increasingly important for various applications. Before they can be implemented, 
however, mathematical modeling of the plant has to be done, which sometimes is 
difficult and laborious. In addition, inaccuracy in the modeling of the plant could lead to 
degraded performances of the controllers. 

Artificial neural networks are trainable dynamical systems that estimate input-
output functions and, in the previous section, we saw that the inverse model controller is 
sensitive to parameter variations and uncertainties. Thus, to deal with this problem, a 
new NN block (adaptive mechanism) is added to the scheme to update online the 
weights of the inverse model controller. 

The neural network structure of this non-linear controller is shown in Fig. 9. This 
scheme uses two sub-networks (NN1 and NN2). The sub-network NN1 is connected in 
forward path and initially represents the inverse model controller obtained in the first 
stage (Identification phase). On the other hand, the sub-network NN2, which is 
connected in feedback path, is used to update the weights when there are uncertainties 
(unmodeled dynamics) or parameter variations of the plant. 

NN 1 Plant

NN 2

D

u

y(k+1)

û

+

-

yd

 
Fig. 9. Adaptive inverse model control scheme. 
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Thus, the error between the control signal u and the response û of the inverse 
model NN2 is used to update the weights of the inverse model NN2. These new weights 
are used in the forward inverse model controller NN1. 

 
Simulation example:  First the inverse model has been obtained with the parameter 
value of the plant set to a=1. Note that we will use the same structure of the neural 
inverse model used in the previous part and is implemented in forward path as a NN1 
block and the second block NN2 is added to the structure (Fig. 9). The error 

)(ˆ)()( tututeu   is used to update the weights of NN2. These weights are used by 
the NN1 block. In the test phase, the learning rate is set to 0.05 and the parameter a is set 
to 2. The simulation results are shown in Figs 10 and 11. The output of the system is 
close to the desired signal although the parameter value is unknown (since the network 
has been trained with a=1). Thus, the adaptive neural controller has achieved best 
tracking error performance (Fig. 11) with regards to inverse model control (Fig. 8). 
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Fig. 10.  Performance in mismatched case (a=2). 
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Fig. 11. Tracking error performance ( a = 2). 

 
 

5.  Real-time application to temperature system 
 
 Description of the temperature control system 

The temperature control system is an important component in many industrial 
processes. In this work, the used temperature control system, which is from the 
Leybold-Didactic Company [14], consists of a glass channel that can be viewed 
as an oven. A picture of this system is shown in Fig. 12. 
 

The system consists of main components:  
* A power supply (  15v). 
* Power amplifier. 
* Temperature system which includes: Fan, heater (halogen lamp) and flap. All 

these components are inside the glass channel. 
 

Note that in all experiences, the flap and fan are set to 2 div. without disturbances 
(matched case). 
 

The sensor module is used to measure the temperature over the range that can 
transform the measured temperature over the range of 0oC to 100oC into the 
corresponding voltage range of 0V to 10V. Data acquisition board CE122 from TQ 
Company [15] is used as an interface between PC and the controlled system. 
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The main control program, which calculates the control signal to be sent to the 
temperature system through the interface CE122, is written in C++ language. 
 

 
 

Fig. 12. Picture of the temperature control system. 
 
 Input-output characteristics of temperature system 

The neural network is trained to learn the inverse dynamics model of temperature 
system by using back-propagation method. Since the temperature system is an 
open loop stable process, a ramp signal between 0V-10V is injected to 
temperature system via interface-amplifier, with an increment of 0.01V/sample to 
obtain the corresponding output trajectory over one cycle (1000 samples) as 
shown in Fig. 13.  

 
Fig. 13. Input-output characteristics of the process.  
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 Inverse identification of temperature system 
To realize the inverse dynamic, it is necessary to model the plant as a function of 
measured variables. A judicious choice of variables is essential for the success of 
the neural network controller design. In general, the neural network model of the 
inverse dynamics of the plant I(k) is a non-linear function f, which consists of 
delayed plant outputs y and inputs u. As we had no priori knowledge of the 
temperature model, we selected five cases of input vectors as follows [16]: 
 

1. Case a: )()( kyfkI , 

2. Case b: )1(),()( kykyfkI , 

3. Case c: )2(),1(),()( kykykyfkI , 

4. Case d: )3(),2(),1(),()( kykykykyfkI , 

5. Case e:  )1(),1(),()( kukykyfkI . 
 
 Neural networks structure 

A two-layered  neural network having 12 neurons in the first hidden layer and 6 
neurons in the second hidden layer, one output neuron in the output layer and the 
number of inputs depends on different cases (see above). The hidden neurons 
have sigmoid functions and the output has a saturating linear function between 
0V and 15V. By using the data obtained from the input-output characteristics, all 
cases have been used to determine the optimal inverse model of the temperature 
system. Note that training is stopped once the error reaches the value of 10-5 or it 
completes 50,000 epochs. All errors of the five cases are between 10-5 and 510-5. 
 
The non-adaptive inverse model control has been used by simulation for the five 

models cited below. The best tracking performance (with a short steady state error) is 
obtained by the inverse model defined in case b. This model is used in the adaptive 
inverse model controller to control the temperature system. 
 
 Experimental results 

In this experiment, it is desired that the temperature reach two set points: 40oC for 
5000 k  and 60oC for 1000500 k . Thus, we have to inject a 

reference signal yref = 4V for 5000 k  and yref = 6V for 
1000500 k .  In the matched case (without parameter variations), the 

experiment results are shown in Figs. 14 and 15. 
 



R. Hedjar 

 

90 

 

It is shown that good tracking performances are achieved for two points 
regulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Control signal. 
 
 
 

 
 

Fig. 15.  Tracking performance. 
 

As it is stated in the introduction and in the previous part, the variation of 
parameters during operation may degrade the tracking performance. In this part of 
experiment, it was considered that the temperature must reach the value T = 50o C, which 
is equivalent to yref  = 5V. The flap division is set to 2 and the fan speed division is set to 
4. Note that in all previous experiments, both fan and flap divisions are set to 2. To 
check the robustness of the proposed algorithm, at t=320s the fan speed division is 
increased to 6 and the flap division to 4. At t=700s both the fan speed division and flap 
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division are decreased to initial values.  
 

The experiment results are illustrated in Figs 16 and 17. Figure 16 depicts the 
resulted control signal applied to temperature via interface-amplifier. The voltage control 
signal is within the saturation limits. From Fig. 17, we see that the desired temperature 
trajectory is well tracked. The variations of the fan speed and flap have no effect on the 
tracking performances, since they have been compensated. The above results 
demonstrate that the proposed controller has strong robustness properties in the presence 
of disturbance and parameter variations.  

 

 
Fig. 16. The applied control signal in the mismatched case. 

 

 
Fig. 17. Tracking performance in the mismatched case. 
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6. Conclusions 
 

In this paper, an online adaptive control of non-linear system using neural 
networks is applied to the temperature control system. First, it is shown that the neural 
inverse model controller is sensitive to parameter variations and/or uncertainties. Indeed, 
unsatisfactory tracking performances have been obtained. To enhance the robustness of 
this neural control algorithm with respect to parameter variation and/or uncertainties, a 
sub-neural inverse model is added to the structure scheme and weights are updated 
online. Good tracking performances have been obtained in both simulations and 
experimental application although parameter variations and disturbances are unknown to 
the neural controller. 

 
For future work, the proposed control algorithm will be used to control more 

complex non-linear systems. 
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 الموائم بشكل مباشر للنظم غير الخطية باستخدام الشبكات العصبيةالتحكم 
 مع تطبيقها على نظام تحكم بالحرارة

 
 رمضان حجار

 ،كلية علوم الحاسب والمعلوماتلحاسب،  هندسة اقسم 
 الرياض، المملكة العربية السعودية، الملك سعودجامعة 

 hedjar@ccis.ksu.edu.sa: البريد الإلكتروني
 

 م)١٦/٠٤/٢٠٠٧م؛ وقبل للنشر في ١٨/١١/٢٠٠٦(قدّم للنشر في 
 

رغم أن النموذج العكسي للمتحكمات العصبية قد أظهر إمكانيات كبيرة في فرع  :ملخص البحث
المعاملات غير المؤكدة نظم التحكم غير الخطية وغير التقليدية، فإن حساسيتها لتغيرات المعامل و/أو 

لى تطبيقاēا في الصناعة. وبالفعل، فعندما يكون النظام المتحكم به عرضة لتغيرات عادة لا تشجع ع
المعامل أو المعاملات غير المؤكدة فإن أداء الملاحقة يكون غير مقبولاً. ولتفادي هذه المشكلة تم إضافة 

صلابة نظام عكسي إلى دارة التحكم وإجراء تحديث مباشر للأوزان. وقد أظهرت المحاكاة المنفذة 
خوارزمية التحكم. إضافة إلى ذلك فإن النموذج الموائم العصبي للتحكم قد تم تطبيقه على نظام تحكم 
بالحرارة. وتم الحصول على أداء جيد للملاحقة في مجموعة متنوعة من النقاط تنظيم الحرارة. علماً بأن 

على أداء الملاحقة بسبب التعويض  التغييرات الكبيرة للمعامل والاضطرابات لم تؤد إلى إظهار أية آثار
 بشكل مباشر.




