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Abstract. Transmission Control  Protocol  (TCP) is considered  one  of the  most  important protocols  
in the  Internet. An important mechanism in TCP is the congestion control mechanism which 
controls  TCP sending rate  and  makes TCP react to congestion signals.  Nowadays  in heteroge- 
neous  networks, TCP may  work  in networks  with  some links  that have lossy nature (wireless  
networks  for example). TCP treats all packet  loss as if they  were due to congestion. Consequently, 
when used in networks that have lossy links, TCP reduces  sending  rate aggressively  when there  are  
transmission (non-congestion) errors in an uncongested network. In this  paper  we present 
different  solutions  to  overcome  the  performance degradation  problem  TCP faces  when  working  
over  lossy  links.  Many solutions  have been proposed  but  we will concentrate on end-to-end so- 
lutions that require  no help from the  intermediate network. 
 

 
 

1. Introduction 
 
Many solutions  have been proposed  to overcome 
the  problem  of TCP  bad  per- formance over lossy 
links  (like wireless networks).  Some solutions  
were in the transport layer and some solutions  
were in lower layers like the link layer. 

Balakrishnan in [1] divided  the  solutions  into 
two general  categories:  1- So- lutions  that make 
TCP  unaware  of the  errors  that happen  in the  
link so TCP thinks  that it works on reliable  links 
with  no transmission errors,  for example Snoop 
agents[2]. 2- Approaches  to try  to make TCP  
aware of the  errors  caused by  the  lossy link  and  
make  TCP  avoid  using  congestion  mechanisms  
for this type of errors.  However other  authors like 
[3] divide these solutions  into the fol- lowing more 
specific categories:  Link Layer,  Split  Connection  
and  End-To-End solutions. 

In the  link layer solutions  the  aim is to 
completely  hide the  errors  that oc- cur  in the  

link so TCP  will be unaware  of them  and  hence  
it  will not  reduce its  transmission rate  as a 
reaction  to  those  errors.  In general,  link layer  
solu- tions  are used for wired-wireless networks  
and  they  can be located  at  the  base station 
which connects  the  wired network  with the  
wireless link just  before the receiver.  They  
monitor  the  packets  that pass the  base station 
from one end to another  and  keep record  (and  
sometimes  copies) of the  packets  sent and  set  a 
retransmission timeout for each packet.  When  
the  wireless link drops  a packet either  a timeout 
will occur or duplicate  acknowledgments  will be 
received at the base station. The base station then 
resends the lost packet and suppresses the duplicate 
acknowledgment at the base station so TCP  does 
not notice the drop and hence will not need to 
reduce its transmission rate. 

A good feature  of this approach  is that it 
preserves the end-to-end semantics of TCP  since 
it does not  break  the  connection  (i.e. the  
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connection  negotiation and  maintenance remains  
between  the  sender  and  the  receiver only).  
However, the  problem  is that sometimes  this  
method  cannot  completely  hide errors  from the 
TCP  sender.  For example  when a mechanism  like 
Snoop resends a dropped packet  but  the  packet  
is dropped  again  due  to  high  error  rates  and  
then  the TCP   timeout   for  this  packet  occurs  
before  Snoop  has  a  chance  to  resend  it again. 
This could happen  because of the mismatch  
between the TCP  and Snoop retransmission 
timeout mechanisms  (RTO). In principle the 
Snoop RTO  should be shorter  than   the  TCP   
RTO  but  this  is not  always  true  [3, 1]. 
Moreover, sometimes  Snoop’s aggressive 
retransmission may cause congestion  at  the  base 
station which may reduce  the  link utilization. 
Examples  of Link layer solutions are TULIP[4],  
Snoop[2] and AIRMAIL[5]. 

In  Split  Connections   protocols  the  aim  is to  
divide  the  problem  into  two smaller  ones.  This  
is done  by  separating the  wired  link  connection  
from  the wireless  link  connection.   This  is 
usually  done  at  the base  station where  two 
connections  are maintained. One standard TCP 
connection  from the wired host to the base station 
and another  wireless connection  from the base 
station to the mobile host where a new protocol 
that can handle wireless errors is implemented. 
The base station plays the role of the interface 
between the two connections [3][6]. The TCP  
connection  from the sender ends at the base 
station and then the base station starts a new 
connection  with the receiver. 

A good feature  of this  method  is that we do 
not  need  to  do any  changes at  the  sender  
because  the  sender  does not  need to deal with  
the  errors  on the wireless link. However, the 
sender is not now negotiating the connection with 
the end receiver so the connection between the 
sender and the receiver is broken and the end-to-
end semantics  of TCP  no longer hold. An example 
of this category  is I-TCP  [6] and M-TCP [7]. 

The  last  category  is the  end-to-end solutions.  
Next  we will talk  about  them in more detail. 
 

2 . End-to-End Solutions 
 

In general,  most  of the  end-to-end solutions,  
as the  name  indicates,  try  to deal with  the  
problem  at  the  end point of the  connection  

(sender  and  receiver)  and do not expect help from 
the network so they look at the network as a black 
box. The  main  advantage  of this  approach  is 
that it  does not  add  overhead  to  the network. 
However, some proposed solutions  from this 
category  use some sort of indirect  feedback from 
the network  as we will see later. 

Mainly the following techniques  try to find 
ways to recover from drops (con- gestion and 
transmission) efficiently. Some of these solutions  
were designed for a wireless environment and  
some were introduced before introduction of 
wireless technology. However, since the aim of all 
these solutions is to recover from errors efficiently, 
they can be used for improving TCP  performance  
over networks with both  congestion  and non-
congestion (transmission) errors. 

 
3 . Congestion Drops 

 
In the following we will begin with techniques 

designed to recover from conges-tion drops.  Later 
we will present techniques designed for congestion 
and trans- mission drops. 
 

3.1  Retransmission Timeout (RTO) 
 
In Retransmission Timeout TCP  attaches  a 

timer  with  each  sent packet,  and when the  timer  
expires before receiving acknowledgment for that 
packet,  TCP resends the lost packet  and sets the 
congestion window to the minimum  allowed size. 
For more about  how RTO  is calculated  using the 
RTT  see [8, 9]. 

RTO  is one of the  first methods  provided  to  
TCP  to  recover  from  errors. However,  it  is most  
efficient when  the  congestion  is serious  and  the  
network needs more time to drain the congested 
nodes. On the other hand, if the drops are caused 
by transient congestion then it is better to resend 
the lost packet without waiting  for a timeout to 
occur. This  idea is the  base of the  fast-
retransmission mechanism  which we will talk  
about  in the next  section. 
 
 
3.2 Fast retransmission (TCP-Reno) 

In earlier  implementations of congestion  
control  mechanisms,  there  was an as- sumption  
that errors  due to segment damage  are rare (less 
than  1% of the sent segments  [9]) and  so it is 
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assumed  that most  of the  segment loss is because  
of congestion [10][9]. As a result,  when there  is a 
high packet  damage rate  or when the congestion 
loss rate  exceeds 1%, the TCP  performance  will 
suffer badly. Ac- cording to Jacobson  [11] TCP  
will lose between 50% and 75% of its throughput 
when the error rate  reaches 1%. 

This  shows how congestion  control  
mechanisms  are intolerant to high error rates.  
This  behaviour  can be explained  if we return to 
the  combined  slow start congestion  avoidance  
algorithm explained  in  Stevens  [10] and  
Allman[12].  In this  algorithm Stevens  [10] 
explained  how TCP  should  react  to  congestion  
as follows: If there  is a duplicate  
acknowledgment  then  TCP  should  set  the  slow 
start threshold  ssthresh  to half of current window 
size (the window size when the error happened) 
and then enters the slow start mode when a 
timeout occurs. This way all drops will be 
recovered by entering slow-start, however, TCP 
performance will decrease sharply. 

For  this  reason,  Jacobson  [11] suggests  that 
TCP  can  use  the  knowledge brought by 
duplicate  acknowledgment to resend  the  lost 
packet  (a fast retrans- mission)  and  then  there  is 
no need  to  enter  slow start because  the  
duplicate acknowledgments  indicate  that these  
packet  have left the  network  and  there  is more 
space for new packets  to be injected  into  the  
network  [12] so no need to reduce the cwnd to 
one segment by entering slow start. Instead, TCP  
enters con- gestion avoidance by reducing  the  
congestion  window to the  half of the  current 
window size. 

Another  reason  for not  using slow start is 
given by Stevens  [10]. He noted that because  we 
know that there  is still data  flowing in the  
connection  because of the  duplicate  
acknowledgments we received, we do not  want to 
cut  this  flow by entering  slow start [10]. 

 
3.3 Fast retransmission phase (TCP-
NewReno) 

When Stevens [10], in the RFC 2001, explained 
the slow start algorithm, he indi- cated  that the 
first step in the algorithm is to initialize  the slow 
start threshold variable  ssthresh  to a high value 
(65535 bytes).  Also Allman  [12], in RFC 2581, 
indicated  that ssthresh  could be set to an arbitrary 
high value. However, Heo [13] noted a problem in 

this step of the algorithm that may affect TCP  
performance. 

The  problem  is that during  the  start up  
phase  of TCP  connection  (slow start), the 
sending rate grows exponentially  until the 
congestion window reaches the  ssthresh.  So, 
giving ssthresh  a high value will inject  the  
network  with  high number  of segments  in a short  
period of time. 

However, the network  may be unable  to handle  
that amount of data  at once and,  hence, some 
packets  may be dropped  due to congestion.  
Moreover, due to this congestion,  more than  one 
segment may be dropped  from the same window 
[13] and  this  will create  problems  to  the  TCP  
fast  retransmission mechanism proposed by 
Jacobson  [11]. 

The fast retransmission algorithm [11] can 
handle only one drop per window and  hence  if 
more  than  one segment  is dropped  from  the  
same  window,  only one will be resent by fast  
retransmission and  TCP  will recover  from the  
other losses by  using  a  retransmission timeout  
(RTO)  which  will initiate the  slow start 
algorithm which will reduce the congestion  
window size to its initial  value (usually  one 
segment) and TCP  performance  will suffer badly  
[13]. 

To  understand why the  fast  retransmission 
algorithm cannot  recover  from multiple  drops,  
Stevens  [10] indicated  that the  fast 
retransmission algorithm is terminated whenever 
a new acknowledgment is received. This new 
acknowledg- ment is assumed to acknowledge all 
packets sent after the lost segment up to the 
window size. However, if multiple  segments  were 
dropped,  this acknowledgment will acknowledge 
only the segments  that have been received 
correctly  up to the second  drop.  Hence,  fast  
transmission will be terminated before  resending  
all lost segments and TCP  will enter a series of 
retransmission timeouts causing the performance  
to degrade. 

As a  solution,  Heo [13], suggested  a  change  
in  the  fast  retransmission al- gorithm  so it will 
not  exit  until  it receives an acknowledgment for 
all dropped segments.  This is done by ignoring 
the new acknowledgments  that acknowledge only 
part  of the sent segments and repeating fast 
retransmission until the sender receives an 
acknowledgment for all sent segments.  This way, 
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there  is no need to wait for the retransmission 
timeout  (RTO)  to force resending the rest of the 
lost segments.  Floyd et al.  [14] call the  
intermediate acknowledgments  the  partial 
acknowledgments. 

A new  variation of TCP   was  proposed  
based  on  these  modifications  and called TCP-
NewReno [14]. Also, Floyd et al. [14] has 
introduced  two options  of NewReno regarding  
when to reset the retransmission timeout:  the first 
option  is called slow-but-steady NewReno  and  
the  second is called impatient  NewReno. In the 
former the timeout clock is initialized  after each 
partial acknowledgment. This  way TCP  will stay  
in fast  recovery  mode as much  as possible but  as 
the name  indicates,  the  resending  rate  will be as 
low as one packet  per round  trip time (RTT). 
However, in the impatient NewReno TCP  will 
reset the RTO  only after  the first partial 
acknowledgment so if there  are too many packets  
dropped from the same window then RTO will 
eventually expire before receiving a new ac- 
knowledgment and, hence, TCP  will enter slow 
start [14] and resend all dropped packets  and cut 
the congestion  window at the same time. 
 
3.4  Selective acknowledgment  (TCP-
Sack) 

The original idea of using selective 
acknowledgments  (SACK)  was proposed ini- tially  
by Braden  and  Jacobson  in [15]. However, 
detailed  implementation and improvements to the 
idea were proposed later  by Mathis  et al. in [16]. 

Selective acknowledgment is a change to the 
way the TCP  receiver reacts  to receiving new 
packets.  Usually  when the  TCP  receiver receives 
a new packet  it sends an acknowledgment to the 
sender that carries the received packet sequence 
number which indicates to the sender that all 
previous packets up to this one have been received 
successfully at  the  sender  because  of that it is 
called cumulative acknowledgment [8]. This  way  
new acknowledgments   will be  sent only  if the 
packets  are received in order, otherwise  the 
acknowledgment will be sent for the last  in-order  
packet  received (duplicate acknowledgment). 

However using selective acknowledgments, the 
receiver will send an acknowl- edgment for each 
packet  no matter in what  order  it has arrived.  
This  way the sender will have a clear idea of what  
packets have been received successfully and this 

will solve the  problem  we described  before when 
more than  one packet  is dropped  from the same 
window [16]. 

Also using selective acknowledgment will 
allow TCP  to resend all lost pack- ets  without 
the  need  to  do unnecessary  retransmission of 
packets  already  re- ceived  [17]. Using  selective  
acknowledgment does not  require  the  overhead  
of extra  traffic since it is sent over normal  
acknowledgments  [16][17]. 

However, a disadvantage of the  
implementation explained  in [16] is that it 
requires the use of a retransmission queue to save 
unacknowledged segments. Also it  requires  the  
TCP  sender  to keep a record  of the  received 
acknowledgments. This  may requires  more 
memory  usage and  perhaps  more processing 
power for sorting  and  comparing  sequence  
numbers  for segments  in the  queue  especially 
when TCP  uses a large sending window (congestion 
window). Moreover, SACK is helpless when 
retransmission timeout occurs; all segments in the 
retransmission queue will be resent even if they  
have been sent before [16]. Last  but  not least, 
applying  selective acknowledgment requires 
changes to both  sender and receiver sides which 
may be hard  in real networks. 

On the other  hand,  accumulative 
acknowledgments  which used in most TCP 
variations is simple  and  allows easy management 
of incoming  packets  with  no need for extra  
memory or processing as in the case of selective 
acknowledgment. For example  it is easy, in 
standard TCP,  to discover receipt  of duplicate  
copies of a packet  by simply comparing  the  
packet sequence number  with  the  last  ac- 
knowledged  packet  number  [8]. This  way TCP  
does not  need to keep a record of the  received 
packets  and  only needs to save the  last  in-order  
received packet sequence  number.  Another  
advantage   of the  standard approach  is that if 
an acknowledgment  is dropped  then  it  is enough  
to  receive another  acknowledg- ment with higher 
sequence number  since it acknowledges all packets  
with lower sequence numbers. 

 
4. Congestion and Transmission Drops 

 
In this section we will present techniques  

designed to improve TCP  performance for 
congestion  and transmission drops. 
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4.1 Congestion predictors 
In this type of solution,  TCP  uses techniques  

such as delays on the links (round trip time) like 
the CARD [18] technique (CARD stands for 
Congestion Avoidance using Round  Trip  Delay) 
or the  connection  throughput in the  case of the  
Tri-s scheme [19] and the Vegas scheme [20] to 
predict  if there  will be congestion and then  
control  the  inflation  and  the  deflation  of the  
congestion  window based  on this  prediction.  If the  
predictor  does not  see congestion  happening  in 
the  near future  then  it  suggests  increasing  the  
congestion  window.  On  the  other  hand, if the  
predictor  notices  that congestion  is coming  then  
it  suggests  that TCP decrease the congestion 
window. As we can see, unlike TCP,  drops are not 
used here to control  the growth  of the congestion  
window. 

In theory,  the  perfect  predictor  will eliminate  
congestion  errors  since it will detect  and  avoid  
congestion  before it happens.  So, if an error  
happens  then  it can be considered  to be caused  
by the  link failure  (like wireless errors)  rather 
than  by  congestion.  We  will see later  how 
congestion  predictors can  be  used to  build  error  
discriminators. Following,  brief explanations of 
some congestion predictors. 
 
4.2 TCP-Vegas 

TCP-Vegas  [20, 21] is a  modification  to  the  
congestion  control  mechanism  in standard TCP  
[9, 11]. It  aims  to  reduce  the  congestion  losses 
and  to  increase TCP  throughput by predicting  
the available capacity  on the link and trying  not 
to exceed it. 

According  to the Vegas authors in [20], Vegas 
has increased  the throughput of TCP  up  to  70% 
more  than  older  implementations of TCP  (TCP-
Tahoe & TCP-Reno). Also Vegas has reduced  the 
losses in the link up to 50% [20]. 

We will give here an extended  explanation of 
TCP-Vegas  because  of its im- portance and since 
some other  solutions  are based on Vegas as we 
will see later. 
TCP-Vegas  introduces  changes to TCP  in four 
areas as follows: 

Timeout computation: The authors of Vegas 
have noticed  from experiments over the  Internet 
that the  timing  mechanism  used in previous  
implementations of TCP  is not accurate  and that 
computing  round trip time (RTT) using current 

timing  mechanisms  has given higher RTT  
estimations. This makes TCP  take up to  three  
times  longer  to  recover  from  losses [20]. A new 
mechanism  has  been introduced  based  on  using  
a  time  stamp  for each  packet  and  computing   
the round  trip  time by comparing  the packet’s 
time stamp  with its acknowledgment time stamp.  
This way a more accurate  retransmission timeout 
can be computed. 

Retransmission of lost packets:  TCP-Vegas  
introduces  a new retransmission mechanism  by 
changing  the  way TCP  responds  to duplicate  
acknowledgments. TCP needs to receive three 
duplicate acknowledgments  before it retransmits 
the lost packet. However when Vegas receives the 
first duplicate  acknowledgment for a segment it 
compares  the time stamp  with the current time. 
If the difference is more than  the computed 
timeout then it triggers retransmission without  
waiting for more duplicate  acknowledgments  to 
come [20]. As we can see this  will add overhead  
to the system to record a time stamp  for each 
segment and save it until it receives an 
acknowledgment. However, the authors indicated  
that the overhead of using TCP-Vegas  will not 
exceed 5% more than  older implementations [20]. 

The other  area in which TCP-Vegas  provides 
changes is in congestion avoid- ance: TCP-Vegas  
has made dramatic changes to the congestion 
avoidance mech- anism used in TCP  by making  
TCP  to increase/decrease the  sending  rate,  not 
based  on  packet  drops  as  in  TCP,  but  based  on  
prediction   of available  link bandwidth. 

Vegas estimates an expected  throughput and  
an actual  throughput for the connection.  The 
expected throughput is computed  using the 
current window size and  the  minimum  RTT  seen 
so far. The  actual  throughput is computed using 
current window size and last  RTT  reading. 

Then  Vegas compares  the  expected  
throughput and  the  actual  throughput and 
updates the sender window according to the 
comparison results as following: If the  actual  
throughput is less than  the  expected  one then  
TCP  is unable  to utilize  the  link because  there  
is congestion  and  hence  it should  decreases  the 
window size [20]. On the other  hand,  if the actual  
throughput becomes closer to the expected 
throughput then it is safe to increase the window 
size. The increase and  decrease  in  the  window  
size is linear  unlike  TCP  which  uses  Jacobson’s 
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AIMD [9] mechanism  (Additive  increase  
multiplicative decrease)  to update  the congestion  
window. 

The  Vegas algorithm is expected  to prevent 
congestion  from occurring  and, hence, reduce 
congestion  drops dramatically. 

Slow Start: In Vegas, the congestion  
predictor, explained  above, is added  to the slow 
start mechanism.  Another  modification  Vegas 
makes  to  slow start is that the update  of window 
size during slow start is not done every RTT;  
instead it  takes  two RTTs  before increasing  the  
window size. This  is done to give the algorithm 
chance  to measure  the  actual  throughput 
between  updating window size [20]. 

Hengartner et al. in [22] have reviewed each of 
the modifications  Vegas did to TCP. Their results 
show that the new retransmission technique has 
improved the performance  noticeably  because  it  
was able  to  avoid  timeouts during  multiple 
packet  drops  from  the  same  window.  It  does  
this  by  performing  retransmis- sion when  its  
new timeout mechanism  expires  even before 
receiving  duplicate acknowledgments. 

However, the results in [22] showed that TCP-
Vegas  suffers from performance degradation when 
it coexists with  versions of TCP  that use the  
AIMD mecha- nism like TCP-Reno. This  is 
because  the  AIMD mechanism  is more aggressive 
in grabbing  the link bandwidth because it keeps 
increasing the window size until an  error  occurs  
while Vegas tries  to  prevent causing  drops  and  
hence it  keeps smaller window size. This indicates  
that the congestion predictor in Vegas some- times 
has a negative impact  on the performance  [22]. 
Also, we will see later  how the  authors in [23] 
have confirmed  this  fact  (i.e.  Vegas predictor  
poor  perfor- mance)  when  we talk  about  using  
the  Vegas  congestion  predictor  in an  error 
discriminator. 
 
4.3 TCP-westwood 

Mascolo et  al. in [24] proposed  a modification  
to  the  congestion  avoidance al- gorithm  used in 
TCP-Reno, which uses duplicate acknowledgment 
and timeout as an  indicator for congestion  and  
to  update  the  sender  window [9]. However, 
duplicate  acknowledgments  do not give indication  
of the type of the error (con- gestion or 
transmission error).  For this reason Mascolo et al. 
[24] suggested  that the  TCP  sender  should do 

continuous  estimation of the  bandwidth and  
update the window size according  to that 
estimation [24]. This  way TCP  will send in a 
rate  that will occupy the available bandwidth 
only and hence any error could be considered  
safely as a transmission error.  Westwood  
estimates  the  available bandwidth by monitoring 
incoming acknowledgments  and assumes  this rate  
re- flects available link capacity  in the forward 
path  [24]. 

Also TCP-Westwood [24] suggested  that TCP  
does not  need  to  halve  the window size when 
errors happen,  like TCP-Reno. TCP-Reno halves 
the window size whenever  there  is an error  and  
hopes this  action  will solve the  congestion and,  
at the same time,  it increases the congestion 
window linearly  to utilize the available bandwidth 
without more investigation of the  link status. In 
contrast, after each drop TCP-Westwood [24] uses 
the estimated bandwidth-delay product to set the 
sender window according  to the current 
congestion  level [25]. 

The authors of TCP-Westwood [24] reported  
big improvements in TCP  per- formance, 
especially over networks suffering from 
transmission errors like Wired- Wireless networks 
[24]. This improvement has been confirmed by 
Grieco & Mas-colo in [26]. Also the experimental 
results reported  in both [24] and in [26] showed that 
TCP-Westwood has maintained fair sharing  of 
the  bandwidth and  it does not lead to starvation 
of TCP-Reno connections. 

However Biaz et al.[27] did experiments on 
TCP-Westwood when coexisting with  non-TCP 
traffic on the  reverse link and  their  results  
indicate  that TCP- Westwood could not estimate  
the link capacity  correctly when a non-TCP traffic 
exists in the reverse path.  This result  can be 
explained  since bandwidth estima- tion in TCP-
Westwood is based on taking  the average rate  of 
received acknowl- edgments  and,  since the  added  
traffic in the  reverse path  could add  additional 
delay to the  received acknowledgments, TCP-
Westwood will underestimate the available 
bandwidth. 
 
4.4 Error discriminators 

All methods  that try  to understand the cause 
of the error and to act differently to each type of 
error based on that understanding are called error 
discriminators. 
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Some error  discriminators deal with the  
network  as a black box and  do not need any 
feedback from the network in order to 
discriminate errors. Other  types of error  
discriminators use help from intermediate 
networks  in order  to under- stand  the cause of the 
error. 

In the  following, we will talk  about  both  
types and  we will start with  error discriminators 
that depend upon the  network  to help 
distinguishing errors.  As far as we know this is 
the first attempt to classify error discriminators. 
 
4.5 Network  dependent  error 

Discriminators Network  dependent error  
discriminators are actually  based  at  the  end-
point of the  connection  but  use help  from  the  
intermediate nodes. However,  although they  are 
not  totally  end-to-end we mention  them  here for 
two reasons,  first all network  dependent error  
discriminators explained  in  this  section  use  
already popular  active  queuing  mechanism  
techniques  like the  use  of explicit  conges- tion  
notification  through RED  [28] (Random   early  
dropping) queues.  Second reason,  is that we 
want to complete  the  picture  about  the  error  
discrimination techniques. 

The  advantage  of this  approach  is that both  
end  hosts  can  have  detailed information about  
the cause of drops and the network  status. 

However, if we want to apply  this approach  in 
a large network  we may need a wide-scale change 
to the  network  components  (i.e. mainly  we need 
to change the routers  if we want notification  for 
congestion  drops and we need changes in the 
wireless base stations if we want wireless drop 
notification). 
Following I will explain briefly some network 
dependent error discriminators. 
 
4.6 TCP-casablanca 

The  key idea  TCP-Casablanca introduces  
[27] is as follows: Congestion  errors and  
transmission errors  usually  happen  randomly  
and  this  is basically  why it is difficult  to  
differentiate between  them.  However,  if we can  
”de-randomize” [27] the congestion  errors  by 
making  congestion  errors  take a non-random 
form then  it will be easy to discriminate the  non-
random congestion  errors  from the random  
wireless errors[27]. 

The mechanism works as follows: The sender 
marks each outgoing packet with one of the  marks  
(in/out) in a consistent pattern, for example  by 
marking  four packets  with (in) and the fifth 
packet  (out)  and so on. When  congestion  occurs 
at  intermediate nodes there  should  be a biased  
queue-management mechanism that drops only 
the packets  marked  with the (out)  mark.  This 
way, the receiver receives  the  packets  with  a 
consistent pattern of drops,  because  only  
packets marked  with  (out)  are  dropped,  so the  
receiver  recognizes  that the  errors  are congestion  
errors. 

On the other  hand,  if a wireless error occurs, 
then  the drops will be random among  all  packets  
(in-marked   and  out-marked)  and,  hence,  the  
receiver  can recognize that these random  errors 
are wireless errors [27]. 

If the receiver diagnoses a wireless error it 
marks the acknowledgments  with an explicit  loss 
notification  (ELN).  When  the  TCP  sender  
receives a duplicate acknowledgment, because of 
error, it checks if the acknowledgment contains 
ELN and, if so, TCP  considers the loss to be 
wireless loss; otherwise  it considers it to be a 
congestion  error  [27]. In case of congestion  error  
TCP  cut  the  congestion window, otherwise  it  
only  resend  the  packet  and  does not  cut  the  
congestion window. 

So, as we can see applying  this  mechanism  
requires  mainly  four changes  to TCP  
sender/receiver and  the  network:  First  adding  
an  error  discriminator at the sender (which is 
called Casablanca) and acting according to the 
ELN signals it  receives.  Second,  the  receiver  
should  be able  to  deduce  when  a random  or 
non-random drop occurs and to send ELN if a 
random  error occurs . Third,  an active queuing  
mechanism  should be implemented in the 
bottleneck, which will drop only packets marked 
with the (out)  mark. Finally the packet format 
should be altered  to add  in/out marking  and  
ELN. The  reset  of the  protocol  is based on the 
NewReno [14] version of TCP. 

The  authors indicated  that the  Casablanca 
discriminator has achieved high accuracy  in  
discriminating  between  congestion  and  
transmission  errors  and, using  it  in  TCP,  gave 
significant (above  100%) improvement in  TCP  
perfor- mance  [27]. Accuracy  is a crucial  
component  in this  error  discriminator  since it  
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uses  an  aggressive  action  toward  non  congestion  
drops  by  not  cutting the congestion  window size 
for these  drops  and  keeps it as big as it was 
before the drop. 
 
4.7 TCP-ifrane 

TCP-Ifrane [27] is a  sender  based  version  of 
TCP-Casablanca [27]. In  TCP- Ifrane  changes  
are  made  at  the  sender  only  and  not  the  
receiver.  When  the sender  sends a packet  it 
records  whether  this  packet  is marked  as out  or 
in. If the sender receives a duplicate  
acknowledgment indicating  that a packet  is lost, 
it looks at  its record  and  sees if that packet  was 
marked  out  or in when it was sent. If the packet 
was marked out the error is considered to be 
congestion error otherwise  it  is considered  as 
wireless error  [27]. TCP-Ifrane was found  to  give 
higher  throughput than  TCP-Casablanca; this  is 
because  it has less congestion accuracy  and hence 
it slows down less than  TCP-Casablanca [27]. 
However, the effect of TCP-Ifrane’s accuracy  was 
not studied  by the authors in [27]. 
 
4.8 Explicit congestion notifications 

Explicit  congestion notification  [29] was first 
introduced to help TCP  avoid con- gestion  by  
allowing  intermediate nodes  to  set  a congestion  
notification  bit  in the  IP  header  whenever  
congestion  is expected.  The  TCP  sender  will 
respond to  this  notification  by  reducing  its  
transmission rate.  An  Active  Queue  Man- 
agement  (AQM)  mechanism  (e.g.  RED  [28]) is 
placed  at  the  congested  nodes and  becomes 
responsible  for marking  packets  when congestion  
is expected  ( in case of RED  the  packets  will be 
marked  when  the  queue  reaches  a particular 
threshold). 

Using ECN  requires  changes  in both  the  TCP  
sender  and  receiver.  Also it requires the use of 
AQM at the congested  nodes. However, using 
ECN does not require  changing  the  TCP  
congestion  mechanisms  since TCP  responds  to 
ECN in the same way as it responds  to a packet  
drop. 

Dawkins  et  al. in [30] has  proposed  the  use 
of ECN  to  improve  TCP  per- formance over 
wireless links by modifying the way TCP  responds 
to ECN. Biaz [31] explains the technique  as 
follows: If a drop is detected  by receiving duplicate 
acknowledgments, then  we look if we have 

received an ECN in the near past.  If ECN is 
received before the error happened,  then  this is a 
strong  indication  that this  error  is caused  by 
congestion.  This  is based  on the  understanding 
that, in ECN-capable connections,  ECN should 
always happen  before congestion  drops. So, if the  
ECN  preceded  the  drop  then  TCP  considers  this  
drop  to be conges- tion  drop  and  acts  by reducing  
the  senders  window size in order  to resolve the 
congestion. 

However, if the drop happens while not 
preceded by ECN, its then considered as a wireless 
error and TCP  does not reduce the senders 
window size [31]. How- ever, we still need to 
retransmit the  lost packet.  The authors in [30] 
argue that this  approach  will improve  TCP  
performance  over networks  with  transmission 
errors like wireless networks  specially those suffers 
from high error rates. 

However,  Biaz  in  [31] studied  the  possibility  
of using  ECN  to  distinguish between  error  
types.  He argues  that this  approach  is not  an  
accurate method to  differentiate between  
congestion  and  transmission errors  and  showed  
that transmission errors can be random  so that the 
probability that ECN will precede a congestion  
error  is approximately the  same as the  
probability that ECN  will precede a transmission 
error[31]. 

So the authors in[31] proposed that instead  of 
using ECN directly to infer the type of the error; 
TCP  should also look at the state  of the sender.  
If the sender was  in  congestion  avoidance  phase  
then  the  drop  is probably   a  transmission drop. 
However, if the sender was in slow start phase 
then  the drop is considered congestion  drop.  The  
new  protocol  is called  TCP-Eaglet [31] and  it  
showed improvement over standard TCP  
performance. 
 
4.9 TCP-jersey 

Xu  et  al.  [32] has  suggested  using  the  
estimated bandwidth instead  of errors to  tell  
TCP  when to  decrease  sender  window size, 
which is an  idea  similar  to Westwood  [24] but  
with a different implementation. The available  
bandwidth is estimated based  on the  rate  of 
arrival  acknowledgments. High acknowledgment 
arrival rate  means packets  can get to the other  
end fast and hence high network capacity.  
Moreover, in this  approach  the  nodes in the  
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middle should be able to mark  packets  when  
congestion  is expected  in order  to  notify  the  
sender  [32]. So this  method  is a combination of 
TCP-Westwood and ECN error  discrimina- tor 
[30] except  that it differs in some implementation 
details  in both  cases. 

However,  like  TCP-Westwood, TCP-Jersey  
may  suffer  from  performance degradation when 
coexisting  with  non-TCP traffic on the  reverse 
link because it cannot  estimate  the  link capacity  
correctly  since the  added  traffic in the  re- verse 
path  can delay the acknowledgments, so it will 
underestimate the available bandwidth. 

However, improvement has been done to TCP-
Jersey to overcome this prob- lem. The  improved  
version is called TCP-New  Jersey  [32] and  it uses 
acknowl- edgment timestamps [33] instead  of 
acknowledgment arrival  rate  to  calculate 
estimated bandwidth which solves the problem  of 
delayed acknowledgments  be- cause each 
acknowledgment has  a time  stamp  which allows 
the  sender  to  cal- culate  the  forward  path  delay. 
The authors indicated  that simulation  results  of 
TCP-New  Jersey gave good results  and show 
improvement in TCP  performance particularly 
with reverse paths  that suffers from congestion 
and lossy links [32]. 
 
4.10 Network  independent  error 
discriminators 

This kind of solution  implicitly  infers the 
cause of packet  drop without the need of explicit  
notification  from  the  network  about  the  cause  of 
the  drop.  In  this kind, the solution  is based at 
the end hosts  (or one of them).  The advantage  of 
using this approach  is to keep the changes to a 
minimum (to the end hosts)  and there is no need 
to make changes to the network components, 
which may require wide scale changes.  However, 
an obvious limitation to this approach  is that the 
end hosts  will not have detailed  information 
about  the  status of the  congestion or the  
transmission drops  and  can only guess the  
situation using implicit  signs from the network  
(like packet  delay for example). 

Some  of these  solutions  are  based  on  using  
congestion  predictors like Ve- gas [20] or CARD  
[18] or Tri-s  [19]. In this  approach  the  
discriminator works by taking  input  from the 
congestion predictor  about the congestion status 
when a drop  occurs.  If the  congestion  predictor  

was predicting  congestion  then  the drop is 
considered to be congestion loss. However if the 
predictor  was suggesting increasing  the  sending  
rate,  because  it  does not  predict  any congestion  
in the near future,  then  the drop is considered  to 
be caused by link error [23] . 

Also we must  notice that as [23] indicated, 
designing  an accurate  error  pre- dictor  is 
important since  mistakes  of distinguishing   
transmission errors  from congestion errors could 
cause unnecessary  congestion which is usually 
avoidable by using normal congestion control 
algorithms  [23]. For example, if a congestion error  
is mistaken  to  be  a  transmission error  then  
TCP  will not  decrease  the window size and this 
will make the current congestion  much worse. 

Experiments were performed  by Biaz and 
Vaidya [23] on three different error discriminators 
based  on congestion  predictors:  the  CARD  [18], 
Tri-s  [19] and Vegas [20]. Unfortunately the 
results  obtained by Biaz and Vaidya experiments 
in [23] show that these  congestion  predictors are 
no better than  a random  loss predictor. From  
these results,  Biaz came to the conclusion that 
these three  con- gestion predictors are not 
suitable  as an accurate  error discriminator. 

The  reason  which  leads  to  the  failure  of 
these  methods  to  make  a  good error 
discriminator is that they assume that if one TCP  
increases its congestion window then the network 
delay will increase. So they assume that one 
connection can affect the whole network.  Using 
this assumption, if TCP  is able to gain high 
throughput then  this  is an  indication  that the  
network  is not  congested.  On the  other  hand,  if 
TCP  is able to gain only small part  of the  
expected  network throughput then  this means 
that a congestion  exists. 

However,  in [34] the  authors showed that 
when  TCP  increases  its  sending rate the RTT  
could go either way (i.e. increase/decrease). They 
showed that the correlation between a single 
connection  sending  rate  and  the  RTT  is weak 
[34]. This  is because  usually  a single connection  
forms a small  part  of the  network aggregate  
traffic. 

However, the  authors in [34] also emphasized  
on the  sensitivity  of the  net- work delay to the 
total  load, which makes the measured  RTT  a 
good indication of congestion  events  and  hence  
RTT  can  be  used  to  build  an  effective error 
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discriminator. 
In  the  following sections  we will present 

briefly  some error  discriminators based on 
congestion  predictors and show how they  work. 
 
4.11  Error discriminator based on  vegas 
congestion predictor 

Based  on the  Vegas predictor  [20] described  
earlier,  Biaz and  Vaidya  [23] pro- posed  an  error  
discriminator that  computes   the  difference  
between  expected throughput (link capacity)  and  
the  actual  throughput in order  to predict  con- 
gestion and use this difference to define a new 
variable  fVegas. The difference is computed as 
follows: D = expected  throughput - actual  
throughput If D > 0 this  means that TCP  
throughput is less than  what  it should be to 
utilize  the  link and  this  indicates  that congestion  
exists in the  connection  path and  hence any drop  
is considered  to be a congestion  drop.  On the  
other  hand if D  ≤ 0 this  means  that TCP  
throughput is actually  able  to  utilize  the  link 
capacity  and  hence there  is no congestion  and  
any error  is considered  to  be a transmission 
error. 
The simulation  results  in [23] show that the Vegas 
based error discriminator has achieved low to 
medium  performance  in terms  of accuracy  in 
defining error types.  As we said  before,  this  is 
due  to  the  assumption that the  network  will 
respond noticeably  to  the  changes  in a single 
connection  window.  This  is not always true  
since, in large networks,  a single connection  
forms a small fraction of the  whole traffic  [23] 
and  this  will affect  the  error  discriminator 
ability  to discover congestion  errors. 
This  also applies  to the  next  two error  
discriminators based  on CARD  [18] 
and Tri-s [19] congestion  predictors. 
 
4.12 Error discriminator  based on  card 
delay-based congestion 

Predictor Congestion  Avoidance  Round  trip  
Delay  (CARD)  [18] is an  approach  to  up- date  
the  TCP  sender  window size without the  need to 
have any feedback from the  network.  It  is called 
[18] a black-box  approach  since it deals with  the  
net- work as a black  box and  does not  require  
any explicit  feedback  from the  net- work. It  
works by analyzing  the  relation  between  the  
round-trip delay and  the throughput of the  

connection   in  order  to  predict   the  optimum   
window  size that gives maximum  throughput 
with  minimum  delay. The  authors in [18] call it  
maximum  Power  where  the  power  is  the  ratio  
of throughput and  delay  : P ower = (T 
hroughput/Delay) [18]. The aim is to have 
maximum  Power. 

Unlike TCP,  this  approach  does not  use 
errors  to  update  the  window size which is 
approach  similar to TCP-Vegas  [21]. However 
Jain[18] did not provide a complete  TCP  solution  
like TCP-Vegas,  instead,  it  gives a mechanism  
that can be used to replace Jacobson’s  [9] 
congestion  avoidance mechanism  in TCP. 

The  CARD  [18] measures  the  change  of the  
increase/decrease rate  in the connection  
throughput and  delay.  When  the  network  is fully 
utilized  then  any small increase in the throughput 
will result in a big increase in the observed delay. 
This  gives a good indication  that the  network  is 
congested.  However, when the network capacity  is 
underutilized then  the increase in the throughput 
will result in a small (or none) increase in the 
network  delay. 

Using this  approach  will add  no overhead  on 
the  network  since it  requires no feedback from 
the network [18]. This approach  assumes there  is 
a single con- nection  that can utilize the whole 
network capacity  and hence increase/decrease the 
network  delay [18]. As we said before this 
assumption is not always valid in real networks. 

Biaz  et  al.  [23] designed  an  error  
discriminator based  on  the  CARD  [18] 
congestion predictor. The discriminator uses the 
assumption used in CARD that if the  network  is 
not  congested  then  the  rate  of change  in  the  
delay  will be zero. However, when the network 
starts building queues with the increase in the 
TCP  window size then the delay will change 
rapidly. The discriminator monitors the  delay and  
the  window size changes;  if both  are increasing  
then  the  drop  is considered to be congestion  drop 
otherwise  the drops is considered transmission 
drop. 

The  results  presented  in [23] indicate  that the  
error  discriminator based  on the  CARD  predictor  
is poor in discriminating between  error  types  
[23]. Again this  because  of the  assumption used 
in CARD  that a single TCP  window size will 
affect the network  delay. 
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4.13 Error discriminator based on  tri-s 
throughput-based congestion predictor 

The  Tri-s  [19] congestion  predictor   proposed  
an  approach  to  predict  conges- tions in the link 
based on the throughput rather than  errors.  Its 
difference than CARD  [18] approach  is that Tri-s  
monitors  only the  changes in the  connection 
throughput. Also this  approach  tries  to  find the  
optimal  window  size only  at the  beginning  of 
the  connection  and  fix it  through the  rest  of the  
connection period. Only when a major change in 
the connection  happens,  like when a new 
connection  starts or an  old connection  
terminates, the  optimal  window size is 
recalculated. Small changes during  the connection  
are dealt  with by buffering in the network  instead  
of changing  the sender window size [19]. 

An error discriminator based on this idea has 
been proposed in [23]. This is based  on the  
assumption that if the  network  is free of 
congestion  then  the  con- nection  throughput will 
increase rapidly  and hence any drop will be 
considered to  be a transmission drop.  However,  
if there  is congestion  in the  network  the TCP  
throughput will decrease and any error will be 
considered  to be a conges- tion drop. The results 
presented  in [23] show a poor discrimination level 
and this is for the  same reasons  mentioned  before 
for the  Vegas and  CARD  based  error 
discriminator. 
 
4.14  TCP-veno 

TCP-Veno [35] applies changes to the Vegas 
[20] congestion predictors in order to differentiate 
between  congestive states  [35] and  non congestive 
states [35] of the connection.  If a packet drop 
occurs during a congestive state  then it is 
considered a congestion  drop otherwise  it is 
considered  transmission drop. 

TCP-Veno  estimates  the  number  of packets  
buffered  in the  network  and  if this  number  
exceeds  a  predefined  threshold   (3  in  this  case)  
then  the  system enters  congestive state  [35]. It 
uses Vegas [20] congestion  predictors to estimate 
buffered packets  and,  instead  of updating the  
congestion  window based  on this information like 
Vegas, it uses it to differentiate between errors  
and  uses TCP AIMD to update  the congestion  
window. 

The  other  change  TCP-Veno  proposes  is to  

reduce  the  rate  at  which  the congestion window 
increases during the congestive state.  So instead  of 
increasing the  congestion  window every RTT, the 
window is increased  every other  RTT  if the 
system  is in the congestive state  [35]. 

The  authors in [35] reported  noticeable  
improvement (up to 80%) for TCP- Veno over 
TCP-Reno  in different scenarios. However, TCP-
Veno  suffers from the bad performance  of Vegas 
predictor  mentioned  before which may lead to 
classify errors wrongly. 
An important feature of TCP-Veno is that it cuts 
the congestion window even for transmission errors 
by a fixed factor  of 4/5  [35] which may reduce the 
effect of poor discrimination ability.  We could not  
find any other  error  discriminator that uses a 
special action  in case of transmission errors. 
 
4.15 Receiver based error discriminators 

Most  of the  previous  solutions  are  based  in 
the  sender  side of the  connection. Following we 
will describe some solutions which are designed to 
be in the receiver side of the connection. 

In [36] the  authors proposed  a receiver  based  
error  discriminator that  uses a heuristic  method  
to discriminate between transmission and  
congestion  losses. In this method  the authors 
assume that the lossy link will be always the 
bottle- neck of the connection,  for example a low 
bandwidth last hop in a wired-wireless network.  
Hence, in the case of congestion  all packets  will 
be queued  in the bot- tleneck in the wireless base 
station. So, when the base station sends the 
packets they will travel back-to-back on the 
wireless link. As a result,  the TCP  receiver can 
compute  the  inter  arrival  time  of the  packets  
and  use it  to  determine the cause of the drop. 

For  example,  if we have packets  1,2 and  3, 
then  in normal  cases there  will be T time  
between  consecutive  packets.  However, if one 
packet  is dropped,  say packet  2, then  the  time  
between  packet  1 and  3 will be at  least  2T. From  
that the receiver can know that a drop in the 
wireless links has occurred. 

However, if packet  2 was dropped  before the 
base station because of conges- tion,  then  packets  
1 and  3 will probably  be queued  in the  base 
station because the wireless link is the 
bottleneck, the time between packet  1 and 3 will 
be less than  2T and hence the receiver can 
recognize that this error is due to congestion error 
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[36]. 
The problem  with this  method  is that it 

requires  the  wireless link to be the bottleneck  
(the  one with  least  bandwidth) [36]. Also, as we 
noticed  from  the example above, this method  
works only if the wireless link is the last hop in 
the path  and directly  before the TCP  receiver and 
also if a non-stop  stream  of data is being sent 
(bulk data)[36]. However, the simulation  results in 
[36] showed that by using this  method  TCP  could 
discriminate between  wireless and  congestion 
errors,  in most cases, as good as a perfect error 
discriminator i.e. with accuracy around  100% of 
discriminating both  types of errors. 

A  similar  approach   has  been  proposed  in  
WTCP (Wireless  Transmission Control  Protocol)  
[37] but  without the  constraint  that the  base 
station should be the  bottleneck. This  is achieved 
by computing  an average inter  arrival  time at  the  
receiver  (AvgT).  When  a drop  occurs  instead  of 
comparing  with  T  we compare  with average 
AvgT.  If current inter  arrival  time is within  a 
predefined threshold  from AvgT then  the error is 
considered a transmission error otherwise it is 
considered  a congestion  error.  A promising  result  
has been reported  in [37] after  using this 
approach. 
Another  receiver  based  error  discriminator is 
proposed  in  [38] and  called TCP-Real. TCP-
Real uses the  rate  of receiving  data  at  the  
receiver  to  detect congestion.  It computes  an 
expected  receiving rate  and an actual  receiving 
rate based  on the  congestion  window size and  
minimum  RTT  and  current  RTT. If the  actual  
receiving rate  is less than  the  expected  then  the  
receiver signals the sender to increase its 
congestion window and if the expected rate is less 
than  the actual  the  receiver signals the  sender  to 
reduce  its congestion  window (we can notice  the  
similarity  with  TCP-Vegas  [20] which uses same 
concept  but  at  the sender). 

Because  this  method  uses the  receiver  to  
calculate  the  congestion  window size it solves the 
problem  when the return path  is slower that the 
forward path by considering  the  available 
bandwidth on the  forward  path  only [38]. 
Experi- mental  results  in [38] shows that TCP-
Real improves  TCP  performance  when compared  
to TCP-Reno and TCP-Tahoe specially with the 
increase in the error rate.  However, TCP-Real 
does not  define a clear action  for transmission 

drops and seems to keep the congestion  window 
open. 
 
4.16  Fast recovery plus 

Fast  recovery plus [39] has introduced  a 
modification to TCP  fast retransmission [11] and 
fast recovery [12] algorithms  so it can 
discriminate between congestion and transmission 
errors. The idea is simple; the TCP  sender 
maintains a counter of how many  times  the  fast  
retransmission-fast recovery  module  is called  by 
duplicate  acknowledgments  before receiving a new 
acknowledgment. The authors in [39] assumes that 
transmission errors will occur in small numbers 
per window of data  compared  to  congestion  
errors.  So the  counting  of the  number  of fast 
retransmission-fast recovery  events  can give an 
indication  of the  error  type.  If this  number  
exceeds  a  preset  threshold   then  the  error  is 
considered  to  be  a congestion  error  otherwise  it 
is considered  a transmission error.  The  author in 
[39] did not explain how to choose the error 
threshold  in order to decide the error type and  we 
assume  it  is a fixed one that will be chosen 
based  on the  system experimental  results. 

The  results  shown in [39] presents  a good 
improvement in TCP  throughput when  Fast  
Recovery  plus  is used.  However,  like previous  
error  discriminators, this method  does not 
consider an action  in case of transmission errors. 
 
4.17  Spike error discriminator 

The  authors in  [40] did  a  series  of 
experiments  on  UDP  performance   in  the 
Internet and  they  noticed  that most  congestion  
drops  occur during  specific pe- riods related  to 
noticeable  increase  in the  packet  trip  time  from 
the  sender  to receiver.  They  call these  periods  
spike-train periods  [40] since spikes appear  in the  
packet  trip  time  graphs  when  congestions  occur.  
These  spikes were found highly correlated with 
congestion  events and hence congestion  drops 
[40]. 

The  authors in [41] used  this  idea  to  design  
an  error  discriminator which uses   spike-train 
periods  [40]. They  define two states,  the  spike-
state and,  non spike-state. In the  spike state  the  
connection  is considered  in congestion  state and  
any  drop  that occurs  during  this  period  is 
considered  a congestion  drop. During the non 
spike-state any drop is considered a transmission 
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drop [41]. The system enters  the spike-state if the 
packet  trip  time exceeded a threshold  called 
Bspikestart   and  ends  when  the  packet  trip  
time  becomes  below Bspikend   [41]. These  
thresholds  are  computed dynamically  according  
to  current relative  one way trip  time (ROTT) 
reading  as follows: 
 
Bspikestart = ROT Tmin  + α(ROT Tmax− ROT Tmin ) 
               (1) 
 

Bspikend=ROT Tmin  + β(ROT Tmax− ROT Tmin )  

              (2)  
 
Spike uses ROTT instead  of round  trip  time 
(RTT) because it was designed for UDP 
applications where there is no acknowledgment so 
the authors used the relative  one way trip  time 
and since the sender and receiver clock may vary 
the term  relative  is used. 

The  Spike [41] error  discriminator performed  
well under  different scenarios where congestion  
and  transmission errors  were present.  It  was able  
to  achieve high link utilization. However, its 
accuracy of distinguishing between error types was 
moderate  (around 50%) and  this  has led to 
increased  congestion  in several cases [41]. 

 
5 . Conclusions and Recommendations 

 
Our  aim  in  this  paper  is to  give an  overview  

of the  efforts  to  improve  TCP performance  in 
presence  of errors  (congestion  and  transmission). 
Some of the main  end-to-end solutions  are  
presented  here  and  more  related  solutions  can 
be found in [42–47]. Table  1 shows some of tha  
main  features  of the  presented protocols (the  
meaning  of the letters  in ’Required  changes’ filed 
in table  1 is as follows: s:sender,  r:reciever,  
n:network,  pf:packet  format.  Also ED  in the  
filed ’Protocol/Technique’ means Error  
Discriminator). 

Also to show the effect of adding an error 
discriminator on TCP  performance, in Fig. 1 we 
present the  performance  comparison  of TCP  
before  and  after adding  an error discriminator 
named  TWA  [48] (Transmission  Window Action) 
in a semi-log scale. This  gives an example  of the  
noticeable  effect of adding  an error discriminator 
on TCP  performance.  In figure 1 the Goodput  is 
normalized by each flow fair share of the 

bottleneck  bandwidth. 
We explained several protocols in this paper, in 

all of these protocols the main aim was to improve 
TCP  performance  when congestion and 
transmission  errors coexist. However, we can 
categorize these solutions into two categories 
depending on how they  solve the  problem.  The  
first category  tries  to distinguish between 
congestion  and  transmission errors  and  apply  
different  actions  for each  case. All error 
discriminators like TCP-Casablanca [27] come 
under  this category.  We will call them  two actions  
solutions  because in concept  they  can apply  
different actions  at each case (i.e. congestion  or 
transmission drops). 

On the  other  hand  other  solutions  apply  one 
action  which can only detects and response to 
congestion  and will do nothing  if there  are no 
congestion  drops (and  only  there  are  
transmission errors).  These  kind  of solutions  
usually  ap- ply techniques  which by nature 
respond to congestion  only. For example,  TCP- 
Vegas [20] which  uses  expected  and  actual  
throughput to  set  the  congestion window or 
TCP-Westwood [24] which uses Bandwidth-Delay 
product  to set the congestion window size which 
will be affected mainly by the change in the avail- 
able  bandwidth due  to  the  congestion  in the  
network.  These  solutions  do not differentiate 
between error types but  only respond to 
congestion ( by increasing sending rate  if there  is 
no congestion  and  decrease  the  sending  rate  if 
there  is congestion)  so we call them  the one 
action  solutions. 

However, in both  one action  and  two actions  
solutions  the  TCP  reaction  to transmission errors  
is simply not to cut the congestion  window and 
to keep the sending rate as it was before the error. 
Moreover, in the two action solutions when the  
protocol  discovers  transmission errors  it  
implicitly  implies  that it  should increase the 
congestion  window (not  just  do nothing). 

These  assumptions give rise to  a question  
about  whether  the  transmission action in current 
error discriminators is enough or not. Authors  like 
[27] indicated that the  current transmission action  
used in error  discriminators is a bad  one. This  is 
because  it is simplistic  and  it ignores two  facts:  
first it is very hard  to have an  end-to-end error  
discriminator with  very  high  accuracy.  Second,  
even with  accurate  error  discriminators 
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mismatches  between  error  types can  occur. 
Because of that some studies  like [41, 27, 45] 
indicated  that error discriminators usually  
increase the congestion  loss rate  noticeably. 

Moreover,  even the  one action  solutions  can  
be affected  by the  lack of ap- propriate 
transmission action.  This  could  happen  when  the  
technique  used  to discover congestion in the 
network fails to do so and hence no action  is taken 
in case of congestion. 

 

There  should  be an  extended  study  of the  
effects of the  lack  of action  in case of 
transmission errors  on current error  
discriminators and  on the  network. 

As we said before, some studies  noticed  
increase  in the  congestion  level in the network 
when using some error  discriminators which we 
believe related  to the lack of action  in the  case 
of transmission errors.  We recommend  that 
current error discriminators should use a set of 
actions in the case of transmission errors where 

Table 1. comparison of some features in protocols  presented in this  paper 
Protocol/Technique Action-congestion Action-

transmission 
Required 
changes 

Vegas 
Westwood 
Casablanca 
I-frane 
ECN  
Jeresy 
ED based  on Vegas 
ED  based  on CARD 
ED based  on Tri-s 
Veno 
Biaz (receiver) 
WTCP 
TCP-Real 
Spike 

Additive  Decrease 
BWE  * MinRTT (pipe size) 
Multiplicative decrease  
Multiplicative decrease 
Multiplicative decrease 
Delay-Bandwidth + ECN 
Multiplicative decrease 
Multiplicative decrease 
Multiplicative decrease 
Multiplicative decrease 
Multiplicative decrease 
Based  on receiver  estimation of congestion level 
Based  on expected  and actual receiving  rate 
Multiplicative decrease 

Not available 
Not available 
Not available 
Not available 
Not available 
Not available 
Not available 
Not available 
Not available 
Cut  by factor  (4/5) 
Not available 
Not available 
Not available 
Not availabl 

s + r 
s 
s + r + n + pf 
s, n, pf 
s, n, pf 
s, n, pf 
s 
s 
s 
s 
r 
r 
r 
s 

 
 

 
Fig. 1. TCP and  TWA  semi-log scale normalized goodput. 
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these actions  should provide the following: 
 
 These  actions  should  be able to achieve the  

aim of any error  discriminator which  is to  
improve  TCP  performance  when  congestion  
and  transmission errors coexist. 

 These  actions  should  be  able  to  prevent 
increasing  the  congestion  in  the network 
which may occur because of the first aim. 

 
We hope that having  these  addition  actions  

in any error  discriminator will create  a balance  
between  the  need to improve  TCP  performance  
and  the  need to prevent congestion  in the 
network. 

In this work we wanted to shed the light on the 
need of such actions. In other works like [49] we 
explain  our vision of how these actions  should be 
designed to achieve the two aims mentioned  
above. 
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) واحدا من أهم بروتوكولات الإتصال في الشبكة العالمية (الإنترنت). TCPيعد برتوكول التحكم بالإرسال ( ملخص البحث.

حيث يحتوي على عدة آليات داخلية ومن أهم هذه الآليات آلية التحكم بالإزدحام والتي تساهم في منع حدوث ازدحامات غير 
đا وذلك عن طريق تغيير سرعة الارسال بناء على حالة الازدحام في الشبكة. ومع التطور الكبير في الشبكات هذه الأيام  مرغوب

) داخل شبكات تتميز بكثرة ضياع حزم البيانات أثناء الإرسال (مثل الشبكات TCP(فقد أصبح من الطبيعي أن يعمل ال 
) بين الأخطاء في في حالة الإرسال والأخطاء بسبب الزحام مما يترتب عليه TCP( اللاسلكية) . المشكلة تحدث حين يخلط ال 

 تباطؤ غير مبرر في سرعة الإرسال.
لشبكات ذات معدل ) عندما يستخدم على اTCP(في هذه الورقة أقوم بعرض أهم الحلول لمشكلة تباطؤ أداء بروتوكول ال 

الأخطاء العالي. خلال الفترة السابقة تم اقتراح الكثير من الحلول لهذه المشكلة وسنركز في هذه الورقة على الحلول التي تعالج 
 المشكلة عن طريق أطراف الاتصال دون الحاجة لإحداث تغيير في برامج الشبكة.

 
 
 
 
 

 




