
Journal of King Saud University – Computer and Information Sciences (2012) 24, 145–155
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
REVIEW ARTICLE
Exploration and evaluation of traditional TCP

congestion control techniques
Ghassan A. Abed *, Mahamod Ismail, Kasmiran Jumari
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment,
National University of Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
Received 27 October 2011; revised 8 March 2012; accepted 13 March 2012
Available online 5 April 2012
*

E

A

Ju

Pe

13

ht
KEYWORDS

TCP;

Congestion control;

Slow-start;

Congestion avoidance;

Fast recovery;

Fast retransmit
Corresponding author.

-mail addresses: ghass@ie

bed), Mahamod@eng.ukm.m

mari).

er review under responsibilit

Production an

19-1578 ª 2012 King Saud U

tp://dx.doi.org/10.1016/j.jksu
ee.org,

y (M. I

y of King

d hostin

niversity

ci.2012.0
Abstract TCP or Transmission Control Protocol represents one of the prevailing ‘‘languages’’ of

the Internet Protocol Suite, complementing the Internet Protocol (IP), and therefore the entire suite

is commonly referred to as TCP/IP. TCP provides reliability to data transferring in all end-to-end

data stream services on the internet. This protocol is utilized by major internet applications such as

the e-mail, file transfer, remote administration and world-wide-web. Other applications which do

not require reliable data stream service may use the User Datagram Protocol (UDP), which pro-

vides a datagram service that emphasizes reduced latency over reliability. The task of determining

the available bandwidth of TCP packets flow is in fact, very tedious and complicated. The complex-

ity arises due to the effects of congestion control of both the network dynamics and TCP. Conges-

tion control is an approved mechanism used to detect the optimum bandwidth in which the packets

are to be sent by TCP sender. The understanding of TCP behaviour and the approaches used to

enhance the performance of TCP in fact, still remain a major challenge. In conjunction to this, a

considerable amount of researches has been made, in view of developing a good mechanism to raise

the efficiency of TCP performance. The article analyses and investigates the congestion control tech-

nique applied by TCP, and indicates the main parameters and requirements required to design and

develop a new congestion control mechanism.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
ghassan@eng.ukm.my (G.A.

smail), kbj@eng.ukm.my (K.

Saud University.

g by Elsevier

. Production and hosting by Elsevier B.V. All rights reserved.

3.002

mailto:ghass@ieee.org
mailto:ghassan@eng.ukm.my
mailto:Mahamod@eng.ukm.my
mailto:kbj@eng.ukm.my
http://dx.doi.org/10.1016/j.jksuci.2012.03.002
http://dx.doi.org/10.1016/j.jksuci.2012.03.002
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2012.03.002

146 G.A. Abed et al.
Contents

1. Introduction . 146
2. Slow-start phase . 147

3. Congestion avoidance phase . 147
4. Fast recovery and fast retransmit phase. 149
5. TCP over heterogeneous networks . 151
5.1. Connection asymmetry . 151

5.2. Channel errors . 151
5.3. Mobility and handover . 151
6. Performance evaluation . 152

7. Conclusion and discussion . 154
References . 154
1. Introduction

The massive and rapid growth in internet propagation and
with the widespread use of TCP/IP, the congestion control
mechanism becomes the decisive factor in improving the effi-
ciency or performance of TCP. The TCP congestion control

algorithm is the key factor which plays a critical role in the le-
vel of performance and the demeanor of the amount of data
stream within networks. Now that the internet users are expo-

nentially growing at rapid pace, internet congestion is much
expected, and is one of the main issues in computer network.
Congestion occurs when the number of received packages of

a node is more than its output capacity (Shirazi, 2009). TCP
Tahoe is the first TCP variant which includes the first conges-
tion control algorithm. This algorithm is developed by Jacob-

son and Karels in 1986. Based on the same concept presented
by Jacobson and Karels, many more algorithms are then intro-
duced. Following that, many enhancements and modifications
are conducted on Tahoe, and leads to design and development

of new TCP variants with different congestion window algo-
rithms (Mo et al., 1999). The performance of TCP variants
are directly affected by its own congestion control mecha-

nisms, where the packet amount transferred over network con-
nections is based on the work and the behaviour of the
congestion control and its role in exploiting the capacity of

the network path (Sarolahti, 2002). RFC 793 standardized
the first TCP version with its basic configuration based on a
scheme of window-based flow control. TCP Tahoe represents
the second generation of TCP versions, which includes two

new techniques, congestion avoidance and fast transmission.
Reno is the third version of the first developed series, and it
is standardized in RFC 2011, where the congestion control

mechanism is further extended by fast recovery algorithm
(Yuan-Cheng and Chang-Li, 2001).

The implementation of the early TCP versions utilizes a

simplified go-back-n model, but this model does not tell of
any assumptions to the congestion control. In this model,
the flow rate of data is transmitted from sender to receiver,

where the sender is not awaiting ACK (acknowledgement)
from the receiver to send another set of new data. The receiver
process keeps track of the sequence number of the next frame
it expects to receive, and sends that number with every ACK it

sends. The receiver will ignore any frame that does not match
the sequence of number it expects (this means the receiver will
ignore the frame that is a ‘‘past’’ duplicate of the frame it has
ACK’ed and ‘‘future’’ frame past the last packet it is waiting
for). Once the sender has sent all the frames in its window, it

will detect the outstanding frames, and will go back to se-
quence number of the last ACK it received from the receiver
process, and will start fill its window starting from that frame

and continues the process over again. This means the sender
will retransmit all the segments, beginning from the oldest seg-
ment lost (Fahmy and Karwa, 2001). The go-back-n model is

opposed to the stop-and-wait model. The other approach of
sending data by TCP protocol depends on using end-to-end
congestion control without adopting the congestion control
of network-assisted connection (due to the in IP layer, there

is no explicit feedback to the system end relaying status of net-
work congestion). Realistically, when TCP connection trans-
mits data into connection pipe, the data amount is

controlled and limited by congestion control of the sender,
where the congestion window determines the essential send
rate (Kurose and Ross, 2006). The window-based congestion

control technique employed by TCP will try to adjust the data
flow rate by adjusting the size of the window to avoid network
congestion and at the same time, providing a fair share of
bandwidth of the network over all possible connections (Kod-

ama et al., 2008; Iguchi et al., 2005).
All TCP variants are considered as the properties and char-

acteristics of wired networks, which are not dependent on the

lower network layers. However, in heterogeneous networks,
the congestion control of TCP proves to be lacking perfor-
mance. TCP also suffers from poor performance in high band-

width links as well, mainly due to the slow response of
congestion control over large bandwidth connection as well
as poor exploitation of the available bandwidth (Sharma,

2006). Another setback to the regular TCP variants is its
inability to fully adjust itself to its limited resources and its
lacking ability to recognize congested or random lost packets.
In some standard TCP variants, namely, Reno, the congestion

control increases exponentially with the packets over the con-
nection, where this initial slow start increasing period must be
controlled to avoid declining performance of TCP due to the

expected overflow of the receiver buffer. One of the few ways
to modify TCP is based on the estimated available bandwidth
sufficient to provide fair sharing to all flows and adjusting the

window according to the available bandwidth and flows num-
ber (Qian and Dongfeng, 2010). The accurate bandwidth esti-
mation is dependent on many complex parameters and factors

such as traffic stability throughout the network path length.

Figure 1 TCP slow-start increases exponentially with RTT.

Exploration and evaluation of traditional TCP congestion control techniques 147
The mechanism of congestion control is classified into 4
main PHASES, namely, SLOW START, CONGESTION
AVOIDANCE, FAST RETRANSMIT and FAST-RECOV-

ERY. Throughout the past ten years, new approaches and tech-
niques have been researched and suggested to deal with the
complexity of the nature of wireless link. The modern high-

speed wired-wireless networks have expanded tremendously
for the past ten years, and thus this problem is brought into
light, andmany researchers are still actively developingmethods

to expand the effectiveness of TCP domain (Jacobson, 1990).

2. Slow-start phase

The initial phase of implementation of TCP software is the
slow-start phase, where the slow-start algorithm is used by
TCP sender to adjust the data flow rate to the receiver where

the period of new slow-start begins with every acknowledge-
ment (ACK) received from the TCP receiver. This means the
transmission rate from the TCP sender is fully dependent on
the acknowledgements (ACK) returned by the TCP receiver.

The process of slow-start is based on a simple concept, and
it has not been revised until 1988. Slow-start technique may
only represent a fragment of the congestion control, but

undoubtedly it can affect the network behaviour and perfor-
mance as a whole considerably much (Law and Hung, 2001).
Commonly, after re-transmission time-out, the slow-start

phase is launched at the sending site of TCP connection, and
later on, this will significantly affects the performance of this
connection as a whole. The straightforward objective of slow
start mechanism is to assist the sender in realizing the obtain-

able bandwidth in the network path. This is done by progres-
sively growing the quantity of segments that can be introduced
into the pipeline from the earliest window size of one segment.

In this way, bottleneck of connection with huge flow of seg-
ments can be avoided (Wang et al., 2000). The creative slow-
start process of Jacobson (Jacobson, 1988) begins by using a

congestion window of only one segment size, and with every
single ACK acknowledged, it grows the size of cwnd by one
additional segment. As a consequence of this process, the cwnd

will twin its magnitude at each RTT of the TCP period, pro-
ducing an exponential upsurge of the amount of the segments
added into the network of each RTT (Cavendish et al., 2005).
This slow-start phase is slow when the network is not con-

gested and the network response time is good. For instance,
the major positive transmission and acknowledgement of the
segment will expand the window to double segments. Conse-

quently, when the transmission of these two segments has com-
pleted and ACK received, the window size is further enlarged
to four segments. This process is repetitively repeated to pro-

duce eight segments, then sixteen segments, and so on until
it reaches the full size of the window promoted by the receiver
or until congestion happens, whichever comes first (Kristoff,
2002). As shown in Fig. 1, when the connection initiates, cwnd

will be sent by the sender to one segment at the beginning, and
this further increases by one segment (exponential growth of
cwnd) for every RTT with each new successful ACK received

(Yuan-Cheng and Chang-Li, 2001).
With reference to Fig. 1, the slow-start begins with one

segment for cwnd (cwnd = 1 segment), and on each successive

ACK received, the cwnd increases by one (new cwnd = previ-
ous cwnd + 1). The exponential growth of cwnd with each
RTT will duplicate cwnd size (new cwnd = previous
cwnd · 2), until cwnd reaches the congestion point of the link.
TCP link kicks off in a slow-start state and the TCP regulates

the transmission amount grounded on the rate at which the
acknowledgements are established from receiver. The TCP
slow-start is applied via two variables, congestion window
(cwnd) and slow-start threshold (ssthresh). The variable

ssthresh is the threshold value at which TCP leaves the period
of slow-start. If at one point of time when the cwnd rises out-
side ssthresh, the TCP period at that point of time is measured

to be out of slow-start phase. With more RTT interactions,
cwnd will eventually go beyond ssthresh, and the session will
be deliberated out of the period of slow-start. At this point

of time, the TCP source goes into the next stage (congestion
avoidance phase) where it analyses for extra bandwidth by
growing the size of congestion window more gradually this
time (Cheng et al., 2005). At this point of time, the connection

of TCP from the side of client is out of slow-start phase, but
nonetheless, the end of server is quite in slow-start phase as
it has yet to transmit any segment to its client. The exiting of

slow-start phase indicates that the TCP connection is already
in a stable state where the congestion window carefully ties
the volume of the network path. However, the congestion win-

dow will not change geometrically, but will move linearly when
the connection goes out of the slow-start phase.

3. Congestion avoidance phase

Back in 1986, Jacobson proposed congestion avoidance mech-
anism to fix the internet meltdown problem. This mechanism is

still currently being used to date in TCP implementations. Once
the threshold value is hit (ssthresh), TCP slows the rate of
increased window size (slows down from exponential growth
in the slow-start state to linear growth in the congestion

avoidance state). After a period of time, TCP transmission rate

Figure 4 Traditional illustration of congestion avoidance.

Figure 2 Combined operations of slow-start and congestion

avoidance.

148 G.A. Abed et al.
exceeds the network link capacity and thus inducing packet

loss. TCP will immediately detect the packet loss and reduces
the congestion window size to almost half of its actual value
(Vallamsunda, 2007). Fig. 2 explains the combined operations

and the function relationship between slow-start and conges-
tion avoidance phase.

The congestion avoidance mechanism is implemented when
the congestion window size is bigger than the recent slow-start

threshold. In congestion avoidance, the congestion window is
enlarged further by the dimension of one full-sized segment
once in RTT, and then it is reduce to half of its earlier dimen-

sion when a TCP sender senses congestion (packet loss) (Sar-
olahti, 2007). In some TCP variants such as Reno, the slow-
start starts at half of its previous size, however, in other TCP

variants such as Tahoe, the slow-start begins from cwnd = 1
(as opposed to cwnd = half of its previous size). Ideally, the
slow-start phase gives a smooth exponential growth, however,

in actuality; the growth is less drastic (TCP, 2006). Also, in this
algorithm, the assumption in packet loss is indeed very minor,
much less than 1%. The loss of packet hints congestion some-
where in the connection between the source and the destina-

tion. Here, two indications that indicate such a scenario is,
Figure 3 Slow-start and con
firstly, when time-out occurs, secondly, when the sender re-
ceived duplicate ACKs. The congestion avoidance mechanism
pushes the behaviour of TCP (forcefully) to steady state, after

which it will consequently request for increment of congestion
window in a constant volume to complete one round trip. This
cycle will again be repeated by again decreasing it in a constant
multiplicative element once congestion has occurred yet again

(Mathis et al., 1997). The stability of congestion avoidance
mechanism is used to save the transmission flow rate from
oscillating near the capacity approximation estimated through

slow-start period. Throughout the duration of congestion
avoidance, the transfer amount is increased predictably in a
linear style (Eddy and Swami, 2005).

Actually, congestion avoidance and slow-start are liberated
mechanisms with each having a different objective. Congestion
can happen anytime throughout, and in practice, the two
mechanisms are concurrently executed (Rodriguez and Corpo-

ration, 2002). The algorithm of slow-start is the primary algo-
rithm for transferring data for TCP connection, despite it
being used as clarified, however, it is to be noted that through

slow-start process, the connection network is forced to drop
gestion avoidance cycling.

Figure 5 Congestion window doubles every RTT.
Figure 6 Sequence number with segment loss scenario.

Exploration and evaluation of traditional TCP congestion control techniques 149
one or more packets due to congestion or surplus. When this
occurs, the congestion avoidance mechanism is applied to slow
the flow rate. During the process of congestion avoidance, the
timer of segment retransmission is beginning to expire or

reception of ACK duplication will indirectly hint the sender
that a connection congestion state is happening. Then, the sen-
der instantly changes the size of transmission window to half

of the recent window size. But when congestion was detected
by a time-out, the congestion window will be reorganized to
only one segment, and this will then trigger slow-start state

automatically as shown in Fig. 3.
With reference to Fig. 4, the cwnd size is doubled for every

RTT, resulting in an exponential increment if compared

against RTT. This growth remains constant until the cwnd
reaches or exceeds the value of ssthresh, or the size of the con-
nection bandwidth.

If cwnd > ssthresh, the TCP initiates the congestion avoid-

ance algorithm, while if cwnd = ssthresh, either slow-start or
congestion may be applied (Bansal, 2005). However, it is worth
mentioning that the slow-start is only used up to the interme-

diate point where congestion initially occurred. After this
intermediate point, the congestion window is enlarged by
one segment for all segments in the transmission window that

are acknowledged. This mechanism will push the sender to fur-
ther slowly raise its flow rate (at much slower rate) as it reaches
the line where congestion had earlier been spotted (Qian and
Dongfeng, 2010). Fig. 4 is a traditional diagram of the activi-

ties of the TCP congestion control mechanism. The figure illus-
trates that in the opening, the TCP sender doubles the size of
congestion for every RTT until the congestion window size is

bigger than the ssthresh. From that point on, the congestion
window increases by one segment size each RTT as explained
in Fig. 5.

The scheme of congestion avoidance permits a network to
run in the area of high throughput and low latency, while con-
gestion control represents a recovery process. Similar to other

control systems, they consist of two fragments, a control mech-
anism and a feedback mechanism. The feedback mechanism
permits the network to notify the clients (both source and des-
tination) of the recent state of the network, while the control
mechanism lets the clients regulate their load on the network.

The feedback signal in a congestion avoidance structure signals
the clients on the current state of functionality of the network
whether it is functioning under or beyond the border (Jain and

Ramakrishnan, 1988). In the slow-start phase of the window
expansion algorithm, the source node transmits two segments
for each ACK received. In the congestion avoidance phase, the

source node normally transmits one segment for each ACK re-
ceived (Floyd and Jacobson, 1991). The basic principles of
both slow-start and congestion avoidance phase (algorithm)
and their correlation with each other plays a big contribution

in this thesis as it supports the development of a new conges-
tion avoidance mechanism aiming to enhance the performance
of TCP in large bandwidth and low latency wired wireless

links.

4. Fast recovery and fast retransmit phase

Slow-start and congestion avoidance of TCP congestion con-
trol coordinate the throughput radically after segment damage
is detected. Fast retransmit and fast recovery provides a mech-

anism to speed-up the retrieval of the connection. This mech-
anism perceives the losses in segments by duplicate
acknowledgements. This mechanism is the recovery method

used by TCP to evade the waiting time of retransmission
time-out for each loss segment (Olsén, 2003). The mechanism
of fast recovery adjusts sending of new segments till a non-
duplicate acknowledgement is received by the sender. Let’s

say after receiving a packet (sequence number 1), the receiver
sends an acknowledgement adding value of 1 to the sequence
number (sequence number = 1 + 1 = 2), which means that

receiver receives packet number 1 and is expecting packet num-
ber 2 from the sender.

Assuming three subsequent packets have been lost, the re-

ceiver receives packet number 5. After receiving packet num-
ber 5, the receiver sends an acknowledgement with the
sequence number 2 and 6. When the receiver receives packet

number 6, it sends an acknowledgement with the sequence
number 2 and 7. In this way, the sender receives more than
one acknowledgement with the same sequence number 2,
which is called duplicate acknowledgement. If a TCP sender

Figure 7 Fast retransmit mechanism of Tahoe.

Figure 8 Fast recovery mechanism.

150 G.A. Abed et al.
receives a specified number of acknowledgements which is usu-
ally set to three duplicates (that is four acknowledgements with
the same ACK number), the sender can then be reasonably

confident that the segment with the next higher sequence num-
ber was dropped, and will not arrive out of order. By this pro-
cess, the acknowledgement clocking can be conserved, and

when a non-duplicate ACK reaches, the fast recovery is fin-
ished, and cwnd is emptied (Gurtov, 2000). With reference to
Fig. 6, once a loss of segment occurs, the TCP receiver will pre-

serve transmitting ACK segments specifying the next predict-
able order number. The sequence number will relate to the
loss segment. When an individual segment is lost, TCP will
preserve creating ACKs for the next segments. This will then

induce the reception of duplicate ACKs by the sender. Dupli-
cate ACK represents the lost packet.

In fast retransmit stage, once TCP gets duplicate ACKs, it

adopts to resend the segment, where no waiting time is re-
quired for the segment timer to expire. This process will speed
up the recovery of segment losses. In fast recovery, when the

segment is lost, the TCP attempts to keep the existing flow rate
without returning to slow-start. The fast retransmit mechanism
was initially introduced in TCP Tahoe (Wang et al., 2000),

based on the concept of resending the unacknowledged seg-
ment after three duplicate ACKs are received. When this hap-
pens, cwnd size is reset to one packet and the process of slow-
start is initiated. The fast retransmit mechanism for TCP Ta-

hoe is illustrated in Fig. 7. The fast recovery mechanism ini-
tially appeared in Reno (Floyd, 2004). Fast recovery is a
mechanism that replaces slow-start when fast retransmit is

used. While duplicate ACKs indicate that a segment has been
lost, nevertheless it also indicates that packets are still flowing
since the source received a packet with a sequence number

higher than the missing packet. In this scenario, the assump-
tion is that a single packet has been dropped and the network
is not fully congested. Therefore, the TCP sender does not

need to fully drop back to slow-start mode, but to half the pre-
vious rate (Lin and Kung, 1998). The first two stages are ap-
plied via the sender of TCP to regulate the quantity of
packets inserted into the connection, whereas fast retransmit

and fast recovery are used to recuperate from the losses in
packets without the need to resend RTOs (de AE et al.,
2003). Reno is an improved version of Tahoe where the fast

retransmit process is further improvised to comprise fast
recovery. Commonly, Reno promotes fast retransmit recovery,
and the process is followed by congestion avoidance (instead

of slow-start) (Abrahamsson et al., 2002). The mechanism
stops the connection to stay unfilled for a quick instant after
fast retransmit, thus evading the need to slow-start to fill-up
for each single loss in packet. Fig. 8 shows the fast recovery

scenario mechanism and the timing relation with slow-start
and congestion avoidance phases. Fast retransmit decreases
the cwnd to half and at the same time, continues sending seg-

ments at this reduced level.
The fast recovery is inserted into the function of TCP sen-

der when receiving a primary threshold of duplicate ACK and

the value of this threshold is typically fixed to three (that
means four ACK with the same sequence number). When
the threshold value has been reached, TCP sender decreases

cwnd by half and resends single packet. As an alternative to
Tahoe sender, the sender in Reno makes use of the extra
incoming duplicate acknowledgement to clock the subsequent
departing packets (Fall and Floyd, 1996). If any losses happen,
the holes of the sequences will be rearranged and the receiver
will be ready to accept new segments which are appropriate

with its window, but are not the predictable segment. The re-
ceiver will transmit ACKs indicating the sequence hole for
each segment over-time, thus duplicated ACKs will be in-
duced. If three or more duplicate ACKs for a segment are

Figure 9 Functional interference among slow-start, congestion avoidance, and fast recovery phases.

Exploration and evaluation of traditional TCP congestion control techniques 151
transmitted from receiver to sender, the sender adopts immedi-
ately that this segment has been missed, and thus, will resend it
before RTO expires (Bartók and Cselényi, 2001). Fig. 9 dem-

onstrates the functional interference among slow-start, conges-
tion avoidance, and fast recovery phases with all expected
probabilities.

The other implementation of fast recovery algorithm is
established in TCP NewReno (Floyd and Henderson, 1999).
The fast recovery algorithm is developed in NewReno by

means of construing a fractional acknowledgement as a mark
of additional lost packet at this sequence number, where frac-
tional ACK is acknowledged after the earlier point, and still in

the window of recovery process. This will further enhance the
connection throughput when many packets are lost for data of
a single window. Comparatively, TCP Reno is waiting RTO
for each packet under this situation, followed by a slow-start,

while TCP NewReno deals with this problem by its enhanced
recovery (Bartók and Cselényi, 2001). Reno’s performance
suffers in this situation when many losses in packets occur

in window (Subedi et al., 2008). If segments reaching the des-
tination are out of sequence, the host cannot distribute these
segments to the end request as it needs to buffer these seg-

ments till the accurate sequence is obtained. The receiver must
transmit an instant duplicate ACK to update the sender of the
loss packet (based on the segments that are out of sequence)
and the expected number of the sequence. By decreasing cwnd

to one single segment after receiving three duplicate ACKs,
the network is still able to send segments irrespective of con-
gestion situation (Hassan et al., 2005). The object behind the

differences of TCP is that each type has some distinct such
as the base TCP has become known as TCP Thaoe. TCP Reno
adds one new mechanism called fast recovery to TCP Tahoe.

Newreno uses the newest retransmission mechanism of TCP
Reno. The use of Sacks permits the receiver to specify several
additional data packets that have been received out of order

within one dupack. TCP Vegas proposes its own unique
retransmission and congestion control strategies. TCP Fack
is Reno TCP with forward acknowledgment (Abed et al.,
2010).
5. TCP over heterogeneous networks

Given the expansion of wireless technologies and the recent
propagation of movable user equipment, there is a perceived

and accumulative attractiveness of wireless environments, such
as Wireless Local Area Networks (WLANs), Wireless Wide
Area Networks (WWANs), and mobile ad hoc networks. In

WLANs, such as Wi-Fi, or WWANs, such as 2.5G, 3G, or
4G cellular systems, mobile hosts connect via an access point
or base station that is connected to the wired part of the net-

work. Unfortunately, wireless and wired networks are dramat-
ically dissimilar in their parameters of link reliability,
bandwidth, and delay time of propagation (Sharma, 2006).
In mobile and wireless networks, there are several challenges

that are associated with wired networks, because wireless net-
works have several essential adverse features that will consid-
erably weaken TCP performance, if no actions are taken.

These features involve mobility, link asymmetry, and, channel
errors which are explained in some detail below.

5.1. Connection asymmetry

The wireless link between a mobile terminal and base station is
naturally an asymmetric link, because mobile terminals have

restricted power, capability of processing, and limited buffer
space.

5.2. Channel errors

Inwireless links, comparatively high bit error rates are expected,
due to the fading of multipath and shadowing that may damage
packets during the data transfer process, leading to a wide loss

in TCP components, such as segments or acknowledgments.

5.3. Mobility and handover

Cellular systems are characterized by handovers, due to
the user’s mobility. Handovers usually cause short-term

Table 1 Network links parameters.

Link Bandwidth Delay (ms)

N0–R1 500 Kbps 2

N1–R1 10 Mbps 2

N2–R1 500 Kbps 2

R1–R2 4 Mbps 6

R2–R3 4 Mbps 4

R2–N3 8 Mbps 2

N3–N4 8 Mbps 2

R3–N4 8 Mbps 2

R3–R4 4 Mbps 2

R4–N6 10 Mbps 2

R4–N5 10 Mbps 2

R4–N7 500 Kbps 2

152 G.A. Abed et al.
connection interruptions, resulting in missing packets and add-
ing extra delays over network pipelines.

Theoretically, TCP is independent of underlying layers, and

if the underlying layers reduce reliability, then for the wired re-
gion (which TCP was first intended to work on), TCP will ex-
hibit some of its deficiencies. However, wireless networks are

known for their high probability and large numbers of random
errors and irregular connectivity of links. In addition, the con-
gestion control mechanism interprets packet loss as a sign of

congestion. In reaction to these missed packets, some TCP ver-
sions decrease the size of the congestion window and the flow
rate. As a result, a dramatic collapse in TCP performance and
throughput can occur. Obviously, users of mobile equipment

can dramatically affect the throughput of the TCP, because
of mobility features and handover possibilities, which may fre-
quently cause connection interruptions (Mahmoodi, 2009).

Commonly, when an IP packet is sent on a wireless link, the
layer of IP sees the available capacity, delay characteristics,
and amount of loss rate that varies over time. The use of acces-

sible link layer control techniques, such as retransmission
scheduling, power controlling, adaption of flow rate, and for-
ward error corrections, permits balance between loss, latency,

and capacity. However, it is not easy to reach the constant le-
vel of low latency, low loss, and high capacity, which repre-
sents the main characteristics of wired links. For most TCP
variants, the congestion control mechanism is believed to

adapt to the style of collective turbulences within the wired
networks, where accessible bandwidth changes according to
cross traffic, irregular routing, changing capacity, and delays,

which are initiated by constant values of queuing and propaga-
tion delays (Möller, 2005).

If TCP is used within a cellular infrastructure, performance

in both end-to-end throughput or in the employment of radio
links is frequently very poor. This is because the self-motivated
characteristics of wireless links and TCPs do not fit well to-

gether. Working on the problems of TCPs over wireless links,
represents the main objective to achieving a good, or at least
acceptable, level of end-to-end throughput and an effective
use of radio link resources, in parallel with small fluctuations

to current infrastructure and protocols. TCP strategy over
wireless networks, takes into account the natural individuali-
ties of the wireless network and its requirements. For example,

satellite networks involve large propagation delay, and ad-hoc
networks are without an infrastructure. The trouble is that all
wireless networks should face a large BER. In wired-wireless

networks TCP design, one of the main objectives is to identify
Figure 10 Netw
the reason for packet loss. Some developments target the dis-

covery of explicit techniques to notify the TCP source side of
the reason beyond dropping of the packet, whether it is con-
gestion or random error events (Ye et al., 2005).

6. Performance evaluation

To monitor the performance of standard TCP versions over

wired-wireless networks with high congestion connection, we
assumed a network topology with 2 wireless nodes and 3 cas-
caded bottleneck. R1, R2, R3, and R4 represent control node

to adjust the packet flow through the network where these con-
struct a three bottleneck. Also, the link R2–N3–N4–R3 creates
a re-routing scenario to the packet flow randomly to add more

reality to the proposed topology. So, these networks include
wired-wireless link, wired nodes, wireless node, three cascaded
bottlenecks, and fast re-routing event. All these conditions aim
to make the proposed topology scenario similar to the real het-

erogeneous network with high congestion events. The proposed
topology is shown in Fig. 10 and the network parameters illus-
trated in Table 1. The evaluation of TCP performed with 6 TCP

versions, Tahoe, Reno, Newreno, Sack, Fack, and Vegas where
these variants include different congestion control mechanisms
with different methodologies, except Reno and Newreno which

include similar congestion control approach.
The behaviour of the congestion control for these variants

shows the poor performance and high packet loss due to these
variants not developed to run over wireless medium and

standard congestion control algorithm take in to account the
ork topology.

Figure 11 Behavior of congestion window of different TCP variants.

Figure 12 Comparative throughputs of different TCP variants.

Exploration and evaluation of traditional TCP congestion control techniques 153
packet loss in congestion occurrence and not interest with the
loss that which happen in air-link connections.

In Fig. 11, the behaviour of cwnd for all TCP variants is

showed and only Reno and Newreno can give stable window
with less packet loss, also these two variants can provide recov-
ering the lost packet. In fact, the classic algorithm used in these

variants not permit the TCP to give high throughput as shown
in Fig. 12, even the special approach used in Vegas, but it still
cannot give high throughput in spite of the stability.

Other hand, all these variants based on use exponential
slow-start increasing in initial window growing, where this
scheme is very slow and need long period of time to reach

the ssthresh or the network bandwidth. The throughput com-
parison shows that when TCP Tahoe start give high output put
later the performance begins this is because the congestion
control algorithm represents the first generation and it suffer
when the network enter congestion mode or when a lot of
handovers and packet loss events happen when the network in-
cludes wired-wireless connections as the proposed topology.

Generally, Newreno can give better output form the other
variants due to the intelligent congestion control algorithm
which used with it as explained in previous sections.

The behaviour of congestion window for these 6 TCP vari-
ants not appear clearly here in Fig. 11 where all these variants
(not including Vegas) share same slow-start algorithm to in-

crease the congestion window after each initialization or after
recovering phase. The standard slow-start algorithm based on
increment one segment only for each ACK so the exponential

increase degrades the throughput of these TCP over conges-
tion links. For these reason, the throughput of Vegas is more
stable due to it not use exponential increasing in slow-start
phase while the other variants can start with high throughput

154 G.A. Abed et al.
bur after packet begins drop, the throughput go to down level.
TCP Tahoe can give good output in beginning of simulation
but it will not be able to recover all the loss happens due to

the network pipe congestion. On the other side, the throughput
of Newreno TCP gives better performance than other TCP
versions which is because the intelligent congestion avoidance

used in the congestion control mechanism of Newreno. In spite
of the reasonable performance of Newreno it is unable to
achieve the requirements of next generation networks where

the loss happens not because the congestion only but because
the handover in linked over wireless nodes.

In recent days and with the growth in the network facilities,
the current congestion control algorithms used with standard

TCP’s arenot able to run over networks that include low prop-
agation delay and large bandwidth exceeds several hundreds of
Mbps such as LTE (Long Term Evolution) and LTE–Ad-

vanced. For these reasons the future congestion control mech-
anism should base on use high speed algorithm with multiple
flows to provide parallel TCP’s that can give multiple through-

put over same connections such as MulTCP (Crowcroft and
Oechslin, 1998) and TCP-FIT (Wang et al., 2011).
7. Conclusion and discussion

Most data applications are built on top of TCP since TCP pro-
vides end-to-end reliability via retransmissions of missing IP

packets. TCP is originally designed for wired networks where
the packet losses are due to network congestion and hence
the window size of TCP is adjusted upon detection of packet
losses. There are a few different kinds of congestion control

algorithms, which are implemented in different TCP versions.
The ordinary TCP assumes that 99% of the losses in packets in
the network are caused by congestion and the remaining is

caused by damage. Many enhancements of the ordinary TCP
already been suggested to solve the hand-off and the BER
problems such as Freeze TCP, I-TCP, M-TCP, and Snoop

TCP.
A critical design issue of TCP is its congestion control that

allows the protocol to adjust the end-to-end communication

rate to the bandwidth on the bottleneck link. However, TCP
congestion control may function poorly in high bandwidth net-
works due to its slow response with large congestion windows.
In other words, cwnd represents number of packets that is al-

lowed to be transmitted without getting acknowledged. Theo-
retically, TCP should be independent of the underlying
medium, and when the underlying medium detracts from the

reliable, wired media that TCP was originally designed to serve,
it exhibits a number of shortcomings. Wireless networks are
characterized by random and high probability of errors and

also intermittent connectivity. On the other hand, congestion
control algorithms interpret packet loss as the indication of
congestion. Most of the TCP variants based on congestion con-
trol decreases the cwnd and the transmission rate accordingly,

and thus a dramatic degradation in TCP throughput can occur.
Recently, many congestion control protocols have been pro-
posed, especially for streaming multimedia applications.

The effective bit error rates in wireless networks are signif-
icantly higher than those of the wired networks. Since TCP
does not possess any mechanism to differentiate between con-

gestion losses and wireless random losses, the latter may cause
severe throughput degradation. Therefore, the enhancement of
TCP congestion control is essentially required to cover the new
requirements over new applications.

References

Abed, G.A., Ismail, M., Jumari, K., 2010. Behavior of cwnd for TCP

source variants over parameters of LTE networks. Information

Technology Journal 10.

Abrahamsson, H., Hagsand, O., Marsh, I., 2002. TCP over high speed

variable capacity links: a simulation study for bandwidth alloca-

tion, 117–129.

Bansal, D., Third-Party TCP Rate Control, 2005.

Bartók and Cselényi, I., Implementation and Evaluation of the BLUE

Active Queue Management Algorithm, ed: Citeseer, 2001.

Cavendish, D., Kumazoe, K., Tsuru, M., Oie, Y., Gerla, M., 2005.

CapStart: an adaptive tcp slow start for high speed networks, 15–

20.

Cheng, R.S., Lin, H.T., Hwang, W.S., Shieh, C.K., 2005. Improving

the ramping up behavior of TCP slow start 1, 807–812.

Crowcroft, J., Oechslin, P., 1998. Differentiated end-to-end Internet

services using a weighted proportional fair sharing TCP. ACM

SIGCOMM Computer Communication Review 28 (3), 53–69.

de AE, L., da Fonseca, N.L.S., de Rezende, J.F., 2003. On the

performance of TCP loss recovery mechanisms. In: IEEE Interna-

tional Conference on Communications, vol. 3, pp. 1812–1816.

Eddy, W., Swami, Y., 2005. Adapting End Host Congestion Control

for Mobility. Citeseer.

Fahmy, S., Karwa, T.P., TCP congestion control: overview and survey

of ongoing research, CSD-TR-01-016, 2001.

Fall, K., Floyd, S., 1996. Simulation-based comparisons of Tahoe,

Reno and SACK TCP. ACM SIGCOMM Computer Communi-

cation Review 26, 5–21.

Floyd, S., 2004. Limited slow-start for TCP with large congestion

windows.

Floyd, S., Henderson, T., 1999. The NewReno Modification to TCP’s

Fast Recovery Algorithm. RFC2582.

Floyd, S., Jacobson, V., 1991. Traffic phase effects in packet-switched

gateways. ACM SIGCOMM Computer Communication Review

21, 26–42.

Gurtov, A., 2000. TCP performance in the presence of congestion and

corruption losses, Master’s Theses, Department of Computer

Science.

Hassan, A., 2005. Predicting TCP congestion through active and

passive measurements.

Iguchi, T., Hasegawa, G., Murata, M., A new congestion control

mechanism of TCP with inline network measurement, in Proceed-

ings of ICOIN 2005, Jan. 2005.

Jacobson, V., Congestion Avoidance and control, SIGCOMM’88,

ACM, August. 1988.

Jacobson, V., TCP Congestion Avoidance Algorithm, End2end-

interest mailing list, April. 1990.

Jain, R., Ramakrishnan, K., 1988. Congestion avoidance in computer

networks with a connectionless network layer: concepts, goals and

methodology, 134–143.

Kodama, M., Hasegawa, G., Murata, M. Implementation experiments

of TCP Symbiosis: bio-inspired mechanisms for Internet congestion

control, in Proceedings of CQR 2008, Apr. 2008.

Kristoff, J., 2002. TCP Congestion Control. Tech Notes.

Kurose, J.F., Ross, K.W. Computer Networking-Complete Package,

third ed., 2006.

Lin, D., Kung, H., 1998. TCP fast recovery strategies: analysis and

improvements 1, 263–271.

Mahmoodi, T. Transport Layer Performance Enhancements over

Wireless Networks, Licentiate Thesis, August 2009.

Mathis, M., Semke, J., Mahdavi, J., 1997. The macroscopic behavior

of the TCP congestion avoidance algorithm. ACM SIGCOMM

Computer Communication Review 27, 67–82.

Exploration and evaluation of traditional TCP congestion control techniques 155
Mo, J., La, R.J., Anantharam, V., Walrand, J., 1999. Analysis and

comparison of TCP Reno and Vegas, in INFOCOM ‘99. Eigh-

teenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE, 1999, pp. 1556–

1563 vol.3.

Möller, N. Automatic control in TCP over wireless, Licentiate Thesis,

September 2005.

Olsén, J. Stochastic modeling and simulation of the TCP protocol, ed:

Uppsala University, Uppsala, Sweden, 2003.

Law, K.L.E., Hung, W.C., 2001. Problems and Solutions for the TCP

Slow-Start Process, Citeseer.

Qian, W., Dongfeng, Y. An improved TCP congestion control

mechanism with adaptive congestion window, in Performance

Evaluation of Computer and Telecommunication Systems

(SPECTS), 2010 International Symposium on, 2010, pp. 231–235.

Rodriguez, A., Corporation, I.B.M., TCP/IP tutorial and technical

overview: Prentice Hall PTR, 2002.

Sarolahti, P., Congestion Control in Linux TCP, in USENIX 2002

Annual Technical Conference, 2002, pp. 49–62.

Sarolahti, P., 2007. TCP Performance in Heterogeneous Wireless

Networks.

Sharma, P., Performance Analysis of High-Speed Transport Control

Protocols, Master of Science (ComputerScience) Thesis, Clemson

University, August 2006.
Shirazi, H.M., 2009. Smart Congestion Control in TCP/IP Networks.

Journal of Information and Communication Technology 2 (2), 73–

78.

Subedi, L., Najiminaini, M., Trajkovi, L., 2008. Performance Evalu-

ation of TCP Tahoe, Reno, Reno with SACK, and NewReno

Using OPNET Modeler. Citeseer.

TCP Revisited, Hughes Systique Corporation2006.

Vallamsundar, B., 2007. Congestion control for adaptive satellite

communication systems with intelligent systems.

Wang, H., et al., A simple refinement of slow-start of TCP congestion

control, 2000, pp. 98-105.

Wang, H., Xin, H., Reeves, D.S., Shin, K.G., 2000. A simple

refinement of slow-start of TCP congestion control, 98–105.

Wang, J., Wen, J., Zhang, J., Han, Y., 2011. TCP-FIT: An Improved

TCP Congestion Control. IEEE INFOCOM 2011 2894–

2902.

Ye, T., Xu, K., Ansari, N., 2005. TCP in wireless environments:

problems and solutions. Communications Magazine, IEEE 43,

S27–S32.

Yuan-Cheng, L. Chang-Li, Y., 2001. TCP congestion control algo-

rithms and a performance comparison, in Computer Communica-

tions and Networks, Proceedings. Tenth International Conference

on 2001, pp. 523–526.

	Exploration and evaluation of traditional TCP congestion control techniques
	1 Introduction
	2 Slow-start phase
	3 Congestion avoidance phase
	4 Fast recovery and fast retransmit phase
	5 TCP over heterogeneous networks
	5.1 Connection asymmetry
	5.2 Channel errors
	5.3 Mobility and handover

	6 Performance evaluation
	7 Conclusion and discussion
	References

