
Journal of King Saud University – Computer and Information Sciences (2012) 24, 117–128
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Translating natural language constraints to OCL
Imran Sarwar Bajwa *, Mark Lee, Behzad Bordbar
School of Computer Science, University of Birmingham, B15 2TT, United Kingdom
Received 8 November 2011; accepted 31 December 2011
Available online 10 January 2012
*

E

m

Bo

Pe

13

ht
KEYWORDS

Natural language processing;

English constraints;

Formal constraints
Corresponding author.

-mail addresses: i.s.ba

.g.lee@cs.bham.ac.uk (M.

rdbar).

er review under responsibilit

Production an

19-1578 ª 2012 King Saud U

tp://dx.doi.org/10.1016/j.jksu
jwa@cs.b

Lee), b

y of King

d hostin

niversity

ci.2011.1
Abstract Object Constraint Language (OCL) is the only available language to annotate the Uni-

fied Modeling Language (UML) based conceptual schema (CS) of a software application. In prac-

tice, the constraints are captured in a natural language (NL) such as English and then an OCL

expert manually transforms the NL expressions to OCL syntax. However, it is a common knowl-

edge that OCL is difficult to write specifically for the novel users with little or no prior knowledge

of OCL. In recent times, model transformation technology has made transformation of one lan-

guage to another simpler and easier. In this paper we present a novel approach to automatically

transform NL specification of software constraints to OCL constraints. In NL to OCL transforma-

tion, Semantics of Business Vocabulary and Rules (SBVR) standard is used as an intermediate rep-

resentation due to a couple of reasons: first of all, SBVR is based on higher order logic that

simplifies the transformation of SBVR to other formal languages such as OCL. Moreover, SBVR

used syntax of natural language and thus is close to human beings. The presented NL to OCL trans-

formation via SBVR will not only simplify the process of generating OCL constraints but also gen-

erate accurate models in less time.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

In software engineering, people need to translate a piece code
from one language to another to make reuse of the existing

code. Similarly, the natural language (NL) expressions are
translated to formal languages (such as Java, C#) to makes
them machine-processable. However, the manual translation
ham.ac.uk (I.S. Bajwa),

.bordbar@cs.bham.ac.uk (B.

Saud University.

g by Elsevier

. Production and hosting by Elsev

2.003
cannot only be time consuming but also error-prone. To facili-
tate the process of language translation, automatic translations
are proposed in computer science, e.g. NL to UML (Unified

Modeling Language) class models (Harmain and Gaizauskas,
2003), NL software requirements to Java (Price et al., 2000),
and NL queries to SQL (Structured Query Language) queries
(Giordani, 2008). However, a key issue in automatic translation

of natural language expressions to formal language expressions
is low accuracy of translation that is reported nearly 65–70% in
real time software development. It has also been identified that a

primary reason of less accuracy is the ambiguous nature of NL.
Kiyavitskaya et al. (2008) identified that various lexical, syntac-
tic and semantic ambiguities in natural languages make

machine processing of NL not only complex but also erroneous.
In modern software engineering, the graphical models such

as UML class models are commonly used to represent a con-

ceptual schema (CS) of a software application. But the UML
ier B.V. All rights reserved.

mailto:i.s.bajwa@cs.bham.ac.uk
mailto:m.g.lee@cs.bham.ac.uk
mailto:b.bordbar@cs.bham.ac.uk
http://dx.doi.org/10.1016/j.jksuci.2011.12.003
http://dx.doi.org/10.1016/j.jksuci.2011.12.003
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2011.12.003

118 I.S. Bajwa et al.
models are incomplete without textual constraints. The textual
such as OCL (OMG, 2010) constraint is specifically used to
improve precision of UML class models. However, various

researchers have proved that OCL syntax is difficult, especially
for novel users (Cabot, 2006; Wahler, 2008). Moreover, it has
also been discovered that various complexities in OCL syntax

make it difficult to write OCL (Cabot and Teniente, 2007) and
a manual effort in writing the OCL code may result in errone-
ous and inconsistent OCL expressions (Wahler, 2008). There-

fore, it is commonly attributed that OCLs difficult syntax is
the main hindrance in OCL wide adaptation and acceptance
in the software modeling community despite the fact that
OCL is an integral part of UML based software models.

In this paper, we have addressed this challenging question
by proposing a natural language based approach to automat-
ically generate OCL code. A key challenge in translation of

English specification of software constraints to OCL was tack-
ling of the inherent syntactic and semantic ambiguities in Eng-
lish. In the presented approach, the input English specification

of software constraint is syntactically and semantically ana-
lyzed to generate a SBVR based logical representation. A
SBVR based logical representation is easy to machine process

and easy to translate to other formal languages such as OCL
due to its foundation on higher order logic (formal logic). Fi-
nally, the SBVR representation is mapped to OCL using model
transformation technology. The presented approach will boost

the acceptance of OCL in software designers and developers
community.

The remaining paper is structured into the following sec-

tions: Section 2 provides an overview of SBVR, OCL and
model transformation technology. Section 3 illustrates the
architecture of NL2OCL approach. Section 4 presents a case

study. The evaluation of our approach is presented in Sec-
tion 5. Finally, the paper is concluded to discuss future work.
2. Preliminaries

2.1. Semantics of Business Vocabulary and Rules

In 2008, a new standard Semantics of Business Vocabulary and
Rules (SBVR) (OMG, 2008) was introduced by OMG to sup-
port business and software community. A typical SBVR repre-

sentation is based on a set of business vocabulary and business
Figure 1 A subset of SBVR metamodel.
rules. Fig. 1 shows an overview of the subset SBVR (meaning)
metamodel.

SBVR business vocabulary. A SBVR business vocabulary

(OMG, 2008, section: 8.1) consists of all the specific terms
and definitions of concepts used by an organization or commu-
nity in the course of business. In SBVR, a concept can be a

noun concept or fact type. A noun concept can be an Object
Type, or Individual Concept, Verb Concept or a Characteristic.

SBVR business rule. A SBVR business rule consists of all

the specific terms and definitions of concepts used by an orga-
nization or community in the course of business. In SBVR, a
concept can be a noun concept or fact type. A noun concept
(OMG, 2008, section: 8.3) can be an Object Type, or Individual

Concept, Verb Concept or a Characteristic.
SBVR semantic formulation. SBVR proposes a set of

semantic formulations that (OMG, 2008, section: 8.4) seman-

tically formulate the SBVR rules. In SBVR 1.0, there are five
types of semantic formulations. However, we have used fol-
lowing three of those that relate to the scope of our research:

� Logical operations: Various number of logical operations
such as conjunction, disjunction, implication, negation,

are supported.
� Quantification: A set of quantifications supported in SBVR
consists of universal quantification, at least n quantification,
at most n quantification, etc.

� Modal formulation: There are set of modal formulations
also available in SBVR, e.g. ‘‘It is obligatory’’ or ‘‘It is nec-
essary’’. The modal formulations are used to formulate

modality.
2.2. Object Constraint Language

Object Constraint Language (OCL) (OMG, 2007) is the only

available language used to annotate the UML class model with
the constraints. OCL supports three types of constraints:
invariants, pre-condition and post-condition. OCL can also
be used for representing queries but that is out of the scope

of the research.
Typically, a constraint is a restriction on state or behavior

of an entity in a UML model. The OCL constraint defines a

Boolean expression. If the constraint results are true, the sys-
tem is in valid state. In this paper, we target the generation
of OCL invariants. The invariants (OMG, 2007) are conditions

that have to be TRUE for each instance of the model.

3. Translating English to logical representation

In our research, we aim to generate OCL constraints from nat-
ural language (NL) specification using SBVR as a pivot repre-
sentation. The first step in NL to OCL translation was the

understanding of NL specification for the generation of a log-
ical representation that can be mapped to SBVR and finally to
OCL constraints. This section briefly explains how the English
text is mapped to a SBVR based logical representation. The

approach works in the following four phases.

3.1. Lexical analysis

In the preprocessing phase, the input text containing the natu-
ral language specification of an OCL constraint for a UML

Figure 2 Elements of selected OCL meta-model.

Translating natural language constraints to OCL 119
class model is preprocessed for deep processing. Major steps
involved in preprocessing phase are splitting the sentences,
tokenization, and lemmatization. Following is a brief discus-
sion of all the preprocessing sub-phases:

Sentence splitting. In the first step, the input English text is
read and broken into sentences. During sentence splitting, the
margins of a sentence are identified and each sentence is sepa-

rately stored. Sentence splitting is performed using the Stan-
ford parser.

Tokenization. After sentence splitting, each sentence is pro-

cessed to identify tokens. Again Stanford parser is employed
for efficient tokenization. Examples of tokenized text are
shown in Figs. 2 and 3.

POS tagging. The tokenized text is processed by the Stan-
ford POS (part-of-speech) (Toutanova et al., 2003) tagger to
identify part of speech for each token in the input text. The
Stanford POS tagger version 3.0.3 has been used to identify

44 various parts of speech. Typically, accuracy of the Stanford
POS tagger is very high up to 97% (Manning, 2011). However,
in a few cases, the Stanford POS tagger is not able to identify

the correct POS tags (Bajwa et al., 2012). An example of such
Sentence Splitting, Tokenizing,
POS Tagging, Lemmatizing

Generating Syntax Tree, Voice
Classification,

Semantic Labeling, Identifying
relationships, Logical Form

Lexical Analysis

Syntactic Analyzer

Semantic Analyzer

Information is mapped
with UML Class Model

Logical Layer User Interface Layer

Input English Text and a
target UML Class Model

Mapping information with
UML Class Model

Figure 3 Processing natural language software constraints.

English: A student books two novels.

Tokens: [A/DT] [student/NN] [books/NNS] [two/CD]

Figure 4 Parts-of-sp
cases is shown in Fig. 4 where, the token ‘‘books’’ is identified
as a noun. However, the token ‘‘books’’ is a verb and the cor-
rect POS tag is ‘‘VBZ’’. As, we are using the Stanford parser
for generating parse tree and the Stanford parser uses output

of the Stanford POS tagger, this problem becomes more seri-
ous as wrong POS tags lead to a wrong parse tree.

We have addressed cases by mapping all the tokens to the

target UML class model. If a token matches to an opera-
tion-name or a relationship name then it is a verb or if a token
matches to a class-name or attribute-name then it is classified

as a noun.
Lemmatization. In lemmatization, the morphological analy-

sis of words is performed to remove the inflectional endings

and to return to the base or dictionary form of a word, which
is known as the lemma. We identify lemma (base form) in the
POS tagged tokens (all nouns and verbs) by removing various
suffixes attached to the nouns and verbs, e.g. in Fig. 3, a verb

‘‘awarded’’ is analyzed as ‘‘award + ed’’. Similarly, the noun
‘‘workers’’ is analyzed as ‘‘worker + s’’ (see Fig. 5).

3.2. Syntactic analysis

The output of a typical syntax analysis phase is a parse tree
diagram or other textual representation. Our syntactic ana-

lyzer uses the Stanford parser to parse the preprocessed text
by. In syntax analysis phase, following three steps are
performed:

Generating syntax tree. We have used the Stanford parser to
generate parse tree from lexically analyzed text. The Stanford
parser is a lexically driven probabilistic parser. The Stanford
parser is a Java implementation of a probabilistic natural lan-

guage parser based on Probabilistic Context-Free Grammars
(PCFG). The Stanford parser provides to outputs: a phrase
structure tree and a Stanford dependencies output. The typed

dependencies generated by the Stanford parser represent the
grammatical relations in an English sentence (Marneffe
et al., 2006). The Stanford parser provides 84.1% accuracy
[novels/NNS] [./.]

eech tagged text.

Figure 5 Syntactic tree generated using Stanford Parser.

120 I.S. Bajwa et al.
(Cer et al., 2010). However, we have experienced that the Stan-
ford parser generates wrong typed dependencies for some Eng-

lish sentences. An example of such sentences is shown in Fig. 5,
where token ‘‘customer’’ is wrongly related with the token
‘‘fries’’. Whereas, that correct typed dependency should be

prep_with (customer-8, fries-10) to represent the actual mean-
ings of the example i.e. the customers are served with burger
and fries.

To handle such inaccurate syntactic analysis, we have used
the information available in the UML class model. Fig. 6
shows a UML class model that can help us to identify the cor-
rect dependencies of the example shown in Fig. 5. The relation-

ships in the UML class model such as associations (directed
and un-directed), aggregations and generalizations can help
English: The order was placed by th

Past participle Tense ‘by’ prepo

Figure 7 Identifying pa

Figure 6 A UML class model.
us to deal with such ambiguities of English. By mapping the
English text information with the UML class model, such

ambiguities can be addressed as the UML enumeration class,
i.e. for example the food class hints that burger is related with
fries.

Voice classification. In the voice classification phase, the
sentence is classified into active- or passive-voice categories.
Typically, the passive voice implies focus on the grammatical

patient in place of the agent of the sentences. Various gram-
matical features manifest passive-voice representation such as
the use of past participle tense with main verbs and can be used
for the identification of a passive-voice sentence (see Fig. 7).

Similarly, the use of the ‘‘by’’ preposition in the object part
is also another sign of a passive-voice sentence. However, the
use of by is optional in passive-voice sentences. By using this

information, a set of rules was defined to classify the voice
of a sentence.

After voice classification, various parts of a sentence are

classified into a subject, verb or object. In case of a NP rela-
tion, there can be more than one subject or object relating to
a verb. Similarly, in a VP relation, more than one verb can re-
late to a subject. This process is also called shallow syntactic

parsing in which a sentence is analyzed to identify various con-
stituents such as subject, verb, object, etc.

Processing conjunction and disjunction. Logical operators

are significant parts of many English sentences. Logical oper-
ators such as conjunction and disjunction can be analyzed by
syntactic information. In Syntax analysis, we have also identi-

fied conjunctions and disjunctions. Following sub-sections ex-
plain the way conjunctions and disjunctions are handled:
e customer.

sition

ssive-voice sentences.

Translating natural language constraints to OCL 121
i. Conjunction. We have used the parse tree information to

identify conjunction (p � q) in English sentences. Typi-
cally, conjunction is represented using a few words such
as ‘‘and’’, ‘‘but’’, ‘‘yet’’, ‘‘so’’ ‘‘moreover’’, ‘‘however’’,

‘‘although’’, ‘‘even though’’, etc. Conjunction can be
fused to join two nouns or two verbs. The ‘‘and’’ con-
junction used with two nouns is easy to interpret e.g.
‘‘A student and teacher can borrow a book’’. However,

use of ‘‘and’’ conjunction with two verbs can be ambig-
uous e.g. ‘‘John opened the door and went out’’. In this
example, and is not serving as a conjunction but an

implication. However, we have not currently handled
implicatures.

ii. Disjunction. In natural language text, disjunction can be

inclusive or exclusive. Typically, inclusive disjunction (p
� q) means either p is true or q is true or both. In Eng-
lish, inclusive disjunction represented using ‘‘or’’ word.
Similar to ‘‘and’’, the use of ‘‘or’’ is also ambiguous in

English as sometimes it disjoins nouns/adjectives and
some times disjoins two propositions. We have identified
this difference and defined simple rules to classify the

different use of ‘‘or’’ in all three possible situations.
For example ‘‘A student can borrow a book or a
CD.’’ Other possible representation of inclusive disjunc-

tions in English can be use of ‘‘unless’’, ‘‘and/or’’.
iii. Exclusive disjunction. (p � q) (XOR) is also used in Eng-

lish e.g. ‘‘Do you want milk or sugar in your coffee?’’

does not gives a constraint ‘‘milk’’ XOR ‘‘sugar’’. In
another context the example, ‘‘do you want milk and
sugar in your coffee?’’ suggests ‘‘milk’’ AND ‘‘sugar’’.
Both are examples of inclusive OR. We are aware of

such subtle aspects. However, we have not handled this
type of relation until mentioned explicitly.

Generating an intermediate representation. In this phase, an
intermediate representation is generated for the further seman-
tic analysis in the next phase. A tabular representation is gen-

erated containing the syntactic chunks and their associated
representation such as syntax type (such as subject, verb or ob-
ject), quantification, logical operator, and associated preposi-
tion (Table 1).

A major feature of this intermediary representation is that
the active voice and passive voice are mapped to the same rep-
resentation such as subject of a passive-voice sentence is repre-

sented as object and object of a passive-voice sentence is
represented as subject.

3.3. Semantic analyzer

A typical semantic analysis yields in a logical form of a sentence.
Logical form is used to capture semanticmeaning anddepict this

meaning independent of a particular context (Lu et al., 2008).
The goal of semantic analysis is to understand the exact mean-
Table 1 An intermediary logical representation of an NL sentence.

Chunk Syntax Quantificatio

1 Customer Subject 1

2 Can H.Verb

3 Place M.Verb

4 Order Object More than 1
ings of the input text and identify that relationship in various
chunks. For a complete semantic analysis of domain specific
text, we have to analyze the text in respect of particular domain

such as the UML class model. Domain specific text analysis de-
mands knowledge from the application domain to be mapped
with the input English. In our research, UML class model is

an application domain of the input NL specification of con-
straints. Our semantic analyzer performs the following three
steps to identify relations in various syntactic structures:

1. Shallow semantic parsing.
2. Intermediary semantic representation.
3. Deep semantic parsing.

Shallow semantic parsing. In shallow semantic parsing the
semantic or thematic roles are typically assigned to syntactic

structure in a NL sentence. This process is also called Semantic
Role Labeling. The actual purpose of semantic role labeling is
identifying relationship of participants (semantic arguments)

with the main verb (semantic predicate) in a clause. SRL is a
most common way of representing lexical semantics of NL
text. Semantic labeling on a substring (semantic predicate or

a semantic argument) in a constraint (NL sentence) ‘‘S’’ can
be applied. Every substring ‘‘s’’ can be represented by a set
of words indices as following:

S# f1; 2; 3; . . . ; ng

Formally, the process of semantic role labeling is mapping

from a set of substrings from c to the label set ‘‘L’’. Where
L is a set of all argument semantic labels,

L ¼ a1; a2; a3; . . . ;m

In the context of the targeted representation (SBVR rule

representation), we have incorporated the following semantic
roles. These semantic roles are typically used in semantic role
labeling:

a. Object Type fi Common nouns,
b. Individual conceptfi Proper nouns,

c. Verb concepts fi Main verb and
d. Characteristics fi Generative phrases

A sequence of steps was performed for labeling semantic

roles to respective semantic predicates. Following are the three
main steps involved in the phase of semantic role labeling:

i. Identifying predicates. In the first step, the system iden-
tifies the words in the sentence that can be semantic
predicates or semantic arguments, and for which seman-

tic roles need to be found and annotated. For identifying
predicates we need following information that we
extracted in a previous (syntactic analysis) phase for

the input sentence ‘‘Customer places order’’.
n Logical operator Preposition EOS

Not

True

122 I.S. Bajwa et al.
Above shown information is extracted by using lexical and
structural features identified. Such typical features assist in
manifesting a semantic predicate, a semantic argument and

relations between predicate and arguments. By using this syn-
tactic information, we have identified predicates in the follow-
ing two phases:

Extracting semantic predicates. In this phase, we extract the
possible semantic predicates. This module relies mainly on the
external resources, thus the elements in target UML class mod-
els (class names, attributes, methods) are likely to be semantic

predicates (see Fig. 9(a)). The chunks not matching the ele-
ments of target UML class model are not semantic predicates
or semantic arguments. For extracting semantic predicates we

Check if the verb is a simple verb, a phrasal verb or a verbal
collocation and locate the verb in (see Fig. 8).

In English sentences, verb concepts are typically repre-

sented in combination with auxiliary verb and main verb (pos-
sibly following participle). However sometimes, there are only
auxiliary verbs and no main verbs.

Extracting semantic arguments. By excluding the pre-modi-
fiers and post modifiers, we can extract the noun concepts. For
further classification of object types and individual concepts
the POS type of the noun concept is checked. If the POS type

is a common noun, it is categorized as an Object Type and if
the POS type is proper noun, it is categorized as an individual
concept. Once the noun concepts are extracted, the next phase

is to process phrases to generate a semantic representation. We
have identified three types of phrases in typical constraints as
following (see Figs. 9(b) and 10):
English: A customer can not place more than one

CAssociation nameClass name

Figure 9 (a) UML class model and (b) En

English: A customer can not place more than one

Verb Concept

Figure 8 Identifying verb

English: A customer can not place more than one o

Object TyObject Type Verb Concept

Figure 10 Semantic roles assign
a. Processing phrases. Typical phrases are a combination of

two or more than two words. In SBVR, both the object
types and individual concepts are represented in the
form of phrases. Following two examples show how

phrases are processed to a semantic representation:

English: credit customer,
FOL: is a (x, customer) � object_type (x, credit),
English: gold credit customer,

FOL: is a (x, customer) � object_type (x, credit) �
object_type (x, gold).

b. Generative noun phrase. The generative noun phrases are

also very common in constraints. Especially the SBVR
characteristics are described by using generative noun
phrases e.g. customer’s age, customer’s salary, etc. Fol-

lowing examples show the way we have processed gener-
ative noun phrases to a semantic representation.

English: customer’s account.
FOL: object_type (x, customer) � characteristic (x,

account).
English: account of customer.
FOL: object_type (x, customer) � characteristic (x,

account).
c. Adjective phrases. Adjective phrases are not common in

constraints but we have processed the adjective phrases

as they can be a possible case. Following are the exam-
ples showing the processing of adjective phrases:
 order.

lass name

glish s

 order.

conc

rder.

pe

ed to i
English: The customer is happy.

FOL: is (x, customer) � characteristic (x, happy).
English: This is a gold customer.
FOL: is a (x, customer) � characteristic (x, gold).

entence mapped with class model.

epts (predicate).

nput English sentence.

Translating natural language constraints to OCL 123
ii. Sense recognition After identification of predicate,

we need to recognize the exact sense of the
predicates so that accurate semantic roles may be
assigned to the predicate. Sense of a predicate is

identified according to the target UML model.
For example a verb can be an operation of a class
or also can be an association of two classes.
Another purpose of this mapping is the confirm

that each element of the input is also part of the tar-
get UMLmodel and such mapping will ensure that
the finally generated representation will be consis-

tent to the target UML class model.
iii. Thematic role classification After sense recogni-

tion, we have to decide the exact semantic label/

role for a particular substring. The substrings
are labeled with a semantic role. The used
approach for semantic role labeling works as the
syntactic tree representation of a sentence is map-

ped into a set of syntactic constituents. Finally,
each syntactic constituent is classified into one
of semantic roles. The classification is performed

on the basis of the sentence structural features
or the linguistic context of the target constituent.
Semantic role classification is performed as the

syntactic information (such as part of Speech
and syntactic dependencies) is used to identify
predicates and predicate roles. Output of semantic

role labeling phase is semantic predicates and
semantic arguments labelled with their corre-
sponding roles.
Deep semantic analysis. Typically computational semantics
aim at grasping the entire meanings of the natural language

sentence, rather than focusing on text portions only. For com-
putational semantics, we need to analyze the deep semantics of
the input text. The deep semantic analysis involves generation

of a fine-grained semantic representation from the input text.
Various aspects are involved in deep semantics analysis. How-
ever, we are interested in a most common aspect quantification
resolution:

i. Resolving quantifications. In natural languages, quanti-
fications are typically expressed with noun phrases

(NPs). However, in First-Order Logic (FOL), the vari-
ables are quantified at the start of the logical expres-
sions. Generally, the natural language quantifiers are

much more vague and varied. This vagueness makes
translation of NL to FOL complex. However, we have
done following two things to handle quantifiers vari-

able scoping:

With respect to our target representation (SBVR rules), we
have identified following four types of quantifications that we
English: A customer can not place

Ob ect T e Verb Conce tUniversal Quantification pypj

Figure 11 Semantic roles assign
need to handle as SBVR 1.0 also support these four types of
quantifications. First two quantifications such as universal
and existential are most common. However, these two types

do not cover all possible types in detail. We cover all possible
types of quantifications in natural languages; we have used two
other types such as uniqueness and solution quantification.

Hence, it will be simple to map these NL quantifications to
SBVR quantifications.

Universal quantification (8X). The universal quantifier is

represented using all sign ‘‘8’’ and means all the objects X in
the universe. The universal quantification is mapped to Univer-
sal Quantification in SBVR. The NL quantification structures
‘‘each’’, ‘‘all’’, and ‘‘every’’ are mapped to universal quantifica-

tional structures. Similarly, the determiners ‘‘a’’ and ‘‘an’’ used
with the subject part of the sentence are treated as universal
quantification due to the fact that we are processing con-

straints and generally constraints are mentioned for all the
possible X in a universe (see Fig. 11).

Existential quantification (9X). The existential quantifier is

represented using exists sign ‘‘9’’ and means at least one ob-
ject X exists in the universe. The existential quantification is
mapped to Existential Quantification in SBVR. The key-

words like many, little, bit, a bit, few, a few, several, lot,
many, much, more, some, etc. are mapped to existential
quantification.

Uniqueness quantification (9¼1X). The uniqueness quantifier

is represented using ‘‘9¼1’’ or ‘‘9!’’ means exactly one object X
in the universe. The uniqueness quantification is mapped to
Exactly-One Quantification in SBVR. The determiners ‘‘a’’

and ‘‘n’’ used with object part of the sentence are treated as
uniqueness quantification.

Solution quantification (§X). The solution quantifier (Heh-

ner, 2004) is represented using section ‘‘§’’ sign and means n
object in the universe. The solution quantification is mapped
to Exactly-n Quantification in SBVR. If the keywords like

more than or greater than are used with n then solution quan-
tifier is mapped to At-most Quantification (see Fig. 8). Simi-
larly, if the keywords like less than or smaller than are used
with n then solution quantifier is mapped to At-least

Quantification.
Two other types of quantifications are also available such

as Plaucal quantification (9manyX) and multal Quantification

(9fewX). However, we are not using these both quantifications
as both of them are not supported by SBVR and UML and
ultimately cannot be translated to OCL.

i. Quantifier scope resolution In quantification resolution,
second issue is quantifier scope resolution. For quantifi-
cation variable scoping, we have treated syntactic struc-

tures as logical entities
ii. Resolving logical operations.

Negation. Negation is an important construct that is used to
negate a structure by using keywords no and not e.g. ‘‘A
more than one order.

Ob ect T e At-least n Quantification j yp

ed to input English sentence.

Figure 12 Semantic roles assigned to input English sentence.

124 I.S. Bajwa et al.
customer cannot apply for more than one account.’’ Here,

negation has been used to restrict customers to a single
account. We have also worked out the double negation as a
positive sentence. Hence, :ð:pÞ ¼ p.

Implication. In English, a few expression are used to rep-
resent implications such as ‘‘if p, then q’’, ‘‘if p, q’’, ‘‘q if
p’’, ‘‘p only if q’’, ‘‘p implies q’’, ‘‘p entails q’’, ‘‘p hence
q’’, ‘‘q provided p’’, ‘‘q follows from p’’. For example ‘‘If

student is adult, he can get a pass’’. We have also identified
that some expressions such as ‘‘q since p’’, ‘‘since p, q’’, ‘‘be-
cause p, q’’, ‘‘q because p’’, ‘‘p therefore q’’ are not true

cases of implications.
Semantic interpretation. After shallow and deep semantic

parsing, a final semantic interpretation is generated that is

mapped to SBVR and OCL in later stages. A simple inter-
preter was written that uses the extracted semantic information
and assigns an interpretation to a piece of text by placing its

contents in a pattern known independently of the text.
Fig. 12 shows an example of the semantic interpretation we
have used in the NL to OCL approach:
4. Translating logical form to OCL

Once we get the logical representation of the English con-
straint, it is mapped to the OCL by using model transforma-

tion technology. For model transformation of NL to OCL,
we need the following two requirements to generate OCL
constraints:

i. Selection of the appropriate OCL template (such as
invariant, pre/post-conditions, collections, etc.)

ii. Use of set of mappings that can map source elements of
logical form to the equivalent elements in used OCL
templates.

4.1. OCL templates

We have designed generic templates for common OCL expres-

sions such as OCL invariant, OCL pre-condition, and OCL
post-condition. User has to select one of these three templates
manually. Once the user selects one of the constraints, the

missed elements in the template are extracted from the logical
representation of English constraint. Following is the template
for invariant:

package [UML-Package]

context [UML-Class]

inv: [Body]
Figure 13 SBVR to OCL transformation framework.
Following is the template we used for OCL pre-condition:

package [UML-Package]

context [UML-Class::Class-Op(Param):Return-Type]

pre: [Body]
Following is the template we used for OCL post-condition:

package [UML-Package]

context [UML-Class::Class-Op(Param):Return-Type]

post: [Body]

Result: [Body] – optional
In all the above shown templates, elements written in brackets
‘‘[]’’ are required. We get these elements from the logical rep-
resentation of the English sentence. Following mappings are

used to extract these elements:

i. UML-Package is the package name of the target UML
class model.

ii. UML-Class is the name of the class in the target UML
Class model and UML-Class should also be an Object
Type in the subject part of the English Constraint.

iii. Class-Op is one of the operations of the target class
(such as context) in the UML class model and Class-
Op should also be the Verb Concept in English

constraint.
iv. Param is the list of input parameters of the Class-Op and

we get them from the UML class model. These parame-

ters should be of type Characteristics in English
constraint.

v. Return-Type is the return data type of the Class-Op and
we get them from the UML class model. The return type

is the data type of the used Characteristic in English con-
straint and this data type is extracted from the UML
class model.

Translating natural language constraints to OCL 125
vi. Body can be a single expression or combination of more

than one expression. The details of Body are given in the
next section.
4.2. Mapping logical form to OCL

The Body of the invariants and the pre/post-conditions is

generated from the logical form generated in Section 2.2.
A set of transformation rules (Bajwa and Lee, 2011) were
used to translate SBVR based logical representation to

OCL by mapping element(s) of the SBVR metamodel to
equivalent element(s) of the OCL metamodel (Bajwa et al.,
2010). Sitra library was used in this mapping as shown in

Fig. 13.
Moreover a set of mappings were used to map logical

elements to OCL elements. Following is a brief overview
of the used mappings from logical representation to

OCL:
Logical expression: In OCL, two expressions are concate-

nated using a logical operator. Following are the possible cases

of logical expressions:

English representation OCL rep.

p or q p or q

p and q, p but q, p yet q, p so q, p

moreover q, p however q, p although q, p

even though q

p and q

p then q, if p q, q if p, p only if q, p

implies q, p entails q, p hence q, q

provided p, q follows from p

p implies q
Fi
gure 14 The Roya
Relational expressions: In OCL, two expressions can be
concatenated using a relational operator. Following are the
possible cases of relational expressions:

English representation OCL rep.

p is q, p is equal to q p=q

p is greater than q, p is larger than q, p is more than q, p>q

p is less than q, p is smaller than q p<q

p is more than or equal to q p>=q

p is less than or equal to q p<=q
l
 & Loyal model.
Postfix expressions: In OCL, there can be a postfix expres-
sion such as self.

English representation OCL rep.

attribute of the context class self.[attribute]
Navigation: The navigation expressions are most common
expressions in OCL.

English representation OCL rep.

p’s q, q of P p.q

p is q() p.q()

size of p, number of p p -> size()

number of p in q p -> count(q)

p is empty p -> isEmpty()

sort p p -> sortBy()

q exists in p p -> exists(q)

126
Conditional expression: In OCL, there can be a conditional
expression. The conditional expressions can be of two types:
if–then expressions, and if–then–else expressions.

English representation OCL rep.

if p then q if [Relational-Exp]

then q

endif

if p then q else R if [Relational-Exp]

then q

else R

endif
5. Case study

A case study the ‘‘Royal & Loyal’’ model was solved using our
tool NL2OCLviaSBVR to test the accuracy of the presented
approach. The Royal & Loyal model was originally introduced
in OCL By Example in Kleppe and Warmer (2003). Afterward,

the Royal & Loyal model is used in various publications, e.g.,
Tedjasukmana (2006), Dzidek et al. (2005) and Wahler (2008).
The same model is also shipped with several tools as an exam-

ple model, e.g., Dresden Technical University (2007).

5.1. The Royal & Loyal model

The Royal & Loyal model is a computer system of a com-
pany that handles loyalty programs for its various custom-
ers. Key participating classes are LoyaltyProgram (see

Fig. 14), Customer and class ProgramPartner and Loy-

altyProgram. Other participant classes are Membership,
LoyaltyAccount, CustomerCard and Transactions.
In the Royal & Loyal model, the program partners various

services and each membership is associated with exactly one
service level.

5.2. The Royal & Loyal model constraints

Wahler has discussed 26 English constraints of the Royal &
Loyal case study in his PhD thesis. However, his (pattern-

based) approach is able to translate just 18 English constraints
into OCL that is 69% of the total constraints. In comparison
to Wahler’s pattern based approach, our NL-based approach
has successfully translated all 26 constraints to OCL. Another

advantage over Wahler’s approach is that our NL-based ap-
proach is fully automatic, while in Wahler’s pattern based ap-
proach, user has to do detailed manual analysis of the English

constraints to choose the right pattern and then Wahler’s tool
Copacabana (Wahler, 2008) translates the pattern instances to
OCL code. In the following section, we present just three out

of 26 constrains due to shortage of space.

Constraint 1

English: There must be one transaction with exactly 500 points.

SBVR: It is necessary that there must be one transaction with

exactly 500 ‘‘point’’.

OCL: package: royal_and_loyal

context Transaction

inv self.transaction->select(point = 500)-

>Size()=1
Constraint 2
English: All cards that generate transactions on the loyalty account

must have the same owner.

SBVR: It is necessary that each all card that generates transactions

on the loyalty account must have the same owner.

OCL: package: royal_and_loyal

context Loyalty Account

inv self.transactions.cards.owner->asSet()-

>size() = 1

I.S. Bajwa et al.
Constraint 3

English: A maximum of 10,000 points may be earned using services

of one partner.

SBVR: It is a possibility that a maximum of 10,000 points may be

earned using the services of one partner.

OCL: package: royal_and_loyal

context ProgramPartner

inv self.delivered Services.points earned <=

10,000
Constraint 4

English: The maximum age of participants in loyalty programs is

70.

SBVR: It is necessary that the at most ‘‘age’’ of participants in

loyalty program is 70.

OCL: package: royal_and_loyal

context LoyaltyProgram

inv self.participants->for all(ages <= 70)
6. Evaluation

To test the accuracy of the OCL constraints generated by the
designed system two classes were defined: preconditions and

post-conditions. Invariant class was not used as it is irrelative
to the used case study. The package merges English constraints
and transformations were classified into three classes with re-

spect to complexity levels of input, i.e. simple, compound
and complex.

6.1. Evaluation methodology

For evaluation of the designed system, a criterion was de-
fined that how close are the constraints generated by our
system (named system results) to the constraints produced

by the human experts (named sample results). As, there
can be multiple representations for a single constraint, dif-
ferent human experts produce different representations that

can be good or bad constraints. However, we gained a hu-
man expert’s constraints for the target input and used it
as a sample result. We have used three evaluation metrics

[34], [35] for NL2OCLviaSBVR: recall, precision and F-va-
lue. These metrics are extensively employed to evaluate
NL-based knowledge extraction systems.

Table 3 Usability survey results.

User Easy to use Time-saving Correctness

Manual (%) By tool (%) Manual (%) By tool (%) Manual (%) By tool (%)

Novel 30 90 25 85 15 65

Medium 55 85 40 80 50 70

Expert 70 85 60 70 80 80

Average 51.66 86.66 41.66 78.33 48.33 71.66

Table 2 Evaluation results of NL2OCLviaSBVR.

Input Nsample Ncorrect Nincorrect Nmissing Rec% Prec% F-value

C1 48 37 8 3 77.08 82.22 79.65

C2 43 33 8 2 76.74 80.48 78.61

C3 39 31 5 3 79.48 86.11 82.79

C4 36 29 3 4 80.55 90.62 85.58

C5 26 24 1 1 92.30 96.15 94.12

Average 81.23 87.12 84.15

Translating natural language constraints to OCL 127
6.2. Evaluation results

Four other case studies were solved in addition to the case
study presented in Section 5. All the case studies were unseen.

The solved case studies were of different lengths. Calculated re-
call, precision and F-values of the solved case studies are
shown in Table 2.

The average F-value is calculated 84.15% that is encourag-
ing for initial experiments. We cannot compare our results to
any other tool as no other tool is available that can generate

OCL constraints from NL specification. However, we can note
that other language processing technologies, such as informa-
tion extraction systems, and machine translation systems, have

found commercial applications with precision and recall figure
well below this level. Thus, the results of this initial perfor-
mance evaluation are very encouraging and support both
NL2OCL approach and the potential of this technology in

general.

6.3. Usability survey

A small survey was conducted to measure the effectiveness of
the presented approach. For the survey three groups were de-
fined as below:

Novel : A user who is quite new to OCL.
Medium: A user who knows basics of OCL.

Expert: A user who is an expert of OCL.

Each group consists of 10 users. A set of inputs such as
English specification of OCL constraints were provided to all

the users. First all the users were asked to solve the input man-
ually and then they were asked to generate the OCL con-
straints by using our tool NL2OCLviaSBVR. Once all the

users finished their work they were given a questionnaire to fill.
In the questionnaire, questions were asked regarding various
aspects: simple to use, time-saving, correctness, etc. Each user

was asked to give 1–10 scores for each category. The average
results we received are shown in Table 3.
The average values calculated for different parameters are

clearly showing that the used approach was clearly making
an impact. Though the accuracy of the tool is a bit of concern
we can overcome this in future work by improving the

implementation.
7. Conclusion

The current presented work focuses on automated (object ori-
ented) analysis of NL specification and the generation of OCL
constraints for UML models. The presented work not only

complements the current research work in the field of auto-
mated software modeling but also simplifies the process of
writing OCL constraints. The initial performance evaluation
of our approach is very encouraging and symbols the efficacy.

The Software modelers can get the benefit of our tool as the
NL2OCL can generate accurate OCL constraints with less ef-
fort. However, our tool is limited to process one English sen-

tence at a moment. In future, we aim to enhance our tool to
process multiple constraints.
References

Bajwa, I.S., Lee, M., 2011. Transformation rules for translating

business rules to OCL constraints. In: 7th European Conference on

Modelling Foundations and Applications (ECMFA 2011), Bir-

mingham, UK, June, pp. 132–143.

Bajwa, I.S., Bodbar, B., Lee, M., 2010. OCL constraints generation

from natural language specification. In: 14th IEEE International

Enterprise Distributed Object Conference (EDOC 2010), Vitoria,

Brazil, October, pp. 204–213.

Bajwa, I.S., Bodbar, B., Lee, M., 2012. Resolving syntactic

ambiguities in natural language specification of constraints.

In: 13th International Conference on Intelligent Text Pro-

cessing and Computational Linguistics (CICLing 2012), Delhi,

India.

Cabot, J., 2006. Ambiguity issues in OCL post-conditions. In: Proc.

OCL for (Meta-) Models in Multiple Application Domain –

MODELS’06, Technical Report.

128 I.S. Bajwa et al.
Cabot, J., Teniente, E., 2007. Transformation techniques for OCL

constraints. Journal of Science of Computer Programming 68 (03),

152–168.

Cer, D., Marneffe, M.C., Jurafsky, D., Manning, C.D., 2010. Parsing

to stanford dependencies: trade-offs between speed and accuracy.

In: Proceedings of LREC-10.

Dzidek, W., Briand, L., Labiche, Y., 2005. Lessons learned from

developing a dynamic OCL constraint enforcement tool for Java.

LNCS 3844, 10–19.

Giordani, A., 2008. Mapping natural language into SQL in a NLIDB.

Natural Language and Information Systems 5039, 367–371.

Harmain, H.M., Gaizauskas, R., 2003. CM-builder: a natural

language-based CASE tool for object-oriented analysis. Automated

Software Engineering 10 (2), 157–181.

Hehner, E.C.R., 2004. Practical Theory of Programming, second ed. p.

28.

Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D., 2008. Requirements

for tools for ambiguity identification and measurement in natural

language requirements specifications. Requirements Engineering 13

(3), 207–239.

Kleppe, A., Warmer, J., 2003. The Object Constraint Language,

second ed. Addison-Wesley.

Lu, W., Ng, H.T., Lee, W.S., Zettlemoyer, L.S., 2008. A generative

model for parsing natural language to meaning representations. In:

Empirical Methods in Natural Language Processing (EMNLP),

vol. 55, pp. 55–56.
Manning, C.D., 2011. Part-of-speech tagging from 97% to 100%: is it

time for some linguistics? In: Proceedings of CICLing, vol. 1, pp.

171–189.

Marneffe, M.C., MacCartney, Bill, Manning, C.D., 2006. Generating

typed dependency parses from phrase structure parses. In: LREC,

vol. 55, pp. 55–56.

OMG, 2007. Unified Modeling Language (UML), OMG Standard, v.

2.3.

OMG, 2008. Semantics of Business Vocabulary and Rules (SBVR),

OMG Standard, v. 1.0.

OMG, 2010. Object Constraint Langauge (OCL), OMG Standard, v.

2.2.

Price, D., Riloff, E., Zachary, J., Harvey, B., 2000. NaturalJava: a

natural language interface for programming in Java. In: Proceed-

ings of the International Conference on Intelligent User Interfaces

(IUI).

Tedjasukmana, V.N., 2006. Translation of OCL invariants into SQL:

99 integrity constraints. Master’s Thesis, Technical University of

Hamburg, Germany.

Toutanova, K., Klein, D., Manning, C., Singer, Y., 2003. Feature-rich

part-of-speech tagging with a cyclic dependency network. In:

Proceedings of HLT-NAACL, pp. 252–259.

Wahler, M., 2008. Using patterns to develop consistent design

constraints. Ph.D. Thesis, ETH Zurich, Switzerland.

	Translating natural language constraints to OCL
	1 Introduction
	2 Preliminaries
	2.1 Semantics of Business Vocabulary and Rules
	2.2 Object Constraint Language

	3 Translating English to logical representation
	3.1 Lexical analysis
	3.2 Syntactic analysis
	3.3 Semantic analyzer

	4 Translating logical form to OCL
	4.1 OCL templates
	4.2 Mapping logical form to OCL

	5 Case study
	5.1 The Royal & Loyal model
	5.2 The Royal & Loyal model constraints

	6 Evaluation
	6.1 Evaluation methodology
	6.2 Evaluation results
	6.3 Usability survey

	7 Conclusion
	References

