
J. King Saud University, Vol. 22, Comp. & Info. Sci., pp. 45-61,Riyadh (1431H./2010)

An Extended Review of Techniques for Enhancing TCP Performance

Mohammed A. Alnuem
Dept. of Information System, College of Computer and Information Sciences,

King Saud University
P.O. Box 51178 Riyadh 11543, Saudi Arabia

Email: malnuem@ksu.edu.sa

(Received 01/07/2009; accepted for publication 30/12/2009)

Keywords: TCP, Lossy networks, Error discriminators.

Abstract. Transmission Control Protocol (TCP) is considered one of the most important protocols
in the Internet. An important mechanism in TCP is the congestion control mechanism which
controls TCP sending rate and makes TCP react to congestion signals. Nowadays in heteroge-
neous networks, TCP may work in networks with some links that have lossy nature (wireless
networks for example). TCP treats all packet loss as if they were due to congestion. Consequently,
when used in networks that have lossy links, TCP reduces sending rate aggressively when there are
transmission (non-congestion) errors in an uncongested network. In this paper we present
different solutions to overcome the performance degradation problem TCP faces when working
over lossy links. Many solutions have been proposed but we will concentrate on end-to-end so-
lutions that require no help from the intermediate network.

1. Introduction

Many solutions have been proposed to overcome
the problem of TCP bad per- formance over lossy
links (like wireless networks). Some solutions
were in the transport layer and some solutions
were in lower layers like the link layer.

Balakrishnan in [1] divided the solutions into
two general categories: 1- So- lutions that make
TCP unaware of the errors that happen in the
link so TCP thinks that it works on reliable links
with no transmission errors, for example Snoop
agents[2]. 2- Approaches to try to make TCP
aware of the errors caused by the lossy link and
make TCP avoid using congestion mechanisms
for this type of errors. However other authors like
[3] divide these solutions into the fol- lowing more
specific categories: Link Layer, Split Connection
and End-To-End solutions.

In the link layer solutions the aim is to
completely hide the errors that oc- cur in the

link so TCP will be unaware of them and hence
it will not reduce its transmission rate as a
reaction to those errors. In general, link layer
solu- tions are used for wired-wireless networks
and they can be located at the base station
which connects the wired network with the
wireless link just before the receiver. They
monitor the packets that pass the base station
from one end to another and keep record (and
sometimes copies) of the packets sent and set a
retransmission timeout for each packet. When
the wireless link drops a packet either a timeout
will occur or duplicate acknowledgments will be
received at the base station. The base station then
resends the lost packet and suppresses the duplicate
acknowledgment at the base station so TCP does
not notice the drop and hence will not need to
reduce its transmission rate.

A good feature of this approach is that it
preserves the end-to-end semantics of TCP since
it does not break the connection (i.e. the

 Mohammed A. Alnuem: An Extended Review of Techniques…

46

connection negotiation and maintenance remains
between the sender and the receiver only).
However, the problem is that sometimes this
method cannot completely hide errors from the
TCP sender. For example when a mechanism like
Snoop resends a dropped packet but the packet
is dropped again due to high error rates and
then the TCP timeout for this packet occurs
before Snoop has a chance to resend it again.
This could happen because of the mismatch
between the TCP and Snoop retransmission
timeout mechanisms (RTO). In principle the
Snoop RTO should be shorter than the TCP
RTO but this is not always true [3, 1].
Moreover, sometimes Snoop’s aggressive
retransmission may cause congestion at the base
station which may reduce the link utilization.
Examples of Link layer solutions are TULIP[4],
Snoop[2] and AIRMAIL[5].

In Split Connections protocols the aim is to
divide the problem into two smaller ones. This
is done by separating the wired link connection
from the wireless link connection. This is
usually done at the base station where two
connections are maintained. One standard TCP
connection from the wired host to the base station
and another wireless connection from the base
station to the mobile host where a new protocol
that can handle wireless errors is implemented.
The base station plays the role of the interface
between the two connections [3][6]. The TCP
connection from the sender ends at the base
station and then the base station starts a new
connection with the receiver.

A good feature of this method is that we do
not need to do any changes at the sender
because the sender does not need to deal with
the errors on the wireless link. However, the
sender is not now negotiating the connection with
the end receiver so the connection between the
sender and the receiver is broken and the end-to-
end semantics of TCP no longer hold. An example
of this category is I-TCP [6] and M-TCP [7].

The last category is the end-to-end solutions.
Next we will talk about them in more detail.

2 . End-to-End Solutions

In general, most of the end-to-end solutions,
as the name indicates, try to deal with the
problem at the end point of the connection

(sender and receiver) and do not expect help from
the network so they look at the network as a black
box. The main advantage of this approach is
that it does not add overhead to the network.
However, some proposed solutions from this
category use some sort of indirect feedback from
the network as we will see later.

Mainly the following techniques try to find
ways to recover from drops (con- gestion and
transmission) efficiently. Some of these solutions
were designed for a wireless environment and
some were introduced before introduction of
wireless technology. However, since the aim of all
these solutions is to recover from errors efficiently,
they can be used for improving TCP performance
over networks with both congestion and non-
congestion (transmission) errors.

3 . Congestion Drops

In the following we will begin with techniques

designed to recover from conges-tion drops. Later
we will present techniques designed for congestion
and trans- mission drops.

3.1 Retransmission Timeout (RTO)

In Retransmission Timeout TCP attaches a

timer with each sent packet, and when the timer
expires before receiving acknowledgment for that
packet, TCP resends the lost packet and sets the
congestion window to the minimum allowed size.
For more about how RTO is calculated using the
RTT see [8, 9].

RTO is one of the first methods provided to
TCP to recover from errors. However, it is most
efficient when the congestion is serious and the
network needs more time to drain the congested
nodes. On the other hand, if the drops are caused
by transient congestion then it is better to resend
the lost packet without waiting for a timeout to
occur. This idea is the base of the fast-
retransmission mechanism which we will talk
about in the next section.

3.2 Fast retransmission (TCP-Reno)

In earlier implementations of congestion
control mechanisms, there was an as- sumption
that errors due to segment damage are rare (less
than 1% of the sent segments [9]) and so it is

J. King Saud University, Vol. 22, Comp. & Info. Sci., Riyadh (1431H./2010)

47

assumed that most of the segment loss is because
of congestion [10][9]. As a result, when there is a
high packet damage rate or when the congestion
loss rate exceeds 1%, the TCP performance will
suffer badly. Ac- cording to Jacobson [11] TCP
will lose between 50% and 75% of its throughput
when the error rate reaches 1%.

This shows how congestion control
mechanisms are intolerant to high error rates.
This behaviour can be explained if we return to
the combined slow start congestion avoidance
algorithm explained in Stevens [10] and
Allman[12]. In this algorithm Stevens [10]
explained how TCP should react to congestion
as follows: If there is a duplicate
acknowledgment then TCP should set the slow
start threshold ssthresh to half of current window
size (the window size when the error happened)
and then enters the slow start mode when a
timeout occurs. This way all drops will be
recovered by entering slow-start, however, TCP
performance will decrease sharply.

For this reason, Jacobson [11] suggests that
TCP can use the knowledge brought by
duplicate acknowledgment to resend the lost
packet (a fast retrans- mission) and then there is
no need to enter slow start because the
duplicate acknowledgments indicate that these
packet have left the network and there is more
space for new packets to be injected into the
network [12] so no need to reduce the cwnd to
one segment by entering slow start. Instead, TCP
enters con- gestion avoidance by reducing the
congestion window to the half of the current
window size.

Another reason for not using slow start is
given by Stevens [10]. He noted that because we
know that there is still data flowing in the
connection because of the duplicate
acknowledgments we received, we do not want to
cut this flow by entering slow start [10].

3.3 Fast retransmission phase (TCP-
NewReno)

When Stevens [10], in the RFC 2001, explained
the slow start algorithm, he indi- cated that the
first step in the algorithm is to initialize the slow
start threshold variable ssthresh to a high value
(65535 bytes). Also Allman [12], in RFC 2581,
indicated that ssthresh could be set to an arbitrary
high value. However, Heo [13] noted a problem in

this step of the algorithm that may affect TCP
performance.

The problem is that during the start up
phase of TCP connection (slow start), the
sending rate grows exponentially until the
congestion window reaches the ssthresh. So,
giving ssthresh a high value will inject the
network with high number of segments in a short
period of time.

However, the network may be unable to handle
that amount of data at once and, hence, some
packets may be dropped due to congestion.
Moreover, due to this congestion, more than one
segment may be dropped from the same window
[13] and this will create problems to the TCP
fast retransmission mechanism proposed by
Jacobson [11].

The fast retransmission algorithm [11] can
handle only one drop per window and hence if
more than one segment is dropped from the
same window, only one will be resent by fast
retransmission and TCP will recover from the
other losses by using a retransmission timeout
(RTO) which will initiate the slow start
algorithm which will reduce the congestion
window size to its initial value (usually one
segment) and TCP performance will suffer badly
[13].

To understand why the fast retransmission
algorithm cannot recover from multiple drops,
Stevens [10] indicated that the fast
retransmission algorithm is terminated whenever
a new acknowledgment is received. This new
acknowledg- ment is assumed to acknowledge all
packets sent after the lost segment up to the
window size. However, if multiple segments were
dropped, this acknowledgment will acknowledge
only the segments that have been received
correctly up to the second drop. Hence, fast
transmission will be terminated before resending
all lost segments and TCP will enter a series of
retransmission timeouts causing the performance
to degrade.

As a solution, Heo [13], suggested a change
in the fast retransmission al- gorithm so it will
not exit until it receives an acknowledgment for
all dropped segments. This is done by ignoring
the new acknowledgments that acknowledge only
part of the sent segments and repeating fast
retransmission until the sender receives an
acknowledgment for all sent segments. This way,

 Mohammed A. Alnuem: An Extended Review of Techniques…

48

there is no need to wait for the retransmission
timeout (RTO) to force resending the rest of the
lost segments. Floyd et al. [14] call the
intermediate acknowledgments the partial
acknowledgments.

A new variation of TCP was proposed
based on these modifications and called TCP-
NewReno [14]. Also, Floyd et al. [14] has
introduced two options of NewReno regarding
when to reset the retransmission timeout: the first
option is called slow-but-steady NewReno and
the second is called impatient NewReno. In the
former the timeout clock is initialized after each
partial acknowledgment. This way TCP will stay
in fast recovery mode as much as possible but as
the name indicates, the resending rate will be as
low as one packet per round trip time (RTT).
However, in the impatient NewReno TCP will
reset the RTO only after the first partial
acknowledgment so if there are too many packets
dropped from the same window then RTO will
eventually expire before receiving a new ac-
knowledgment and, hence, TCP will enter slow
start [14] and resend all dropped packets and cut
the congestion window at the same time.

3.4 Selective acknowledgment (TCP-
Sack)

The original idea of using selective
acknowledgments (SACK) was proposed ini- tially
by Braden and Jacobson in [15]. However,
detailed implementation and improvements to the
idea were proposed later by Mathis et al. in [16].

Selective acknowledgment is a change to the
way the TCP receiver reacts to receiving new
packets. Usually when the TCP receiver receives
a new packet it sends an acknowledgment to the
sender that carries the received packet sequence
number which indicates to the sender that all
previous packets up to this one have been received
successfully at the sender because of that it is
called cumulative acknowledgment [8]. This way
new acknowledgments will be sent only if the
packets are received in order, otherwise the
acknowledgment will be sent for the last in-order
packet received (duplicate acknowledgment).

However using selective acknowledgments, the
receiver will send an acknowl- edgment for each
packet no matter in what order it has arrived.
This way the sender will have a clear idea of what
packets have been received successfully and this

will solve the problem we described before when
more than one packet is dropped from the same
window [16].

Also using selective acknowledgment will
allow TCP to resend all lost pack- ets without
the need to do unnecessary retransmission of
packets already re- ceived [17]. Using selective
acknowledgment does not require the overhead
of extra traffic since it is sent over normal
acknowledgments [16][17].

However, a disadvantage of the
implementation explained in [16] is that it
requires the use of a retransmission queue to save
unacknowledged segments. Also it requires the
TCP sender to keep a record of the received
acknowledgments. This may requires more
memory usage and perhaps more processing
power for sorting and comparing sequence
numbers for segments in the queue especially
when TCP uses a large sending window (congestion
window). Moreover, SACK is helpless when
retransmission timeout occurs; all segments in the
retransmission queue will be resent even if they
have been sent before [16]. Last but not least,
applying selective acknowledgment requires
changes to both sender and receiver sides which
may be hard in real networks.

On the other hand, accumulative
acknowledgments which used in most TCP
variations is simple and allows easy management
of incoming packets with no need for extra
memory or processing as in the case of selective
acknowledgment. For example it is easy, in
standard TCP, to discover receipt of duplicate
copies of a packet by simply comparing the
packet sequence number with the last ac-
knowledged packet number [8]. This way TCP
does not need to keep a record of the received
packets and only needs to save the last in-order
received packet sequence number. Another
advantage of the standard approach is that if
an acknowledgment is dropped then it is enough
to receive another acknowledg- ment with higher
sequence number since it acknowledges all packets
with lower sequence numbers.

4. Congestion and Transmission Drops

In this section we will present techniques

designed to improve TCP performance for
congestion and transmission drops.

J. King Saud University, Vol. 22, Comp. & Info. Sci., Riyadh (1431H./2010)

49

4.1 Congestion predictors
In this type of solution, TCP uses techniques

such as delays on the links (round trip time) like
the CARD [18] technique (CARD stands for
Congestion Avoidance using Round Trip Delay)
or the connection throughput in the case of the
Tri-s scheme [19] and the Vegas scheme [20] to
predict if there will be congestion and then
control the inflation and the deflation of the
congestion window based on this prediction. If the
predictor does not see congestion happening in
the near future then it suggests increasing the
congestion window. On the other hand, if the
predictor notices that congestion is coming then
it suggests that TCP decrease the congestion
window. As we can see, unlike TCP, drops are not
used here to control the growth of the congestion
window.

In theory, the perfect predictor will eliminate
congestion errors since it will detect and avoid
congestion before it happens. So, if an error
happens then it can be considered to be caused
by the link failure (like wireless errors) rather
than by congestion. We will see later how
congestion predictors can be used to build error
discriminators. Following, brief explanations of
some congestion predictors.

4.2 TCP-Vegas

TCP-Vegas [20, 21] is a modification to the
congestion control mechanism in standard TCP
[9, 11]. It aims to reduce the congestion losses
and to increase TCP throughput by predicting
the available capacity on the link and trying not
to exceed it.

According to the Vegas authors in [20], Vegas
has increased the throughput of TCP up to 70%
more than older implementations of TCP (TCP-
Tahoe & TCP-Reno). Also Vegas has reduced the
losses in the link up to 50% [20].

We will give here an extended explanation of
TCP-Vegas because of its im- portance and since
some other solutions are based on Vegas as we
will see later.
TCP-Vegas introduces changes to TCP in four
areas as follows:

Timeout computation: The authors of Vegas
have noticed from experiments over the Internet
that the timing mechanism used in previous
implementations of TCP is not accurate and that
computing round trip time (RTT) using current

timing mechanisms has given higher RTT
estimations. This makes TCP take up to three
times longer to recover from losses [20]. A new
mechanism has been introduced based on using
a time stamp for each packet and computing
the round trip time by comparing the packet’s
time stamp with its acknowledgment time stamp.
This way a more accurate retransmission timeout
can be computed.

Retransmission of lost packets: TCP-Vegas
introduces a new retransmission mechanism by
changing the way TCP responds to duplicate
acknowledgments. TCP needs to receive three
duplicate acknowledgments before it retransmits
the lost packet. However when Vegas receives the
first duplicate acknowledgment for a segment it
compares the time stamp with the current time.
If the difference is more than the computed
timeout then it triggers retransmission without
waiting for more duplicate acknowledgments to
come [20]. As we can see this will add overhead
to the system to record a time stamp for each
segment and save it until it receives an
acknowledgment. However, the authors indicated
that the overhead of using TCP-Vegas will not
exceed 5% more than older implementations [20].

The other area in which TCP-Vegas provides
changes is in congestion avoid- ance: TCP-Vegas
has made dramatic changes to the congestion
avoidance mech- anism used in TCP by making
TCP to increase/decrease the sending rate, not
based on packet drops as in TCP, but based on
prediction of available link bandwidth.

Vegas estimates an expected throughput and
an actual throughput for the connection. The
expected throughput is computed using the
current window size and the minimum RTT seen
so far. The actual throughput is computed using
current window size and last RTT reading.

Then Vegas compares the expected
throughput and the actual throughput and
updates the sender window according to the
comparison results as following: If the actual
throughput is less than the expected one then
TCP is unable to utilize the link because there
is congestion and hence it should decreases the
window size [20]. On the other hand, if the actual
throughput becomes closer to the expected
throughput then it is safe to increase the window
size. The increase and decrease in the window
size is linear unlike TCP which uses Jacobson’s

 Mohammed A. Alnuem: An Extended Review of Techniques…

50

AIMD [9] mechanism (Additive increase
multiplicative decrease) to update the congestion
window.

The Vegas algorithm is expected to prevent
congestion from occurring and, hence, reduce
congestion drops dramatically.

Slow Start: In Vegas, the congestion
predictor, explained above, is added to the slow
start mechanism. Another modification Vegas
makes to slow start is that the update of window
size during slow start is not done every RTT;
instead it takes two RTTs before increasing the
window size. This is done to give the algorithm
chance to measure the actual throughput
between updating window size [20].

Hengartner et al. in [22] have reviewed each of
the modifications Vegas did to TCP. Their results
show that the new retransmission technique has
improved the performance noticeably because it
was able to avoid timeouts during multiple
packet drops from the same window. It does
this by performing retransmis- sion when its
new timeout mechanism expires even before
receiving duplicate acknowledgments.

However, the results in [22] showed that TCP-
Vegas suffers from performance degradation when
it coexists with versions of TCP that use the
AIMD mecha- nism like TCP-Reno. This is
because the AIMD mechanism is more aggressive
in grabbing the link bandwidth because it keeps
increasing the window size until an error occurs
while Vegas tries to prevent causing drops and
hence it keeps smaller window size. This indicates
that the congestion predictor in Vegas some- times
has a negative impact on the performance [22].
Also, we will see later how the authors in [23]
have confirmed this fact (i.e. Vegas predictor
poor perfor- mance) when we talk about using
the Vegas congestion predictor in an error
discriminator.

4.3 TCP-westwood

Mascolo et al. in [24] proposed a modification
to the congestion avoidance al- gorithm used in
TCP-Reno, which uses duplicate acknowledgment
and timeout as an indicator for congestion and
to update the sender window [9]. However,
duplicate acknowledgments do not give indication
of the type of the error (con- gestion or
transmission error). For this reason Mascolo et al.
[24] suggested that the TCP sender should do

continuous estimation of the bandwidth and
update the window size according to that
estimation [24]. This way TCP will send in a
rate that will occupy the available bandwidth
only and hence any error could be considered
safely as a transmission error. Westwood
estimates the available bandwidth by monitoring
incoming acknowledgments and assumes this rate
re- flects available link capacity in the forward
path [24].

Also TCP-Westwood [24] suggested that TCP
does not need to halve the window size when
errors happen, like TCP-Reno. TCP-Reno halves
the window size whenever there is an error and
hopes this action will solve the congestion and,
at the same time, it increases the congestion
window linearly to utilize the available bandwidth
without more investigation of the link status. In
contrast, after each drop TCP-Westwood [24] uses
the estimated bandwidth-delay product to set the
sender window according to the current
congestion level [25].

The authors of TCP-Westwood [24] reported
big improvements in TCP per- formance,
especially over networks suffering from
transmission errors like Wired- Wireless networks
[24]. This improvement has been confirmed by
Grieco & Mas-colo in [26]. Also the experimental
results reported in both [24] and in [26] showed that
TCP-Westwood has maintained fair sharing of
the bandwidth and it does not lead to starvation
of TCP-Reno connections.

However Biaz et al.[27] did experiments on
TCP-Westwood when coexisting with non-TCP
traffic on the reverse link and their results
indicate that TCP- Westwood could not estimate
the link capacity correctly when a non-TCP traffic
exists in the reverse path. This result can be
explained since bandwidth estima- tion in TCP-
Westwood is based on taking the average rate of
received acknowl- edgments and, since the added
traffic in the reverse path could add additional
delay to the received acknowledgments, TCP-
Westwood will underestimate the available
bandwidth.

4.4 Error discriminators

All methods that try to understand the cause
of the error and to act differently to each type of
error based on that understanding are called error
discriminators.

J. King Saud University, Vol. 22, Comp. & Info. Sci., Riyadh (1431H./2010)

51

Some error discriminators deal with the
network as a black box and do not need any
feedback from the network in order to
discriminate errors. Other types of error
discriminators use help from intermediate
networks in order to under- stand the cause of the
error.

In the following, we will talk about both
types and we will start with error discriminators
that depend upon the network to help
distinguishing errors. As far as we know this is
the first attempt to classify error discriminators.

4.5 Network dependent error

Discriminators Network dependent error
discriminators are actually based at the end-
point of the connection but use help from the
intermediate nodes. However, although they are
not totally end-to-end we mention them here for
two reasons, first all network dependent error
discriminators explained in this section use
already popular active queuing mechanism
techniques like the use of explicit conges- tion
notification through RED [28] (Random early
dropping) queues. Second reason, is that we
want to complete the picture about the error
discrimination techniques.

The advantage of this approach is that both
end hosts can have detailed information about
the cause of drops and the network status.

However, if we want to apply this approach in
a large network we may need a wide-scale change
to the network components (i.e. mainly we need
to change the routers if we want notification for
congestion drops and we need changes in the
wireless base stations if we want wireless drop
notification).
Following I will explain briefly some network
dependent error discriminators.

4.6 TCP-casablanca

The key idea TCP-Casablanca introduces
[27] is as follows: Congestion errors and
transmission errors usually happen randomly
and this is basically why it is difficult to
differentiate between them. However, if we can
”de-randomize” [27] the congestion errors by
making congestion errors take a non-random
form then it will be easy to discriminate the non-
random congestion errors from the random
wireless errors[27].

The mechanism works as follows: The sender
marks each outgoing packet with one of the marks
(in/out) in a consistent pattern, for example by
marking four packets with (in) and the fifth
packet (out) and so on. When congestion occurs
at intermediate nodes there should be a biased
queue-management mechanism that drops only
the packets marked with the (out) mark. This
way, the receiver receives the packets with a
consistent pattern of drops, because only
packets marked with (out) are dropped, so the
receiver recognizes that the errors are congestion
errors.

On the other hand, if a wireless error occurs,
then the drops will be random among all packets
(in-marked and out-marked) and, hence, the
receiver can recognize that these random errors
are wireless errors [27].

If the receiver diagnoses a wireless error it
marks the acknowledgments with an explicit loss
notification (ELN). When the TCP sender
receives a duplicate acknowledgment, because of
error, it checks if the acknowledgment contains
ELN and, if so, TCP considers the loss to be
wireless loss; otherwise it considers it to be a
congestion error [27]. In case of congestion error
TCP cut the congestion window, otherwise it
only resend the packet and does not cut the
congestion window.

So, as we can see applying this mechanism
requires mainly four changes to TCP
sender/receiver and the network: First adding
an error discriminator at the sender (which is
called Casablanca) and acting according to the
ELN signals it receives. Second, the receiver
should be able to deduce when a random or
non-random drop occurs and to send ELN if a
random error occurs . Third, an active queuing
mechanism should be implemented in the
bottleneck, which will drop only packets marked
with the (out) mark. Finally the packet format
should be altered to add in/out marking and
ELN. The reset of the protocol is based on the
NewReno [14] version of TCP.

The authors indicated that the Casablanca
discriminator has achieved high accuracy in
discriminating between congestion and
transmission errors and, using it in TCP, gave
significant (above 100%) improvement in TCP
perfor- mance [27]. Accuracy is a crucial
component in this error discriminator since it

 Mohammed A. Alnuem: An Extended Review of Techniques…

52

uses an aggressive action toward non congestion
drops by not cutting the congestion window size
for these drops and keeps it as big as it was
before the drop.

4.7 TCP-ifrane

TCP-Ifrane [27] is a sender based version of
TCP-Casablanca [27]. In TCP- Ifrane changes
are made at the sender only and not the
receiver. When the sender sends a packet it
records whether this packet is marked as out or
in. If the sender receives a duplicate
acknowledgment indicating that a packet is lost,
it looks at its record and sees if that packet was
marked out or in when it was sent. If the packet
was marked out the error is considered to be
congestion error otherwise it is considered as
wireless error [27]. TCP-Ifrane was found to give
higher throughput than TCP-Casablanca; this is
because it has less congestion accuracy and hence
it slows down less than TCP-Casablanca [27].
However, the effect of TCP-Ifrane’s accuracy was
not studied by the authors in [27].

4.8 Explicit congestion notifications

Explicit congestion notification [29] was first
introduced to help TCP avoid con- gestion by
allowing intermediate nodes to set a congestion
notification bit in the IP header whenever
congestion is expected. The TCP sender will
respond to this notification by reducing its
transmission rate. An Active Queue Man-
agement (AQM) mechanism (e.g. RED [28]) is
placed at the congested nodes and becomes
responsible for marking packets when congestion
is expected (in case of RED the packets will be
marked when the queue reaches a particular
threshold).

Using ECN requires changes in both the TCP
sender and receiver. Also it requires the use of
AQM at the congested nodes. However, using
ECN does not require changing the TCP
congestion mechanisms since TCP responds to
ECN in the same way as it responds to a packet
drop.

Dawkins et al. in [30] has proposed the use
of ECN to improve TCP per- formance over
wireless links by modifying the way TCP responds
to ECN. Biaz [31] explains the technique as
follows: If a drop is detected by receiving duplicate
acknowledgments, then we look if we have

received an ECN in the near past. If ECN is
received before the error happened, then this is a
strong indication that this error is caused by
congestion. This is based on the understanding
that, in ECN-capable connections, ECN should
always happen before congestion drops. So, if the
ECN preceded the drop then TCP considers this
drop to be conges- tion drop and acts by reducing
the senders window size in order to resolve the
congestion.

However, if the drop happens while not
preceded by ECN, its then considered as a wireless
error and TCP does not reduce the senders
window size [31]. How- ever, we still need to
retransmit the lost packet. The authors in [30]
argue that this approach will improve TCP
performance over networks with transmission
errors like wireless networks specially those suffers
from high error rates.

However, Biaz in [31] studied the possibility
of using ECN to distinguish between error
types. He argues that this approach is not an
accurate method to differentiate between
congestion and transmission errors and showed
that transmission errors can be random so that the
probability that ECN will precede a congestion
error is approximately the same as the
probability that ECN will precede a transmission
error[31].

So the authors in[31] proposed that instead of
using ECN directly to infer the type of the error;
TCP should also look at the state of the sender.
If the sender was in congestion avoidance phase
then the drop is probably a transmission drop.
However, if the sender was in slow start phase
then the drop is considered congestion drop. The
new protocol is called TCP-Eaglet [31] and it
showed improvement over standard TCP
performance.

4.9 TCP-jersey

Xu et al. [32] has suggested using the
estimated bandwidth instead of errors to tell
TCP when to decrease sender window size,
which is an idea similar to Westwood [24] but
with a different implementation. The available
bandwidth is estimated based on the rate of
arrival acknowledgments. High acknowledgment
arrival rate means packets can get to the other
end fast and hence high network capacity.
Moreover, in this approach the nodes in the

J. King Saud University, Vol. 22, Comp. & Info. Sci., Riyadh (1431H./2010)

53

middle should be able to mark packets when
congestion is expected in order to notify the
sender [32]. So this method is a combination of
TCP-Westwood and ECN error discrimina- tor
[30] except that it differs in some implementation
details in both cases.

However, like TCP-Westwood, TCP-Jersey
may suffer from performance degradation when
coexisting with non-TCP traffic on the reverse
link because it cannot estimate the link capacity
correctly since the added traffic in the re- verse
path can delay the acknowledgments, so it will
underestimate the available bandwidth.

However, improvement has been done to TCP-
Jersey to overcome this prob- lem. The improved
version is called TCP-New Jersey [32] and it uses
acknowl- edgment timestamps [33] instead of
acknowledgment arrival rate to calculate
estimated bandwidth which solves the problem of
delayed acknowledgments be- cause each
acknowledgment has a time stamp which allows
the sender to cal- culate the forward path delay.
The authors indicated that simulation results of
TCP-New Jersey gave good results and show
improvement in TCP performance particularly
with reverse paths that suffers from congestion
and lossy links [32].

4.10 Network independent error
discriminators

This kind of solution implicitly infers the
cause of packet drop without the need of explicit
notification from the network about the cause of
the drop. In this kind, the solution is based at
the end hosts (or one of them). The advantage of
using this approach is to keep the changes to a
minimum (to the end hosts) and there is no need
to make changes to the network components,
which may require wide scale changes. However,
an obvious limitation to this approach is that the
end hosts will not have detailed information
about the status of the congestion or the
transmission drops and can only guess the
situation using implicit signs from the network
(like packet delay for example).

Some of these solutions are based on using
congestion predictors like Ve- gas [20] or CARD
[18] or Tri-s [19]. In this approach the
discriminator works by taking input from the
congestion predictor about the congestion status
when a drop occurs. If the congestion predictor

was predicting congestion then the drop is
considered to be congestion loss. However if the
predictor was suggesting increasing the sending
rate, because it does not predict any congestion
in the near future, then the drop is considered to
be caused by link error [23] .

Also we must notice that as [23] indicated,
designing an accurate error pre- dictor is
important since mistakes of distinguishing
transmission errors from congestion errors could
cause unnecessary congestion which is usually
avoidable by using normal congestion control
algorithms [23]. For example, if a congestion error
is mistaken to be a transmission error then
TCP will not decrease the window size and this
will make the current congestion much worse.

Experiments were performed by Biaz and
Vaidya [23] on three different error discriminators
based on congestion predictors: the CARD [18],
Tri-s [19] and Vegas [20]. Unfortunately the
results obtained by Biaz and Vaidya experiments
in [23] show that these congestion predictors are
no better than a random loss predictor. From
these results, Biaz came to the conclusion that
these three con- gestion predictors are not
suitable as an accurate error discriminator.

The reason which leads to the failure of
these methods to make a good error
discriminator is that they assume that if one TCP
increases its congestion window then the network
delay will increase. So they assume that one
connection can affect the whole network. Using
this assumption, if TCP is able to gain high
throughput then this is an indication that the
network is not congested. On the other hand, if
TCP is able to gain only small part of the
expected network throughput then this means
that a congestion exists.

However, in [34] the authors showed that
when TCP increases its sending rate the RTT
could go either way (i.e. increase/decrease). They
showed that the correlation between a single
connection sending rate and the RTT is weak
[34]. This is because usually a single connection
forms a small part of the network aggregate
traffic.

However, the authors in [34] also emphasized
on the sensitivity of the net- work delay to the
total load, which makes the measured RTT a
good indication of congestion events and hence
RTT can be used to build an effective error

 Mohammed A. Alnuem: An Extended Review of Techniques…

54

discriminator.
In the following sections we will present

briefly some error discriminators based on
congestion predictors and show how they work.

4.11 Error discriminator based on vegas
congestion predictor

Based on the Vegas predictor [20] described
earlier, Biaz and Vaidya [23] pro- posed an error
discriminator that computes the difference
between expected throughput (link capacity) and
the actual throughput in order to predict con-
gestion and use this difference to define a new
variable fVegas. The difference is computed as
follows: D = expected throughput - actual
throughput If D > 0 this means that TCP
throughput is less than what it should be to
utilize the link and this indicates that congestion
exists in the connection path and hence any drop
is considered to be a congestion drop. On the
other hand if D ≤ 0 this means that TCP
throughput is actually able to utilize the link
capacity and hence there is no congestion and
any error is considered to be a transmission
error.
The simulation results in [23] show that the Vegas
based error discriminator has achieved low to
medium performance in terms of accuracy in
defining error types. As we said before, this is
due to the assumption that the network will
respond noticeably to the changes in a single
connection window. This is not always true
since, in large networks, a single connection
forms a small fraction of the whole traffic [23]
and this will affect the error discriminator
ability to discover congestion errors.
This also applies to the next two error
discriminators based on CARD [18]
and Tri-s [19] congestion predictors.

4.12 Error discriminator based on card
delay-based congestion

Predictor Congestion Avoidance Round trip
Delay (CARD) [18] is an approach to up- date
the TCP sender window size without the need to
have any feedback from the network. It is called
[18] a black-box approach since it deals with the
net- work as a black box and does not require
any explicit feedback from the net- work. It
works by analyzing the relation between the
round-trip delay and the throughput of the

connection in order to predict the optimum
window size that gives maximum throughput
with minimum delay. The authors in [18] call it
maximum Power where the power is the ratio
of throughput and delay : P ower = (T
hroughput/Delay) [18]. The aim is to have
maximum Power.

Unlike TCP, this approach does not use
errors to update the window size which is
approach similar to TCP-Vegas [21]. However
Jain[18] did not provide a complete TCP solution
like TCP-Vegas, instead, it gives a mechanism
that can be used to replace Jacobson’s [9]
congestion avoidance mechanism in TCP.

The CARD [18] measures the change of the
increase/decrease rate in the connection
throughput and delay. When the network is fully
utilized then any small increase in the throughput
will result in a big increase in the observed delay.
This gives a good indication that the network is
congested. However, when the network capacity is
underutilized then the increase in the throughput
will result in a small (or none) increase in the
network delay.

Using this approach will add no overhead on
the network since it requires no feedback from
the network [18]. This approach assumes there is
a single con- nection that can utilize the whole
network capacity and hence increase/decrease the
network delay [18]. As we said before this
assumption is not always valid in real networks.

Biaz et al. [23] designed an error
discriminator based on the CARD [18]
congestion predictor. The discriminator uses the
assumption used in CARD that if the network is
not congested then the rate of change in the
delay will be zero. However, when the network
starts building queues with the increase in the
TCP window size then the delay will change
rapidly. The discriminator monitors the delay and
the window size changes; if both are increasing
then the drop is considered to be congestion drop
otherwise the drops is considered transmission
drop.

The results presented in [23] indicate that the
error discriminator based on the CARD predictor
is poor in discriminating between error types
[23]. Again this because of the assumption used
in CARD that a single TCP window size will
affect the network delay.

J. King Saud University, Vol. 22, Comp. & Info. Sci., Riyadh (1431H./2010)

55

4.13 Error discriminator based on tri-s
throughput-based congestion predictor

The Tri-s [19] congestion predictor proposed
an approach to predict conges- tions in the link
based on the throughput rather than errors. Its
difference than CARD [18] approach is that Tri-s
monitors only the changes in the connection
throughput. Also this approach tries to find the
optimal window size only at the beginning of
the connection and fix it through the rest of the
connection period. Only when a major change in
the connection happens, like when a new
connection starts or an old connection
terminates, the optimal window size is
recalculated. Small changes during the connection
are dealt with by buffering in the network instead
of changing the sender window size [19].

An error discriminator based on this idea has
been proposed in [23]. This is based on the
assumption that if the network is free of
congestion then the con- nection throughput will
increase rapidly and hence any drop will be
considered to be a transmission drop. However,
if there is congestion in the network the TCP
throughput will decrease and any error will be
considered to be a conges- tion drop. The results
presented in [23] show a poor discrimination level
and this is for the same reasons mentioned before
for the Vegas and CARD based error
discriminator.

4.14 TCP-veno

TCP-Veno [35] applies changes to the Vegas
[20] congestion predictors in order to differentiate
between congestive states [35] and non congestive
states [35] of the connection. If a packet drop
occurs during a congestive state then it is
considered a congestion drop otherwise it is
considered transmission drop.

TCP-Veno estimates the number of packets
buffered in the network and if this number
exceeds a predefined threshold (3 in this case)
then the system enters congestive state [35]. It
uses Vegas [20] congestion predictors to estimate
buffered packets and, instead of updating the
congestion window based on this information like
Vegas, it uses it to differentiate between errors
and uses TCP AIMD to update the congestion
window.

The other change TCP-Veno proposes is to

reduce the rate at which the congestion window
increases during the congestive state. So instead of
increasing the congestion window every RTT, the
window is increased every other RTT if the
system is in the congestive state [35].

The authors in [35] reported noticeable
improvement (up to 80%) for TCP- Veno over
TCP-Reno in different scenarios. However, TCP-
Veno suffers from the bad performance of Vegas
predictor mentioned before which may lead to
classify errors wrongly.
An important feature of TCP-Veno is that it cuts
the congestion window even for transmission errors
by a fixed factor of 4/5 [35] which may reduce the
effect of poor discrimination ability. We could not
find any other error discriminator that uses a
special action in case of transmission errors.

4.15 Receiver based error discriminators

Most of the previous solutions are based in
the sender side of the connection. Following we
will describe some solutions which are designed to
be in the receiver side of the connection.

In [36] the authors proposed a receiver based
error discriminator that uses a heuristic method
to discriminate between transmission and
congestion losses. In this method the authors
assume that the lossy link will be always the
bottle- neck of the connection, for example a low
bandwidth last hop in a wired-wireless network.
Hence, in the case of congestion all packets will
be queued in the bot- tleneck in the wireless base
station. So, when the base station sends the
packets they will travel back-to-back on the
wireless link. As a result, the TCP receiver can
compute the inter arrival time of the packets
and use it to determine the cause of the drop.

For example, if we have packets 1,2 and 3,
then in normal cases there will be T time
between consecutive packets. However, if one
packet is dropped, say packet 2, then the time
between packet 1 and 3 will be at least 2T. From
that the receiver can know that a drop in the
wireless links has occurred.

However, if packet 2 was dropped before the
base station because of conges- tion, then packets
1 and 3 will probably be queued in the base
station because the wireless link is the
bottleneck, the time between packet 1 and 3 will
be less than 2T and hence the receiver can
recognize that this error is due to congestion error

 Mohammed A. Alnuem: An Extended Review of Techniques…

56

[36].
The problem with this method is that it

requires the wireless link to be the bottleneck
(the one with least bandwidth) [36]. Also, as we
noticed from the example above, this method
works only if the wireless link is the last hop in
the path and directly before the TCP receiver and
also if a non-stop stream of data is being sent
(bulk data)[36]. However, the simulation results in
[36] showed that by using this method TCP could
discriminate between wireless and congestion
errors, in most cases, as good as a perfect error
discriminator i.e. with accuracy around 100% of
discriminating both types of errors.

A similar approach has been proposed in
WTCP (Wireless Transmission Control Protocol)
[37] but without the constraint that the base
station should be the bottleneck. This is achieved
by computing an average inter arrival time at the
receiver (AvgT). When a drop occurs instead of
comparing with T we compare with average
AvgT. If current inter arrival time is within a
predefined threshold from AvgT then the error is
considered a transmission error otherwise it is
considered a congestion error. A promising result
has been reported in [37] after using this
approach.
Another receiver based error discriminator is
proposed in [38] and called TCP-Real. TCP-
Real uses the rate of receiving data at the
receiver to detect congestion. It computes an
expected receiving rate and an actual receiving
rate based on the congestion window size and
minimum RTT and current RTT. If the actual
receiving rate is less than the expected then the
receiver signals the sender to increase its
congestion window and if the expected rate is less
than the actual the receiver signals the sender to
reduce its congestion window (we can notice the
similarity with TCP-Vegas [20] which uses same
concept but at the sender).

Because this method uses the receiver to
calculate the congestion window size it solves the
problem when the return path is slower that the
forward path by considering the available
bandwidth on the forward path only [38].
Experi- mental results in [38] shows that TCP-
Real improves TCP performance when compared
to TCP-Reno and TCP-Tahoe specially with the
increase in the error rate. However, TCP-Real
does not define a clear action for transmission

drops and seems to keep the congestion window
open.

4.16 Fast recovery plus

Fast recovery plus [39] has introduced a
modification to TCP fast retransmission [11] and
fast recovery [12] algorithms so it can
discriminate between congestion and transmission
errors. The idea is simple; the TCP sender
maintains a counter of how many times the fast
retransmission-fast recovery module is called by
duplicate acknowledgments before receiving a new
acknowledgment. The authors in [39] assumes that
transmission errors will occur in small numbers
per window of data compared to congestion
errors. So the counting of the number of fast
retransmission-fast recovery events can give an
indication of the error type. If this number
exceeds a preset threshold then the error is
considered to be a congestion error otherwise it
is considered a transmission error. The author in
[39] did not explain how to choose the error
threshold in order to decide the error type and we
assume it is a fixed one that will be chosen
based on the system experimental results.

The results shown in [39] presents a good
improvement in TCP throughput when Fast
Recovery plus is used. However, like previous
error discriminators, this method does not
consider an action in case of transmission errors.

4.17 Spike error discriminator

The authors in [40] did a series of
experiments on UDP performance in the
Internet and they noticed that most congestion
drops occur during specific pe- riods related to
noticeable increase in the packet trip time from
the sender to receiver. They call these periods
spike-train periods [40] since spikes appear in the
packet trip time graphs when congestions occur.
These spikes were found highly correlated with
congestion events and hence congestion drops
[40].

The authors in [41] used this idea to design
an error discriminator which uses spike-train
periods [40]. They define two states, the spike-
state and, non spike-state. In the spike state the
connection is considered in congestion state and
any drop that occurs during this period is
considered a congestion drop. During the non
spike-state any drop is considered a transmission

J. King Saud University, Vol. 22, Comp. & Info. Sci., Riyadh (1431H./2010)

57

drop [41]. The system enters the spike-state if the
packet trip time exceeded a threshold called
Bspikestart and ends when the packet trip
time becomes below Bspikend [41]. These
thresholds are computed dynamically according
to current relative one way trip time (ROTT)
reading as follows:

Bspikestart = ROT Tmin + α(ROT Tmax− ROT Tmin)
 (1)

Bspikend=ROT Tmin + β(ROT Tmax− ROT Tmin)

 (2)

Spike uses ROTT instead of round trip time
(RTT) because it was designed for UDP
applications where there is no acknowledgment so
the authors used the relative one way trip time
and since the sender and receiver clock may vary
the term relative is used.

The Spike [41] error discriminator performed
well under different scenarios where congestion
and transmission errors were present. It was able
to achieve high link utilization. However, its
accuracy of distinguishing between error types was
moderate (around 50%) and this has led to
increased congestion in several cases [41].

5 . Conclusions and Recommendations

Our aim in this paper is to give an overview

of the efforts to improve TCP performance in
presence of errors (congestion and transmission).
Some of the main end-to-end solutions are
presented here and more related solutions can
be found in [42–47]. Table 1 shows some of tha
main features of the presented protocols (the
meaning of the letters in ’Required changes’ filed
in table 1 is as follows: s:sender, r:reciever,
n:network, pf:packet format. Also ED in the
filed ’Protocol/Technique’ means Error
Discriminator).

Also to show the effect of adding an error
discriminator on TCP performance, in Fig. 1 we
present the performance comparison of TCP
before and after adding an error discriminator
named TWA [48] (Transmission Window Action)
in a semi-log scale. This gives an example of the
noticeable effect of adding an error discriminator
on TCP performance. In figure 1 the Goodput is
normalized by each flow fair share of the

bottleneck bandwidth.
We explained several protocols in this paper, in

all of these protocols the main aim was to improve
TCP performance when congestion and
transmission errors coexist. However, we can
categorize these solutions into two categories
depending on how they solve the problem. The
first category tries to distinguish between
congestion and transmission errors and apply
different actions for each case. All error
discriminators like TCP-Casablanca [27] come
under this category. We will call them two actions
solutions because in concept they can apply
different actions at each case (i.e. congestion or
transmission drops).

On the other hand other solutions apply one
action which can only detects and response to
congestion and will do nothing if there are no
congestion drops (and only there are
transmission errors). These kind of solutions
usually ap- ply techniques which by nature
respond to congestion only. For example, TCP-
Vegas [20] which uses expected and actual
throughput to set the congestion window or
TCP-Westwood [24] which uses Bandwidth-Delay
product to set the congestion window size which
will be affected mainly by the change in the avail-
able bandwidth due to the congestion in the
network. These solutions do not differentiate
between error types but only respond to
congestion (by increasing sending rate if there is
no congestion and decrease the sending rate if
there is congestion) so we call them the one
action solutions.

However, in both one action and two actions
solutions the TCP reaction to transmission errors
is simply not to cut the congestion window and
to keep the sending rate as it was before the error.
Moreover, in the two action solutions when the
protocol discovers transmission errors it
implicitly implies that it should increase the
congestion window (not just do nothing).

These assumptions give rise to a question
about whether the transmission action in current
error discriminators is enough or not. Authors like
[27] indicated that the current transmission action
used in error discriminators is a bad one. This is
because it is simplistic and it ignores two facts:
first it is very hard to have an end-to-end error
discriminator with very high accuracy. Second,
even with accurate error discriminators

 Mohammed A. Alnuem: An Extended Review of Techniques…

58

mismatches between error types can occur.
Because of that some studies like [41, 27, 45]
indicated that error discriminators usually
increase the congestion loss rate noticeably.

Moreover, even the one action solutions can
be affected by the lack of ap- propriate
transmission action. This could happen when the
technique used to discover congestion in the
network fails to do so and hence no action is taken
in case of congestion.

There should be an extended study of the
effects of the lack of action in case of
transmission errors on current error
discriminators and on the network.

As we said before, some studies noticed
increase in the congestion level in the network
when using some error discriminators which we
believe related to the lack of action in the case
of transmission errors. We recommend that
current error discriminators should use a set of
actions in the case of transmission errors where

Table 1. comparison of some features in protocols presented in this paper
Protocol/Technique Action-congestion Action-

transmission
Required
changes

Vegas
Westwood
Casablanca
I-frane
ECN
Jeresy
ED based on Vegas
ED based on CARD
ED based on Tri-s
Veno
Biaz (receiver)
WTCP
TCP-Real
Spike

Additive Decrease
BWE * MinRTT (pipe size)
Multiplicative decrease
Multiplicative decrease
Multiplicative decrease
Delay-Bandwidth + ECN
Multiplicative decrease
Multiplicative decrease
Multiplicative decrease
Multiplicative decrease
Multiplicative decrease
Based on receiver estimation of congestion level
Based on expected and actual receiving rate
Multiplicative decrease

Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Cut by factor (4/5)
Not available
Not available
Not available
Not availabl

s + r
s
s + r + n + pf
s, n, pf
s, n, pf
s, n, pf
s
s
s
s
r
r
r
s

Fig. 1. TCP and TWA semi-log scale normalized goodput.

J. King Saud University, Vol. 22, Comp. & Info. Sci., Riyadh (1431H./2010)

59

these actions should provide the following:

 These actions should be able to achieve the

aim of any error discriminator which is to
improve TCP performance when congestion
and transmission errors coexist.

 These actions should be able to prevent
increasing the congestion in the network
which may occur because of the first aim.

We hope that having these addition actions

in any error discriminator will create a balance
between the need to improve TCP performance
and the need to prevent congestion in the
network.

In this work we wanted to shed the light on the
need of such actions. In other works like [49] we
explain our vision of how these actions should be
designed to achieve the two aims mentioned
above.

References

1. Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H.Katz. A comparison of mechanisms for

improving tcp performance over wirelesslinks. In Conference proceedings on Applications, technologies, architectures, and
protocols for computer communications, Palo Alto, California, United States, 1996. ACM Press. pages 256-269.

2. H. Balakrishnan, S. Seshan, Amir E., and R. H. Katz. Improving TCP/IP perfor- mance over wireless networks. In
Proceedings 1st ACM international conference on Mobile Computing and Networking (Mobicom), 1995.

3. H. Elaarag. Improving TCP performance over mobile networks. ACM Computing Surveys (CSUR), 34(3):357–374, 2002.
4. C. Parsa and J. J. Garcia-Luna-Aceves. Improving tcp performance over wireless networks at the link layer. Mobile

Networks and Applications, 5(1):57–71, 2000.
5. E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and R. D. Gitlin. Airmail: a link-layer protocol for wireless

networks. Wireless Networks, Kluwer Academic Publishers, 1(1):47–60, 1995.
6. A. V. Bakre and B. R. Badrinath. Implementation and performance evaluation of indirect TCP. IEEE Transactions on

Computers, 46(3):260–278, 1997.
7. K. Brown and S. Singh. M-TCP: TCP for mobile cellular networks. ACM SIG- COMM Computer Communication

Review, 27(5):19–43, 1997.
8. J. Postel. Transmission control protocol. RFC 793, 1981.
9. V. Jacobson. Congestion avoidance and control. In Symposium proceedings on Communications architectures and

protocols, pages 314–329, Stanford, California, United States, 1988. ACM Press.
10. W. Stevens. TCP slow start, congestion avoidance, fast retransmit, and fast re- covery algorithms. RFC 2001, 1997.
11. Van Jacobson. Modified TCP congestion avoidance algorithm. email sent to end2end-interest mailing list, 1990.
12. M. Allman, V. Paxson, and W. Stevens. Tcp congestion control. RFC 2581, 1999.
13. J. C. Hoe. Improving the start-up behavior of a congestion control scheme for tcp.
In Conference proceedings on Applications, technologies, architectures, and proto- cols for computer communications, pages

270–280, Palo Alto, California, United States, 1996. ACM Press.
14. S. Floyd and T. Henderson. The NewReno modification to TCP’s fast recovery algorithm. RFC 2582, 1999.
15. V. Jacobson and R. T. Braden. TCP extensions for long-delay paths. RFC 1072,1988.
16. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. Tcp selective acknowledgement options. RFC 2018, 1996.
17. K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno and SACK TCP. ACM SIGCOMM Computer

Communication Review, 26(3):5–21, 1996.
18. R. Jain. A delay-based approach for congestion avoidance in interconnected hetero- geneous computer networks. ACM

SIGCOMM Computer Communication Review,
19(5):56–71, 1989.
19. Z. Wang and J. Crowcroft. A new congestion control scheme: slow start and search
(tri-s). ACM SIGCOMM Computer Communication Review, 21(1):32–43, 1991.
20. L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: new techniques for congestion detection and avoidance.

In Proceedings of the conference on com- munications architectures, protocols and applications, pages 24–35, London, United
Kingdom, 1994. ACM Press.

21. L. S. Brakmo and L. L. Peterson. Tcp vegas: end to end congestion avoidance on a global internet. IEEE Journal on
Selected Areas in Communications, 13(8):1465–1480, 1995.

22. U. Hengartner, J. Bolliger, and T. Gross. Tcp vegas revisited. In Proceedings of Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies, INFOCOM 2000, volume 3, pages 1546–1555, 2000.

23. S. Biaz and N. Vaidya. Distinguishing congestion losses from wireless transmission losses: a negative result. In
Proceedings of the Seventh International Conference on Computer Communications and Networks, pages 722–731, 1998.

24. S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang. TCP westwood: Bandwidth estimation for enhanced
transport over wireless links. In Proceedings of the 7th annual international conference on Mobile computing and
networking, pages 287–297, Rome, Italy, 2001. ACM Press.

 Mohammed A. Alnuem: An Extended Review of Techniques…

60

25. M. Gerla, G. Pau, M. Y. Sanadidi, R. Wang, S. Mascolo, C. Casetti, and S. Lee.
TCP westwood: Enhanced congestion control for large leaky pipes. In NASA Workshop, 25 June 2001.
26. L. Grieco and S. Mascolo. Performance evaluation and comparison of Westwood+, New Reno, and Vegas TCP congestion

control. ACM SIGCOMM Computer Com- munication Review, 34(2):25–38, 2004.
27. S. Biaz and N. Vaidya. De-randomizing congestion losses to improve TCP per- formance over wired-wireless

networks. IEEE/ACM Transaction in Networking,
13(3):596–608, 2005.
28. S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid- ance. IEEE/ACM Transaction on

Networking, 1(4):397–413, 1993.
29. S. Floyd. Tcp and explicit congestion notification. ACM Computer Communication
Review, 24(5):10–23, 1994.
30. S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson, J. Heidemann, J. Touch, H. Kruse, S. Ostermann, K. Scott, and

J. Semke. Ongoing TCP research related to satellites. RFC 2760, 2000.
31. S. Biaz and X. Wang. Can ECN be used to differentiate congestion losses from wireless losses? Technical Report

CSSE04-04, Auburn University, 2004.
32. K. Xu, Y. Tian, and N. Ansari. Improving TCP performance in integrated wire- less communications networks.

Computer Networks: The International Journal of Computer and Telecommunications Networking, 2005.
33. V. Jacobson, R. Braden, and D. Borman. Tcp extensions for high performance.
RFC 1323, 1992.
34. S. Biaz and N. Vaidya. Is the round-trip time correlated with the number of packets in flight ? In Proceedings of the 3rd

ACM SIGCOMM conference on Internet measurement, IMC03, 2003.
35. Fu Cheng Peng and S. C. Liew. TCP Veno: TCP enhancement for transmission over wireless access networks. IEEE

Journal on Selected Areas in Communications,
21(2):216–228, 2003.
36. S. Biaz and N. Vaidya. Discriminating congestion losses from wireless losses using inter-arrival times at the receiver. In

Proceedings of Application-Specific Systems and Software Engineering and Technology Conference, pages 10–17, 1999.
37. P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bharghavan.
WTCP: a reliable transport protocol for wireless wide-area networks. Wireless
Networks, 8(2/3):301–316, 2002.
38. C. Zhang and V. Tsaoussidis. TCP-real: improving real-time capabilities of tcp over heterogeneous networks. In

Proceedings of the 11th international workshop on Network and operating systems support for digital audio and video, pages
189–198, Port Jefferson, New York, United States, 2001. ACM Press.

39. X. Li, J. Wu, S. Cheng, and J. Ma. Performance enhancement of transmission control protocol (TCP) for wireless
network applications. United States Patent

6757248, 2004.
40. Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda. Achieving moderate fairness for udp flows by path-status

classification. In Proceedings of the 25th Annual IEEE Conference on Local Computer Networks, pages 252–261, 2000.
41. S. Cen, P. Cosman, and G. Voelker. End-to-end differentiation of congestion and wireless losses. IEEE/ACM Transactions

on Networking, 11(5):703–717, 2003.
42. S. Biaz, M. Mehta, S. West, and N. Vaidya. TCP over wireless networks using mul- tiple acknowledgments. Technical

report, Texas A & M University, 1997. Report No. : 97-001.
43. K. Tae-eun, L. Songwu, and V. Bharghavan. Improving congestion control per- formance through loss differentiation.

In Proceedings of the Eight International Conference on computer Communications and Networks, pages 412–418, 1999.
44. N. K. G. Samaraweera. Non-congestion packet loss detection for TCP error re- covery using wireless links. IEE

Proceedings in Communications, 146(4):222–230,
1999.
45. S. Biaz and N. Vaidya. Differentiated services: A new direction for distinguishing congestion losses from wireless losses.

Technical report, University of Auburn,
2003. Report No. : CSSE03-02.
46. S. Wang and H. Kung. Use of TCP decoupling in improving tcp performance over wireless networks. Wireless Networks,

7(3):221–236, 2001.
47. C. Lim. An adaptive End-to-End loss differentiation scheme for TCP over wired/wireless networks.

IJCSNS,International Journal of Computer Science and Network Security, 7(3):72, 2007.
48. Mohammed A. Alnuem. Improving TCP Performance over Heterogeneous Net- works. PhD thesis, University of

Bradford, 2009.
49. M. Alnuem, J. Mellor, and R. Fretwell. Tcp multiple drop action for transmission errors. In PGnet2008 The 9th Annual

Postgraduate Symposium on the Convergence of Telecommunications, Networking and Broadcasting, 2008.

J. King Saud University, Vol. 22, Comp. & Info. Sci., Riyadh (1431H./2010)

61

 TCPمراجعة موسعة لتقنيات تحسين بروتوكول ال

 محمد عبداالله النعيم
 قسم علوم الحاسب، كلية علوم الحاسب والمعلومات

 ، المملكة العربية السعودية١١٥٤٣، الرياض ٥١١٧٨جامعة الملك سعود، ص.ب:
malnuem@ksu.edu.a

 م)٣٠/١٢/٢٠٠٩م؛ وقبل للنشر في ١/٧/٢٠٠٩(قدم للنشر في

) واحدا من أهم بروتوكولات الإتصال في الشبكة العالمية (الإنترنت). TCPيعد برتوكول التحكم بالإرسال (ملخص البحث.

حيث يحتوي على عدة آليات داخلية ومن أهم هذه الآليات آلية التحكم بالإزدحام والتي تساهم في منع حدوث ازدحامات غير
đا وذلك عن طريق تغيير سرعة الارسال بناء على حالة الازدحام في الشبكة. ومع التطور الكبير في الشبكات هذه الأيام مرغوب

) داخل شبكات تتميز بكثرة ضياع حزم البيانات أثناء الإرسال (مثل الشبكات TCP(فقد أصبح من الطبيعي أن يعمل ال
) بين الأخطاء في في حالة الإرسال والأخطاء بسبب الزحام مما يترتب عليه TCP(اللاسلكية) . المشكلة تحدث حين يخلط ال

 تباطؤ غير مبرر في سرعة الإرسال.
لشبكات ذات معدل) عندما يستخدم على اTCP(في هذه الورقة أقوم بعرض أهم الحلول لمشكلة تباطؤ أداء بروتوكول ال

الأخطاء العالي. خلال الفترة السابقة تم اقتراح الكثير من الحلول لهذه المشكلة وسنركز في هذه الورقة على الحلول التي تعالج
 المشكلة عن طريق أطراف الاتصال دون الحاجة لإحداث تغيير في برامج الشبكة.

