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Abstract As self-similarity trail is being detected in many types of traffic, and the Markovian mod-

els failing to represent some statistical behaviors, the tools being used for traffic testing are still com-

plex. Our study here is related to VBR video. Its self-similarity and long-range dependence aspects

will be tested using a wavelet-based tool. As the test tool requires stationarity of the increments of

the traces, a novel testing technique will be suggested for this aim. Then, the degree of self-similarity

will be related to both the traces time scale and its statistical measures of spreading.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The pervasive ubiquitous support of multimedia traffic over
communication networks, including the Internet and wireless

mobile networks, imposed very stringent requirements on the
coding schemes used to generate these types of traffic and
led to many developments in related areas. Consequently, very
complex features and characteristics of the generated traffic.

Thus, many advanced techniques in motion estimation, such
as multiple reference frames, variable block sizes, and quarter
pixel resolution have been implemented in the new H.264/

MPEG-4 AVC standard. A very high computational complex-
ity has been engendered, which led to many research works to
optimize it. The use of the stationarity characteristic has been
y. Production and hosting by
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the key element in most of them. Using spatial homogeneity

and temporal stationarity of video objects, a decision algo-
rithm has been proposed in Wu and Al (2005), while a selective
multiple reference frame motion estimation that uses the sta-
tionary property has been suggested in Tsui et al. (2010).

In many instances, however, stationarity is not necessary,
only stationarity of increments is sufficient. For instance, the
authors in Wendt and Abry (2007) propose a new bootstrap-

based technique to differentiate between non-Gaussian finite
variance self-similar processes with stationary increments and
multi-fractal processes. The goal of our study here goes along

these lines. We will propose a correlation-based test for the
existence of stationarity of increments in video traffic charac-
terized by some form of self-similarity.

Accurately modeling such traffic has become a crucial part

of many research groups. Initially, it was concluded that the
simple Markov Modulated Poisson Process (MMPP) models
inadequate for the representation of such traffic (Garret and

Willinger, 1994; Ryu and Elwalid, 1996; Pruthi et al., 1999)
were far from adequate. Even relatively more complex models,
that assumed short-term correlation, have failed as well. The

repercussions of such findings on the performance and analysis
of current data networks have been very drastic. For instance,
it was reported very early (Park and Willinger, 2000), that

the existence of self-similarity and ubiquitous heavy-tailed
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Table 1 Basic statistics of the traces.

Trace name GOP frames I-frames

Mean Covar Peak/mean Mean Covar Peak/mean

Terminator 10,905 1.03 7.30 37,388 0.22 2.13

Soccer 27,129 0.96 6.90 79,143 0.32 2.37

Starwars 9313 1.39 13.40 44,012 0.32 2.84

Talk 14,537 1.14 7.35 64,734 0.16 1.65

News 20,664 1.26 9.41 85,420 0.30 2.28

Race 30,749 0.69 6.58 79,241 0.26 2.35

Lambs 7311 1.53 18.36 38,024 0.34 3.53

Dino 13,078 1.13 9.15 55,076 0.21 2.17
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phenomena in networked systems will have a drastic effect on

traffic modeling, queueing-based performance analysis, and
traffic control.

In this paper, a tool proposed by Leland et al. (1994) will be
used to test a couple of representative VBR video traces for

self-similarity trail. Since the tool requires the stationarity of
increments in the trace frame sequences, a very efficient tool
has been proposed, implemented, and tested on the used

traces. All results were conclusive and in harmony with the
preset assumptions.

The rest of the paper is organized as follows. In Section 2,

the characteristics of VBR video and the models that have
been used will be given along with a description of the video
traces to be used in this study. In Section 3, some conventional

testing techniques will be presented, along with the wavelet-
based technique to be used in this work. Then, in Section 4,
some novel feasiblity tests will be developed to check the sta-
tionarity of the increments of the considered traffic sequences.

In Section 5, the stationarity test will be first applied, followed
by tests on the effects of the used number of vanishing
moments in the test tool, and lastly, by the results obtained

when applying the test tool to estimate the self-similarity trail
in the video traces, along with a look at any possible correla-
tions with the spreading parameters of the traces. The conclu-

sions will be included in Section 6.
2. VBR video traffic

2.1. Characteristics

The main factors affecting the complexity of multimedia traffic
may be classified into three main categories:

� Inherent aspects: This takes care of the fact that the move-
ments that may be recorded, for instance in a video
sequence, have in general some common aspects that may

be translated into some sort of short and long-term correla-
tion between successive frames.
� Compression and coding: The techniques being used take

advantage of the previously listed inherent aspects. They
take advantage of both the spatial and temporal correla-
tions in the scene and the frames.
� Traffic shapers: In some networks, some quality of service

(QoS) is provided. The user has to abide by certain traffic
constraints which will be enforced through special traffic
shapers. Although, this will not add to the correlation

aspects of the traffic, it will add to its complexity.

2.2. Modeling

Due to the cumulative effects of these technological advances,

modeling video traffic has become a tedious and complicated
task. Mathematical models of video sources tried to keep pace
with these advances. The developed models may be classified
into two categories. Markovian (or Embedded Morkovian)

models, which is based on the memory-less property, and takes
into consideration only the short-term correlation properties.
Examples include Markov Modulated Poisson Process model

(Heffes and Lucantoni, 1986), Markov Modulated Fluid mod-
el (Anick et al., 1982), Versatile Markovian Arrival Process
model (Neuts, 1989), Memory Markov Chain model (Rose,
1999), and D-BIND model (Knightly and Zhang, 1997).

The second category includes long-range correlation mod-
els, which tries to capture a peculiar behavior found in certain
processes where the autocorrelation function decays to zero at a

rate slower than the exponential function. Examples include
F-ARIMA (fractional autoregressive integrated moving
average) (Beran et al., 1995), FBM (fractional brownian
motion) (Taqqu and Levy, 1986; Norros, 1995), FGN (frac-

tional Gaussian noise), highly variable ON-OFF sources
(Likhanov et al., 1995; Willinger et al., 1997), and M/G/1
model (Krunz and Makowski, 1998).

As the major new character in the current video traffic may
be related to its long-range dependence, some models based on
self-similarity have been proposed lately. The notion of self-

similarity is based on fractals, where zooming in or out keeps
the general object shape the same. In the case of network traf-
fic, this notion is known in the stochastic sense not the topo-
logical sense. In the stochastic sense, self-similarity is applied

to the statistical aspects as the time scale is varied. The self-
similarity property has been identified, although with various
degrees of conclusiveness, in Ethernet-LAN traffic (Willinger

et al., 1997), in the World Wide Web traffic (Crovella and
Bestavros, 1997), in ATM queues (Tsybakov and Georganas,
1997), and recently in multimedia networks (Sahinoglu and

Tekinay, 1999).

2.3. Traces

The work to be undertaken will be based on video traces used
in Rose (1999). The traces were extracted from MPEG-1
sequences which have been encoded with the Berkeley

MPEG-encoder. The frame sizes are in bits, and were gener-
ated with a capture rate of 25 frames per second (for more
information consult Rose (1995)). The basic statistics of the

traces (variations of these were reported in Rose (1997)) are
shown in Table 1.

3. Self-similarity trail

3.1. Conventional tests

Before applying the considered tool, some well established test

will be first applied to the considered video traces. We will start
with a graphical test to have an a priori sense of the existence
of self-similarity in these traces. From the essence of self-sim-
ilarity, we present two such methods:



Figure 1 Starwars traces under various time scales and zooming views.

Table 2 H parameter estimation using R/S plot and

Periodogram.

Video trace R/S plot Peridogram

Lambs 0.79 0.74

Race 0.80 0.92

News 0.82 0.73

Talk 0.77 0.78

Dino 0.76 0.80

Starwars 0.80 0.78

Soccer 0.80 0.81

Terminator 0.78 0.83

Starwars (long) 0.79 0.71

LAN 0.80 0.83
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(1) Either the signal may be aggregated by replacing contig-
uous and non-overlapping blocks of frames with their
averages (in a manner similar to Eq. (A.1) which will

be used as a stochastic definition of self-similarity).
The results are shown in Fig. 1a–c.

(2) Or, the signal may be zoomed-in and zoomed-out by
considering only subsets of the whole trace, a method

that has been used in Leland et al. (1994). The corre-
sponding result is shown in Fig. 1d–f.

It is clear from all these figures, that the burstiness is kept in
all time scales. Had the traffic been Markovian, then the curves
would have been smoothed out.

Then, in Table 2 are shown estimates of the Hurst param-
eter H using the R/S plot and the Periodogram. Knowing that
the Hurst parameter has to be 1/2 <H < 1 for a traffic se-
quence to be self-similar, it is clear that all traces may be con-

sidered self-similar.1

3.2. Aggregation using wavelets

The method to be used to test for the self-similarity property of
video traces (or series, as denoted in mathematical terms) will

be based on the work presented in Abry et al. (1998), which
will be customized to our work.
1 Although not with the same extent.
3.2.1. Wavelet scaling
Many recent papers have proven the equivalence betweenMul-

tiscale-based andWavelet-based tests on one hand (Abry et al.,
1998, 2002; Soltani et al., 2000; von Sachs and Neumann,2000),
and the feasibility of Wavelet techniques in the characterization
of network traffic on the other (Riedi et al., 1999). Also, these

papers have shown the computational efficiency and accuracy
of the Wavelet-based techniques. Which is due to the fact that
eventhough LRD signals are highly correlated in the time do-

main, they become nearly decorrelated in the Wavelet domain.
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The wavelet method was one of three methods used in

Hong et al. (2001) to estimate the H parameter for various
MPEG VBR traces. The Hurst parameter was estimated using
the ratio of energies between two adjacent resolutions. Then,
the effects of H have been studied on the efficiency of band-

width allocation in an ATM network.

3.2.2. Test tool description
The video trace will be represented by a sequence
XN = {xn :n= 1,2, . . . ,N} where each element xn represents
the number of bits in the nth element in the sequence (GOP,

or I, P, or B frames), and N represents the total number of
frames in the trace.

Let {wj,k(t)} represent the Wavelet templates related to the

mother Wavelet w0(t) by:

wj;kðtÞ ¼ 2�j=2w0ð2�jt� kÞ ð1Þ

Define the coefficients of the discrete wavelet transform
(DWT) y(j)(k) by the inner product:

yðjÞðkÞ ¼< XN;wj;k > ð2Þ

In what follows these coefficients will be denoted by dX(j,k).

It is worthwhile noting that this transformation represents a
band-pass filtering of the sequence XN with width 2j. Put in
other words, these coefficients represent the details of the data
rather than the approximations (Abry et al., 1998), as shown in

Fig. 2. If XN exhibits long-range dependence (LRD) character-
istics, then the variance of the aggregated process should have
a power-law behavior when represented as a function of the

aggregated level, i.e.:

VarfdXðj; kÞg � 2jð1�bÞ; j!1; 8k ð3Þ
Figure 2 Wavelet signal decomposition.

Figure 3 Results for the Sta
Furthermore, it has been shown in Abry and Aldroubi (1995)

that the mean of the squares of the Wavelet coefficients
1
Nj

PNj

k¼1dXðj; kÞ
2
is an unbiased, asymptotically efficient esti-

mate of var{dX(j,k)} . This leads us to the final result to be used

here, which is:
If the sequence XN possesses LRD characteristics, then the

plot of log2(2
j) versus log2

2j

N0

PNj

k¼1dXðj; kÞ
2

n o
is approximately

linear. Consequently, the corresponding slope is an estimator

of the LRD parameter b.
In this part, our work is similar to Ma and Ji (1998), except

in using an estimate of the variance of the Wavelet coefficients

instead of the variance itself. Additionally, the test will be ap-
plied to both the GOP and the frame sequences. As an exam-
ple, the results obtained when applying the tool to the I frames
of the Starwars trace are shown in Fig. 3.

4. The MVH-CV testing technique

A major requirement for using the tool in Abry et al. (2002)
was that when the wavelet transform is applied to self-similar
random processes with stationary increments, for each fixed

scale j the details fdXðj; kÞ; k 2Zg are stationary processes.
Meaning that the considered video traces should have station-
ary increments.

Put into simple mathematical terms, this means that the
probability distribution of the increments {Xn+m � Xn} should
not depend on n. To test such property from the available sam-

ple data is not an easy matter and may not be even possible.
Nevertheless, some necessary but not sufficient tests for the
stationarity of the increments will be proposed. They are based
on the computation of some statistical measures, namely: the

mean, the variance, and the histogram for various values of
the increment m, and for both the I and IPB frame sequences.

The technique will be denoted by MVH-CV since it bases

its tests on the computation of the coefficient of variation
(CV) for the mean, variance, and histogram (MVH) of the per-
tinent sequences.

Because of the size limitation of the data being used,
the video sequence {Xn:n = 1,2, . . . ,N} was subdivided into
subsequences {xkn:k= 0,1, . . . ,N � S,n= 1,2, . . . ,S}, where
N is the length of the subsequence, S is the length of each
rwars I frames sequence.



Figure 4 Coefficients of variation for the mean and variance of the frame size increments.
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subsequence, and k is the subsequence number.2 The subse-
quences xkn are constructed from the sequence Xn according
to the following equation:

xkn ¼ Xkþn; n ¼ 1; 2; . . .S; k ¼ 0; 1; . . . ;N� S ð4Þ

The increments dmkn are defined as the absolute value of the
difference between the sizes of the frames with an increment
m in the sequence numbers:

dmkn ¼ jxðkþmÞn � xknj; n ¼ 1; 2; . . .S; k

¼ 0; 1; . . . ;N� S ð5Þ

So, for each increment m, there will be N � S+ 1 vectors with
S elements in each. The average damk in each vector is defined as

the sample mean, and the variance dvmk by the sample variance.
Then, for each increment m, is defined a coefficient of variation
rm for the mean by:

r2m ¼
Var damk

� �

E damk

� �2 ð6Þ

and a coefficient of variation cm for the variance by:

c2m ¼
Var dvmk

� �

E dvmk

� �2 ð7Þ
5. Results

The results will be categorized into two main sets. In the first
set, some tests will be run to establish the stationarity of the

increments in the trace sequences, followed by a second type
of tests to reveal any effects of the number of vanishing
moments. In the second set, the estimated H parameter will
2 Not all subsequences need to be used.
be related in a first stage to the variability parameters, and then
in a second to the time scale of the used traces.

5.1. Stationarity of the increments

5.1.1. Coefficient of variation for the mean and variance
In Fig. 4 are plotted the coefficients of variation for both the
mean and variance in the frame size increments for various
time incremental lags. The statistical mean values range from

1.6 · 10�3 to 3.2 · 10�3, while the statistical variance values
range from 0.6 · 10�3 to 2.4 · 10�3. Knowing that the coeffi-
cient of variation provides a measure of data dispersion about

the mean, these very small numbers signify that both com-
puted sample mean and sample variance are practically time
invariant to the incremental lags.

5.1.2. Coefficient of variation for the histograms
To further confirm these results, a plot is shown in Figs. 5 and

6 for the coefficients of variation for the histograms of the var-
ious subsequences and for increments from 1 to 10. It is to be
noted that the tool, used to get the histograms, divides the
range of values taken by the differences between the frame

sizes into ten equal intervals and then counts the number of
differences falling in each.

The histogram intervals are used as abscissa in Fig. 5, with,

in each interval, the values corresponding to each increment.
For instance, in the first interval, only the first three increments
have a non zero correlation coefficient. While at the tenth inter-

val, only the first four and the sixth increment are non-zero.
The same data is again shown in Fig. 6 but with the incre-

ments as abscissa. Now, it can be seen that the correlation

coefficients for the first three increments are non-zero in all
the ten intervals. For an increment of four, only the last seven
are non-zero. In the last four increments, the coefficients are all
zeros.
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0.005
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0.015

Figure 5 The coefficients of variation for the histograms as a function of the intervals.

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

Figure 6 The coefficients of variation for the histograms as a function of the increments.
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The coefficient of variation for the histograms varies be-
tween zero and a maximum of 0.014. From these very small
values, it can be deduced that the used video trace has effec-

tively stationary increments.

5.2. Effects of the number of vanishing moments

As a last test before using the Wavelet tool, it is important to
check how the number of vanishing moments used in the wave-
let transform affects the new estimator results. In Fig. 7 are
plotted the Hurst parameter estimates for various traces as a
function of the number of vanishing moments (Abry et al.
(1998) requires that the number of vanishing moments N P 2).

It may be noticed that all estimates are in the range of [0.7,
0.95], and that most estimates are in the range of [0.8, 0.9].

5.3. Relation to degree of spread

To check for the effects of the degree of statistical variability
and time scale on the self-similarity aspects of VBR video,



Figure 7 Effects of the number of vanishing moments on the estimated H parameter (Daubechies wavelet).

Figure 8 Temporal representation and log-log plot for various traffic traces.
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three traces were selected, namely: Starwars, Terminator, and

Soccer. For each video trace, three sets of graphs are plotted:

(1) The frame sizes as a function of time;
(2) A log–log plot of the variance of the Wavelet coefficients

as a function of the number of octaves (similar to the
one in Fig. 3);

(3) Estimate of the Hurst parameter for various time scales.
Figure 9 Time scale effects on the estimation o
The first two sets for each one of the three traces are shown

in Fig. 8. By comparing these results with the statistical mea-
sures shown in Table 1, it may be noticed that eventhough
the soccer trace has the highest mean it has the lowest coeffi-
cient of variation. As expected, the signal magnitude has no ef-

fect on the inter-frames dependance. Also, it is clear from the
figure that the starwars and soccer traces have a higher vari-
ability than the terminator trace, which has been translated
f the H parameter for various traffic traces.
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in the Table 1 by a higher coefficient of variation and peak-to-

mean ratio. Lastly, the expected Hurst parameter was in
reverse relation with the variability of the traces. Thus, the
Terminator trace had the lowest coefficient of variation but
the highest H, while the starwars and soccer traces had the

same coefficient of variation, but since the former had a higher
peak-to-mean ratio it got a smaller H.

From these observations (and similar ones using other

traces, and which are not displayed for compactness), the fol-
lowing rules may be deduced:

� The variability of a sequence may be measured through its
coefficient of variation and peak-to-mean ratio, i.e. a higher
coefficient of variation or peak-to-mean ratio means a

higher degree of variability.
� The coefficient of variation and peak-to-mean ratio of a
sequence have an opposite effect on the estimated H param-
eter, i.e. as the coefficient of variation and peak-to-mean

ratio increase, the estimated H parameter decreases.
� The coefficient of variation has precedence over peak-to-
mean ratio in the effect on the estimated H parameter, i.e.

if two traces have different coefficients of variation, then
the peak-to-mean ratios have no effect on the relation
between the estimated H parameters. It is only when the

coefficients of variation are equal that the peak-to-mean
ratios are brought in.

5.4. Effects of time-scale

The last set of graphs is shown in Fig. 9, and represents an esti-

mate of the Hurst parameter for various time scales. The esti-
mation of the Hurst parameter was based on the method used
in the second graph of Fig. 8, but with the video trace replaced

with an equivalent trace seen at various time scales. For in-
stance, a trace seen at time scale i was obtained by replacing
non-overlapping blocks of i frames by their corresponding

averages. Knowing that the frames were generated at a rate
of 24 frames per second, a time scale i will correspond to i/
24 seconds. The estimated H is shown along with its corre-
sponding 95% confidence interval (under Gaussian

assumption).
From Fig. 9, the following remarks may be recorded:

� At most time scales, the estimated H parameter for the Ter-
minator trace stayed in the range of 0.9 to 1.0.
� Almost the same thing happened for the Starwars trace,

with the main difference being at the lowest scale where it
started at around 0.8.
� In the case of the soccer trace things were much different:

– the variability in the estimated H was much larger (from
0.6 to 0.86).

– all values are below 0.9.
– the confidence intervals were the largest.

– above a time scale of about 5, an almost steady decrease
in H was observed.
� These results do not follow the same trends as in the previ-
ous subsection:
– Even though the Soccer trace had a higher coefficient

of variation than the Terminator trace, its estimated H
parameter over various time scales was smaller.
– Also, the Starwars and Soccer traces had the same coef-

ficient of variation, but since the former had a higher
peak-to-mean ratio, it kept the same trend for H when
the time scale was increased above 1.

Using these observations along with the results shown in
Table 1, the following remarks may be deduced:

(1) The coefficient of variation and the time-scale have the
same effects on the estimated H parameter, i.e. as
the coefficient of variation gets smaller, the effects of

the time-scale gets smaller.
(2) For the same coefficients of variation, a sequence with

lower peak-to-mean ratio is affected more by the time-

scale than the peak-to-mean ratio.

6. Conclusions

In this paper, some representative video traces were used to
test the self-similarity aspects of VBR video. First, some vali-

dation tests were carried out to make sure that the obtained re-
sults were credible. Thus, some novel testing criteria were
proposed to check for the stationarity of increments in the
used video traces. After applying our proposed test to the

traces, all tested positive.
Then, the effects of the number of vanishing moments used

in the wavelet-based test tool on the estimated H parameter

were studied. All traces showed a tolerable variation within
the expected range of H.

In the second part of the results, first possible relations be-

tween the statistical variability measures, namely the coeffi-
cient of variation and the peak-to-mean ratio, and the H
parameter were studied. It was found that the effects of the
variability parameters have an inverse effect on H, and that

the coefficient of variation has a precedence effect over the
peak-to-mean ratio.

Then, the effects of the time-scale on the estimated Hurst

parameter have been studied, and some relations to the statis-
tical spreading parameters have been drawn. So, in addition to
the confirmation of previous results that suggested the exis-

tence of the self-similarity trail in VBR video, we succeeded
in relating its level and trend to the sequence time scale and
to the traffic spreading parameters.

Lastly, and as was pointed out previously, using these re-
sults the generation of video traffic may become more realistic,
leading to a more thorough study of its effects on the perfor-
mance of computer networks systems, in regard to the buffer

management policies and call admission control.
Appendix A. Self-similarity and long-range dependence

A.1. Self-similarity

Given a wide-sense stationary time series X= (Xn;

n= 1,2,3 , . . .), with mean l and variance r2. Define the m-

aggregated series XðmÞ ¼ X
ðmÞ
k ; k ¼ 1; 2; 3; . . .

� �
by summing

the original series X over non-overlapping blocks of size m.

X is said to be H-self-similar if for all positive m, X(m) has

the same distribution as X rescaled by mH. That is:
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XðmÞn � 1

mH

Xnm

i¼ðn�1Þmþ1
Xi; for all m 2 N ðA:1Þ

Furthermore, if X is H-self-similar, it has the same autocorre-
lation function r(k), defined by:

rðkÞ ¼ 1

r2
E½ðXn � lÞðXnþk � lÞ� ðA:2Þ

as the series X(m) for all m.

A.2. Long-range dependence

A wide-sense stationary time series X= (Xn; n = 1,2,3 , . . .)
with autocorrelation function r(k) is said to be long-range
dependent if it has a non-summable autocorrelation function:

X1
k¼�1

rðkÞ ¼ 1 ðA:3Þ

The special processes that have the characteristic of:

Var(X) = m2�2HVar(Xm) are long-range dependent. They are
also known as second-order self-similar (Abry et al.,1998; Riedi
et al., 1999).
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