
Journal of King Saud University – Computer and Information Sciences (2013) 25, 99–115
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
A high abstraction level approach for detecting

feature interactions between telecommunication services
Zohair Chentouf a,*, Ahmed Khoumsi b,1
a Department of Computer Science, College of Computer and Information Science, King Saud University, Saudi Arabia
b Department of Electrical and Computer Engineering, University of Sherbrooke, Canada
Received 21 January 2012; revised 5 May 2012; accepted 1 October 2012
Available online 8 October 2012
*

E

K
1

Sc

Pe

13

ht
KEYWORDS

Telecommunication services;

Feature interaction detec-

tion;

Service modeling;

Service management
Corresponding author.

-mail addresses: zchentouf

houmsi@Usherbrooke.ca (A

On sabbatical leave at the

ience, King Saud University

er review under responsibilit

Production an

19-1578 ª 2012 King Saud U

tp://dx.doi.org/10.1016/j.jksu
@ksu.edu

. Khoum

College o

when the

y of King

d hostin

niversity

ci.2012.1
Abstract When several telecommunication services are running at the same time, undesirable behav-

iors may arise, which are commonly called feature interactions. Several methods have been developed

for detecting and resolving feature interactions.However,most of thesemethods are based on detailed

models of services, which make them suffer from state space explosion. Moreover, different telecom-

munication operators cannot cooperate tomanage feature interactions by exchanging detailed service

models because this violates the confidentiality principle. Our work is a part of the few attempts to

develop feature interaction detection methods targeting to avoid or reduce significantly state space

explosion. In order to reach this objective, we first develop a so called Cause–Restrict language to

model subscribers of telecommunication services at a very high abstraction level. A Cause–Restrict

model of a subscriber provides information such as: what is the cause of what, and what restricts

(or forbids) what, and specifies coarsely the frequency of each operation ‘‘cause’’ or ‘‘restrict’’ by

‘‘always’’ or ‘‘sometimes’’. Then, we develop a method that detects feature interactions between tele-

communication servicesmodeled in theCause–Restrict language.We demonstrate the applicability of

our approach by modeling several services and detecting several feature interactions between them.

New feature interactions have been detected by our approach.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
.sa (Z. Chentouf), Ahmed.-

si).

f Computer and Information

study was done.

Saud University.

g by Elsevier

. Production and hosting by Elsev

0.002
1. Introduction

With the great development of telecommunication systems, the

number of services available to the users is continuously
increasing for several years. However, undesirable behaviors
arise when several services S1, . . ., Sn are run together. Those
undesirable behaviors are commonly called feature interactions

(FIs). We say that there is an FI between S1, . . ., Sn or that
those services interact with each other. To be clear, let us give
an example of services Originating Call Screening (OCS) and

Call Forward Unconditional (CFU) and an FI OCS–CFU that
occurs between them: A subscriber of OCS can put phone
numbers in a list LOCS so that every outgoing call from A
ier B.V. All rights reserved.

mailto:zchentouf@ksu.edu.sa
mailto:Ahmed.Khoumsi@Usherbrooke.ca
mailto:Ahmed.Khoumsi@Usherbrooke.ca
http://dx.doi.org/10.1016/j.jksuci.2012.10.002
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2012.10.002

100 Z. Chentouf, A. Khoumsi
toward a number in LOCS is automatically blocked. A sub-
scriber of CFU can program an automatic forward to a spe-
cific number so that all his incoming calls are automatically

forwarded to that specific number. Consider A and B who
are subscribers of OCS and CFU respectively, and a third user
C. Assume that A has put C’s number in his list LOCS with the

idea that a call initiated by A must not be established between
A and C. Assume that B has programmed an automatic
unconditional forward of his incoming calls towards C. OCS

prevents that A calls directly C (who is in LOCS), but the FI
comes from the fact that A can join C by calling B who for-
wards the call to C although C is in LOCS.

Once the services are analyzed together, some FIs may seem

improbable with the impression that experienced designers of
services should not make some ‘‘mistakes’’ that are causes of
FIs. But when studying whether FIs arise between services, a

fundamental assumption is that each service has been designed
independently of the other ones. Not making this assumption
is unrealistic in the general case, because during the design of a

service S, it is practically impossible to consider all the existing
services that may run together with S. Moreover, it is funda-
mentally impossible to consider the non-existing services that

will be designed in the future.

1.1. Existing approaches to FI detection and resolution

FIs have been studied substantially in telecommunication

systems (Bouma and Velthuijsen, 1994; Cheng and Ohta,
1995; Dini et al., 1997; Kimbler and Bouma, 1998; Calder
and Magill, 2000; Amyot and Logrippo, 2003; Reiff-

Marganiec and Ryan, 2005; Du Bousquet and Richier,
2007; Nakamura and Reiff-Marganiec, 2009), and more
recently in other kinds of systems, such as web services

(Weiss et al., 2007). We consider here uniquely telecommuni-
cation services, thus the term service will mean telecommuni-
cation service.

A solution to the FI problem is often operated in two
phases. First, FIs are detected between services. Then, a
FI resolution mechanism is executed to solve the detected
interactions. Most of the FI detection research reported in

the literature uses formal methods. Services are modeled
using a formal language. Then, formal techniques are used
in order to detect possible interactions. The commonly used

formal techniques are temporal logic (Blom et al., 1995),
theorem proving (Gammelgaard and Kristensen, 1994), Petri
nets (Nakamura et al., 1997), extended finite state automata

(SDL language, for example) (Gibson and Mery, 1997), and
process algebra (LOTOS language, for example) (Amyot
et al., 2000). Informal methods are also used to detect
FIs. For example, Charnois (1997) uses natural language

processing to identify interactions between service logic
requirements modeled as textual descriptions. FI resolution
uses two main methods: restriction and negotiation. Restric-

tion consists in specifying a precedence or exclusion rule to
apply in order to avoid a given FI. Precedence means to run
one service before another and exclusion means to exclude

one of the interacting services. For example, Cherkaoui
and Khoumsi (2002) proposed a solution based on software
agents which apply restriction rules. Other examples of

restriction can be found in (Khoumsi, 1997; Blom et al.,
1994; Tsang and Magill, 1997). The negotiation method to
solve FIs usually uses software agents capable of communi-
cation and negotiation. Kolberg et al. (2002) designed nego-
tiating agents which try to satisfy the preferences of end

users and network operators. Amer et al. (2000) proposed
an architecture that contains negotiating agents which repre-
sent end users and network devices. The work of Griffeth

and Velthuijsen (1994) presents negotiating agents which
represent end users’ preferences.

When detection and resolution are performed at design

time, they are qualified as off-line. They are qualified as on-line
if they are performed at runtime. We may also have hybrid ap-
proaches where both off-line and on-line methods are per-
formed (Calder et al., 2007).

Off-line approaches are generally based on formal methods
and necessitate a great amount of information. For example,
methods using model-checking techniques require going

through a state space. The latter increases significantly with
the complexity and number of services. Hence, those methods
suffer from the problem of state space explosion. On-line ap-

proaches avoid the state space explosion by considering a state
only when it is reached, instead of considering all possible
states before they are reached. However, on-line methods have

hard timing constraints since they are executed while services
are running.

To provide a solution to the aforementioned state space
explosion, some authors developed pragmatic off-line meth-

ods where services are modeled at a high abstraction level.
For example, Kolberg and Magill (2007) designed a solution
in which every service is abstracted by a triggering party,

and origin and destination parties. As another example,
Chentouf et al. (2004) abstracted services by some process-
ing points that correspond to the main steps in a phone

call, such as OffHook, Dial, Wait, Response Received, and
Speak.

1.2. Our approach to FI detection

We adopt the same approach as (Chentouf et al., 2004; Kol-
berg and Magill, 2007) but with a more ambitious objective
by going further in the abstraction level of services. The aim

is to reduce the state space and avoid revealing details on ser-
vice design. In order to reach this objective, we first develop a
so called Cause–Restrict language (or more briefly CR-lan-

guage) to model subscribers of services at a very high abstrac-
tion level. A CR-model (or CR-description) of a subscriber
provides information such as: what is the cause of what, and

what restricts what, and specifies coarsely the frequency of
each operation ‘‘cause’’ or ‘‘restrict’’ by ‘‘always’’ or ‘‘some-
times’’. Then, we develop a method that detects FIs between
CR-models of services. We demonstrate the applicability of

our approach by modeling several concrete services and detect-
ing several FIs between them. Our approach has permitted us
to detect known FIs and, more interestingly, new FIs which we

did not find in the literature.

1.3. Structure of the paper

The structure of this paper is as follows. Section 2 presents
the CR-language which is used to model interfaces and
behaviors of subscribers of services. In Section 3, we develop

a Cause–Restrict-based method for detecting FIs. Section 4

A high abstraction level approach for detecting feature interactions between telecommunication services 101
demonstrates our FI detection method in several concrete
examples. Section 5 compares the proposed approach with
related works. Finally, we conclude in Section 6 by

recapitulating our results and proposing some future
work.

2. Cause–Restrict language to model interfaces and behaviors

2.1. Outline and Objective of the Cause–Restrict language

Some FI detection methods, like (Chentouf et al., 2004;
Kolberg and Magill, 2007), reduced state space explosion

by modeling services at a high abstraction level. In the
present paper, we target a more ambitious objective by
going further in the abstraction level. Another objective is

to avoid revealing details on service design whenever differ-
ent operators have to exchange their service models. In
such a case, operators want to jointly manage feature inter-
actions that involve services which are deployed in their

networks. For that purpose, we develop a so-called
cause–restrict language to model users of services at two
levels:

– First level: interface modelThe interfaces of calls and
users are modeled as empty objects, that is, by attri-

butes and empty methods, i.e., each method is defined
by just a signature without a body.

– Second level: behavior modelThe behaviors of methods

are modeled at a high abstraction level by the so-called
Cause–Restrict relations (CR-relations). The principle
consists in specifying ‘‘who causes what’’ and ‘‘who
restricts what’’. CR-relations also specify coarsely the

‘‘frequency’’ of the operations, by qualifying each
‘‘cause’’ and ‘‘restrict’’ by ‘‘always’’ or ‘‘sometimes’’.
Such an omission of details is motivated by the desire

to highly abstract models. A set of CR-relations mod-
eling the behavior of a user is called its behavior model,
or more precisely ‘‘CR-behavior model’’ to emphasize

the use of CR-relations.

The composition of the interface and behavior models of a
user is called its CR-model. The CR-model describes service

users logically, in the sense that it specifies how a service be-
haves. The CR-model does not necessarily correspond to the
service implementation. The CR-model is targeted uniquely

to be manipulated by our proposed FI detection method.
Our method detects FIs by manipulating CR-descriptions of
the users of services that are run together. Hence, our FI detec-

tion method uses uniquely information available in CR-mod-
els. In this Section 2, we present the two levels of CR-
modeling, which consist in modeling the interfaces and behav-

iors of users of services, respectively.
The interface modeling is inspired from object oriented pro-

gramming (OOP), which manipulates the notions of classes
and objects. Class names are in bold with the first letter non-

capitalized, while object names are in Italic with the first letter
capitalized. For simplicity, we will present minimal versions of
classes modeling calls, basic users and subscribers of services.

We will see that these minimal versions are sufficient for
detecting several FIs.
Instead of specifying in detail the behavior of each method
of a class, the behavior model consists in specifying expressions
‘‘U R V’’, where R is a relation and U and V may be a method

invocation or a boolean expression. For any U (or V), we say
‘‘we have U’’ or ‘‘U is true’’ to mean that the corresponding
method is invoked or the corresponding condition is satisfied.

We have two relations, ‘‘cause’’ and ‘‘restrict’’, which are
tuned by ! and ? in the following way:

– U cause! V means that when we have U, we will cer-
tainly have V;

– U cause? V means that when we have U, we will some-
times have V;

– U restrict! V means that when we have U, V is
forbidden;

– U restrict? V means that when we have U, V is some-

times forbidden.

Each ‘‘U R V’’ is called Cause–Restrict relation, or more

briefly CR-relation. We believe that if the designer makes an
effort to write accurate CR-relations, it is possible to minimize
the number of CR-relations with ‘‘cause?’’ and ‘‘restrict?’’. In-

deed, in Sections 2.2,2.3,2.4 and Appendix A we present exam-
ples of interface models and CR-behavior models of basic
users and subscribers of several services. We use ‘‘cause!’’
and ‘‘restrict!’’ only.

In the sequel, we will use the following terms with a generic
meaning:

– A, B and C denote users
– anyUser denotes any user; for example, anyUser can be
replaced by A, B or C.

– anyCom (X) denotes any method that performs a communi-
cation (using any media) with a user X.

These minimal versions will be sufficient to demonstrate
our FI detection method in several examples (in Section 4).
2.2. Classes call and user

The fundamental classes are call and user. Class call models
the interface of an established call, and class user models
the interface of a ‘‘basic’’ user, i.e., a user who subscribes

to no specific service. We also define classes calls and users

that model a set of established calls and a set of users, respec-
tively. To give an idea of how the interfaces of a call and a

user are modeled, we present below minimal versions of the
classes call and user.

call:

// Attributes

user Caller // Caller in the current call.

user Callee // Callee in the current call.

user Initiator // Initiator of the current call,

// the user who is the original cause of the

// call.

users Participants // Participants in the current call

// Methods

void accept(user) // Accept a user that joins the current call.

void end() // Terminate the current call.

Z. Chentouf, A. Khoumsi
In a call object modeling a basic call, i.e., where no ser-

vice is involved, the attributes Initiator and Caller are equal,
and the attribute Participants consists uniquely of Caller and

Callee. But this property is not guaranteed when services are
involved.

user :

// Attributes

int number // Phone number of the current user

boolean busy // True when the current user is busy, i.e.,

// he cannot receive a call.

boolean idle // True when the current user is not engaged

// in a call, i.e., Calls= ;.
boolean noAnswer // True when the current user is busy and does

// not answer.

calls Calls // Set of calls where the current user is engaged

users Connected // Set of users connected to the current user

// through a call

// Methods

call call(user) // Initiates a call to a user and returns the

// established call.

// It returns null if no call is established.

call acceptCall(user) // Accepts a call coming from a user and

// returns the established call.

// It returns null if no call is established.

void busy() // Reaction to an incoming call when the

// current user is busy.

void noAnswer() // Reaction to an incoming call when the

// current user does not answer.

void serverFailure() // Reaction to an incoming call when

// the server cannot process it.

void endCall(call) // Terminates a call.

info infoCaller() // The current user receives information

// on the caller,

// e.g., his phone number.

102
The interface of each user is modeled as a user object. Its
attributes correspond to information on the user, like number,

busy, Calls and Connected, which are explained above (as com-
ments) in the user class definition. The methods correspond to
functionalities, like call(), acceptCall(), busy(), noAnswer(),

serverFailure(), endcall() and infoCaller(), which are explained
above in the user class definition.

2.3. Basic behavior model

The basic behavior model consists of CR-relations specifying
how two basic users A and B (i.e., they subscribe to no specific

service) behave in a call. Here are some CR-relations of such a
basic behavior model (we have also to repeat all these CR-rela-
tions by switching between A and B):

1a: Call= A.call(B) cause! A= Call.Initiator

2a: A= Call.Initiator cause! A 2Call.Participants
3a: Call= A.call(B) cause! B 2Call. Participants

n{Call.Initiator}
4a: (A.idle = true) restrict! (A.busy= true)

5a: (A.idle = false) cause! (A.busy= true)

6a: (A.noAnswer= true) restrict! (A.busy= true)
The CR-relations obtained by switching A and B are num-

bered from 1b to 6b.
In the 1st and 3rd CR-relations, ‘‘A.call(B)’’ means that
A calls B, and the fact to write ‘‘Call=’’ means that a ref-
erence to a call is returned, hence the call initiated by A

toward B is established. And the 2nd CR-relation means
that the initiator of a call is certainly a participant of that
call (Call.Initiator 2 Call.Participants). The 3rd CR-relation

means that if A calls successfully B, B is certainly a partic-
ipant, but not the initiator, of the call. The 4th and
5th CR-relations mean that idle and busy are exclusive

status. The 6th CR-relation points out the semantics of
‘‘A.noAnswer = true’’, which is that A is not busy and does
not answer.

The attribute idle may seem redundant with busy, because

idle= true if and only if busy = false, that is, idle is the nega-
tion of busy. We have defined it because the negation relation
between idle and busy does not hold with some specific ser-

vices. For example, the subscriber of Multiple Lines (ML) ser-
vice (Appendix A.7) is busy when all his lines are busy, and he
is idle when all his lines are idle. Hence, when some (but not

all) lines are busy, the subscriber of ML is neither busy nor
idle.
2.4. Subscriber of a service

The interface of a subscriber of a service S is modeled by a
class named userS that inherits from the class user by adding
attributes and modifying and/or adding functionalities. More

precisely:

– A class userS may add one or more new attributes that are not

present in the parent class user. A new attribute represents a

status related to the service. For example, if a service S can be

enabled/disabled by his subscriber, we can use a boolean attribute

that specifies whether S is enabled or disabled. The latter type of

attribute is qualified as generic because it is defined in a generic

way. We can also have specific attributes that are defined only for

a specific service.

– A class userS necessarily behaves differently than the parent class

user, for example by handling new attribute(s). Such a different

behavior is possible only by modifying functionalities of the parent

class user and/or by adding new functionalities that are absent in

user. In the interface modeling, adding functionalities is modeled

by defining new methods, while modifying functionalities is mod-

eled by overriding methods of user. Recall that in the interface

modeling, methods are defined just by their signature. Their behav-

iors are defined by properties in the behavior model (second level of

the CR-model).

The behavior model of a subscriber of a service S is defined
by adding and/or removing properties of the basic behavior
model.

To give an idea on interface and behavior models, we pres-
ent in the following Sections 2.4.1,2.4.2,2.4.3,2.4.4,2.4.5,2.4.6
several service subscribers. Other services subscribers are pre-

sented in Appendix A.
2.4.1. Subscriber of Call Forward Unconditional (CFU)

A subscriber of CFU can program an automatic forward to a

user so that all his incoming calls are automatically forwarded
to the specified user.

A high abstraction level approach for detecting feature interactions between telecommunication services 103
Interface model: subscriber of CFU

userCFU extends user

// Attributes

user forward // Specific attribute indicating

// the user to whom incoming calls

// are forwarded.

// Methods

call acceptCall (user) // Overrides the method

// acceptCall() of the class user
The method acceptCall() of user is overridden because
acceptance of an incoming call by CFU consists in forwarding

the call.
CR-behavior model: subscriber B of CFU
In the basic behavior model, the CR-relation 3a is removed

and the following CR-relations are added:

ðB:forward¼CÞ^A:callðBÞ cause! B:callðCÞ
ðB:forward¼CÞ^ðCall¼A:callðBÞÞ cause! C2Call:Participants
In these CR-relations, ‘‘B.forward = C’’ means that B has
programmed an automatic forward toward C. Hence, the 1st
CR-relation means that if A calls B who has programmed a

forward to C, then B will automatically call C. And the 2nd
CR-relation means that if A calls successfully B who has pro-
grammed a forward to C, then C is certainly a participant of

the call.

2.4.2. Subscriber of Terminating Call Screening (TCS)

A subscriber of TCS registers users in a list LTCS so that every

incoming call from a user registered in LTCS is automatically
blocked.

Interface model: subscriber of TCS

userTCS extends user

// Attributes

users ListTcs // Specific attribute

// corresponding to

// LTCS of the current subscriber of

// TCS.

// Methods

call acceptCall(user) // Overrides the method accept

// Call() of the class user.
The method acceptCall() of user is overridden because

incoming calls from users registered in LTCS must not be
established.

CR-behavior model: subscriber B of TCS

The following CR-relations are added to the basic behavior
model:

ðA2B:ListTcsÞ^A:callðBÞrestrict! A:anyComðBÞ
ðA2B:ListTcsÞ^A:callðBÞrestrict! B:anyComðAÞ
ðA2B:ListTcsÞ^ðB2Call:ParticipantsnfCall:InitiatorgÞ restrict! A2Call:Participants
ðA2B:ListTcsÞ^ðA¼Call:InitiatorÞ restrict! B2Call:Participants

The 1st and 2nd CR-relations mean that if A is in LTCS

of B and A calls B, then A cannot be in communication
with B. For that purpose, if A is in LTCS of B and A calls
B, we forbid that any communication method of A be called
with B as argument and that any communication method of
B be called with A as argument. This is a guarantee that no
communication initiated by A can be established between A

and B. The 3nd CR-relation means that if A is in LTCS of B
and B participates in a call he has not initiated, then A can-
not be a participant of that call. The 4th CR-relation means

that if A initiates a call and is in LTCS, then B cannot be a
participant of that call.

2.4.3. Subscriber of Automatic Recall (AR)

A subscriber B of AR can enable AR so that if B is called from
any user A while he is busy, then a call is automatically gener-
ated from B to A as soon as B is idle again.
Interface model: subscriber of AR

userAR extends user

// Attributes

boolean ar // Generic attribute indicating

// whether AR is enabled.

// Methods

void busy() // Overrides the method

// busy() of the class user.
The method busy() of user is overridden because AR mod-

ifies the reaction to incoming calls when B is busy.
CR-behavior model: subscriber B of AR
The following CR-relation is added to the basic behavior

model:
ðB:ar¼ trueÞ^Call¼A:callðBÞ^ðB:busy¼ trueÞ cause!
B:callðAÞ^ðB2Call:ParticipantsnfCall:InitiatorgÞ^ ðA¼Call:InitiatorÞ

The above CR-relation means that if AR is enabled and A calls

successfully B who is busy, then B will call A in order to estab-
lish the call initiated by A.
2.4.4. Subscriber of Call Waiting (CW)

If a subscriber B of CW is called from a user A while B is in
communication with a user C, then A is put on hold. Then,
B can put C on hold and connect to A. B can switch between

A and C.
Interface model: subscriber of CW

userCW extends user

// Attributes: no

// new attribute is

// defined

// Methods

void busy() // Overrides the method busy() o

// the class user.

call hold(user) // New method: it accepts a call

// coming fromauser but puts him

// on hold; it

// returns the established call; It

// returns null if no call is

// established.

void hold(call, user) // New method: it puts on hold

// user participating in a call.
f

a

Z. Chentouf, A. Khoumsi
The method busy() of user is overridden because CW mod-

ifies the reaction to incoming calls when B is busy. Two new
methods hold() are added.

CR-behavior model: subscriber B of CW
The following CR-relation is added to the basic behavior

model:

A:callðBÞ ^ ðB:busy ¼ trueÞ cause!B:holdðAÞ

The above CR-relation means that if A calls B who is busy,

then B will put A on hold.

104
2.4.5. Subscriber of Unified Messaging (UM)

If a user A calls a subscriber B of UM who is busy or does not
answer, then A is forwarded to a voicemail server to leave a
voice message to B. What has just been said corresponds to
the service named Voicemail (VM). We obtain UM from

VM by requiring that the voice message left by A is sent by
email to B.

Interface model: subscriber of UM

userUM extends

user

// Attributes

boolean um //Generic attribute indicating

// whether UM is enabled.

// Methods

call // Overrides the method

acceptCall(user) // acceptCall() of the class user.

void // unifiedMessaging(user, voice)

// New method:

// it receives by

// email a voice

// message from a

// user.
The method acceptCall() of user is overridden because UM
modifies the reaction to incoming calls. A new methods unified-

Messaging() is added.
CR-behavior model: subscriber B of UM
The following CR-relation is added to the basic behavior

model:

ðB:um¼ trueÞ^A:callðBÞ^ðB:busy¼ true_B:noAnswer¼ trueÞ cause!
B:unifiedMessagingðA; VoiceMsgÞ

The above CR-relation means that if UM is enabled and A
calls B who is busy or does not answer, then B will receive from
A an email containing a recorded voice message.
2.4.6. Subscriber of Follow-Me (FM)

A subscriber of FM can specify a list of numbers where to join
him in a given order. That is, if the first number is not busy and

does not answer, then the second number is tried and so on, un-
til one of the numbers answers or none of the numbers answers.
The first number in the list is considered as the subscriber of

FM, and the other numbers constitute an ordered list LFM.
Conceptually, this is equivalent to defining a list of users to join
in a given order until one of them answers or all the list is tried
without answer. The latter behavior is called Hunt Group or

Group-Calling service. Here, we model the FM service only be-
cause Group-Calling is conceptually equivalent to it.
Interface model: subscriber of FM

userFM extends user

// Attributes

users ListFm // Specific attribute corresponding

// to LFM of the subscriber of FM

user FirstAnswer // Specific attribute corresponding

// to the first number in LFM

// (if any) who

// answers while the preceding

// numbers in the list are not busy

// and do not

// answer.

// Methods

void noAnswer() // Overrides the method

//noAnswer() of the class user.
The method noAnswer() of user is overridden because a

new behavior is triggered by ‘‘No answer’’ in FM: trying the
next number.

CR-behavior model: subscriber B of FM

In the basic behavior model, the CR-relation 3a
(Call = A.call(B) cause! B2Call.Participants n{Call.Initiator})
is removed and the following CR-relations are added:

ðCall¼A:callðBÞÞ^ðB:noAnswer¼ trueÞ cause!ðB:FirstAnswer2Call:ParticipantsÞ
ðCall¼A:callðBÞÞ^ðB:noAnswer¼ trueÞ restrict! ðB2Call:ParticipantsÞ

The above CR-relations mean that if A calls B who is not

busy and does not answer, then the first user in LFM who an-
swers (if any) becomes a participant of the call while B is not a
participant of the call.
2.5. Subscriber of several services

In Section 2.4, we have shown how to specify the interface and

behavior of a subscriber of a service S: the interface is con-
structed by using inheritance from the class user. This ap-
proach can be generalized to specify the interface of a

subscriber of several services as follows: a subscriber of several
services S1,. . .,Sn can be considered as several subscribers Sub-
s1,. . .,Subsn, where each Subsi has a single service Si. Hence,
the interface of each Subsi is modeled as an object of a class

userSi inheriting from the class user.
Note that in the interface specification, we cannot specify

the difference between a method of user and a method with

the same name that overrides it in userS. For example:
acceptCall() which are used in user, userCFU, userTCS; and
busy() which are used in user, userAR, userCW. The difference

between the methods with the same name can be specified in the
behavior model.
2.6. Less accurate CR-Relations: cause? restrict?

All the CR-relations in Subsections 2.3 and 2.4 use ‘‘cause!’’
and ‘‘restrict!’’, while ‘‘cause?’’ and ‘‘restrict?’’ are never used.
This is because we have made an effort to write CR-relations

as accurate as possible. But if information is removed from a
CR-relation, we may have to replace ‘‘!’’ by ‘‘?’’. Let us show
this by using a few examples:

A high abstraction level approach for detecting feature interactions between telecommunication services 105
Subscriber of CFU

If, in Section 2.4.1, we remove ‘‘B.forward = C’’, we have
to replace ‘‘cause!’’ by ‘‘cause?’’:
A:callðBÞcause? ðB:callðCÞÞ
ðCall ¼ A:callðBÞÞ cause?C 2 Call:Participants

Intuitively, in Section 2.4.1, we are more accurate by
assuming that B has programmed a forward toward C, while
here the assumption is removed.

Subscriber of TCS

If, in Section 2.4.2, we remove ‘‘B2Call.Participants
n{Call.Initiator}’’ from the 3rd CR-relation, we have to replace
‘‘restrict!’’ by ‘‘restrict?’’:

ðA 2 B:ListTcsÞ restrict?A 2 Call:Participants

Intuitively, in the 3rd CR-relation of Section 2.4.2, we are
more accurate by assuming that B participates in a given call
without being the initiator of that call, while here the assump-

tion is removed.
Subscriber of AR

If, in Section 2.4.3, we remove ‘‘A.ar = true’’ and/or ‘‘B.bu-

sy = true’’, we have to replace ‘‘cause!’’ by ‘‘cause?’’:

ðCall ¼ A:callðBÞÞ cause? B:callðAÞ ^ ðB
2 Call:Participants n fCall:InitiatorgÞ ^ ðA
¼ Call:InitiatorÞ

Intuitively, in Section 2.4.3, we considered only the situation

where AR is enabled and B is busy, while here the assumption is
removed.

Subscriber of CW

If, in Section 2.4.4, we remove ‘‘B.busy = true’’, we have to
replace ‘‘cause!’’ by ‘‘cause?’’:

A:callðBÞ cause?B:holdðAÞ

Intuitively, in Section 2.4.4, we are more accurate by
assuming that B is busy, while here the assumption is removed.

Subscriber of UM

If, in Section 2.4.5, we remove ‘‘(B.um= true) � (B.bu-
sy = true � B.noAnswer = true)’’, we have to replace ‘‘cause!’’

by ‘‘cause?’’:

A:callðBÞ cause? B:unifiedMessagingðB; VoiceMsgÞ:

Intuitively, in Section 2.4.5, we are more accurate by assum-
ing that UM is enabled, while here the assumption is removed.

Subscriber of FM

If, in Section 2.4.6, we remove ‘‘B.noAnswer = true’’, we
have to replace ‘‘cause!’’ by ‘‘cause?’’ and ‘‘restrict!’’ by

‘‘restrict?’’:

ðCall ¼ A:callðBÞÞ cause? ðB:FirstAnswer 2 Call:ParticipantsÞ
ðCall ¼ A:callðBÞÞ restrict? ðB 2 Call:ParticipantsÞ

Intuitively, in Section 2.4.6, we are more accurate by
assuming that the subscriber of FM (i.e., the first number in
the list) is busy or does not answer, while here the assumption

is removed.

2.7. Some properties and rules of CR-relations

This section presents some rules of CR-relations. Two CR-
relations are said incompatible if it is nonsense (or impossible)
to have them together in the same CR-behavior model. Incom-
patible CR-relations are symptoms of FIs.

‘‘U cause! V’’ and ‘‘U restrict! V’’ are incompatible,

‘‘U cause! V’’ and ‘‘U restrict? V’’ are incompatible,

‘‘U cause? V’’ and ‘‘U restrict! V’’ are incompatible.

Note that ‘‘U cause? V’’ and ‘‘U restrict? V’’ are not

incompatible.
Before continuing, we need to define the notions of weaker

and stronger CR-relations. A CR-relation M1 is said to be
stronger than a CR-relation M2 if M1 implies M2; we can also

say that M2 is weaker than M1.
Below are four rules that permit to derive a weaker CR-

relation from an existing CR-relation; these rules are easily

understandable from the fact that ‘‘cause!’’ and ‘‘restrict!’’
are stronger than ‘‘cause?’’ and ‘‘restrict?’’ respectively, and
X � Y implies both X and Y:

R1: ‘‘U � Z cause! V‘‘=> ‘‘U cause? V’’,

R2: ‘‘U � Z restrict! V‘‘=> ‘‘U restrict? V’’,

R3: ‘‘U cause! V � Z‘‘=> ‘‘U cause! V’’.

R4: ‘‘U cause? V � Z‘‘=> ‘‘U cause? V’’.

If we take Z equal to true, R3 and R4 become trivial, while
R1 and R2 become:

r1: ‘‘U cause! V‘‘=> ‘‘U cause? V’’,

r2: ‘‘U restrict! V‘‘=> ‘‘U restrict? V’’.

Note that R1 and R2 have been used to obtain the CR-rela-
tions of Section 2.6 from the CR-relations of Section 2.4.

To make the FI detection as efficient as possible, we

should enrich the resulting CR-behavior model by using
the rules below to derive a CR-relation from two existing
CR-relations. The enrichment is motivated by the fact that

CR-relations are used to detect FIs, hence the more we have
CR-relations the more we can detect FIs. Another approach
is to have a non-enriched specification and to apply the

enrichment during FI detection. That is, the enrichment
could be moved from ‘‘before FI detection’’ to ‘‘during FI
detection’’. But this will make the FI detection more com-
plex and enrichment will be executed several times (at each

FI detection).

R5: ‘‘U cause! V’’ and ‘‘V � Z cause! W’’=>‘‘ U � Z cause! W’’

R6: ‘‘U cause? V’’ and ‘‘V � Z cause! W’’=>‘‘U � Z cause? W’’

R7: ‘‘U cause! V’’ and ‘‘ V � Z restrict! W’’=> ‘‘U � Z restrict! W’’

R8: ‘‘U cause? V’’ and ‘‘ V � Z restrict! W’’=> ‘‘U � Z restrict?

W’’

Below are other rules that permit to enrich the CR-behavior

model:

R9: ‘‘U cause! V � Z’’ and ‘‘V cause! W’’=> ‘‘ U cause! W � Z’’

R10: ‘‘U cause? V � Z’’ and ‘‘V cause! W’’=> ‘‘ U cause? W � Z’’

If we take Z equal to true in R5–R8, we obtain the follow-
ing rules r5–r8, while if we take Z equal to true in R9–R10, we

obtain r5–r6.

r5: ‘‘U cause! V’’ and ‘‘V cause! W’’=> ‘‘U cause! W’’

r6: ‘‘U cause? V’’ and ‘‘V cause! W’’=> ‘‘U cause? W’’

106 Z. Chentouf, A. Khoumsi
r7: ‘‘U cause! V’’ and ‘‘V restrict! W’’=> ‘‘U restrict! W’’

r8: ‘‘U cause? V’’ and ‘‘V restrict! W’’=> ‘‘U restrict? W’’

Note that rules R5–R10 and r5–r8 are in the form ‘‘U R1

V’’ and ‘‘V � Z R2 W’’=> ‘‘U � Z R W’’ where R2 equals
to ‘‘cause!’’ or ‘‘restrict!’’, and R1 can be ‘‘cause!’’ or ‘‘cause?’’.
This is because we cannot deduce a new CR-relation when R2

equals to ‘‘cause?’’ or ‘‘restrict?’’. Let us explain this in the
following two examples:

– U causes certainly V (U cause! V) and V causes W only when it is

not caused by U (V cause? W). This situation does not allow us to

deduce that U causes W.

– U causes certainly V (U cause! V) and V forbids W only when it is

not caused by U (V restrict? W). This situation does not allow us to

deduce that U forbids W.

Other rules can be found, but the above ones are sufficient
for a good comprehension of the CR-language and for our FI

detection method.

2.8. Discussion on how to onstruct interface and Behavior
Models

The interface and behavior models do not correspond neces-
sarily to two consecutive steps. Actually, the two tasks are inti-

mately related. We may start by determining intuitively
fundamental properties and then we determine attributes and
methods that permit to express those properties formally.
The task sequence that should be used is the following:

1. We intuitively determine properties the non-respect of which is

judged potential and problematic.

2. We determine attributes and methods (the latter by their signature)

that are necessary to express formally the properties of Item 1.

3. We formally express the properties of Item 1.

Interface and behavior models are obtained at the terms of
Items 2 and 3, respectively. Note that Item 1 precedes interface

and behavior models.

3. FI detection method based on Cause–Restrict language

There exist many FI detection methods using detailed and com-
plex specifications of services as inputs, and applying model-
checking techniques to detect FIs automatically. Those methods

present the advantage of having a high power of detection, but
their main drawback is their state space complexity.

There exists no miraculous solution to this problem, we can

reduce it, but by accepting a smaller power of detection and/or
a less automatic detection process. This is the approach we
have adopted. In order to reduce the state space complexity,
we model subscribers of services in the CR-language. Actually,

instead of detecting FIs with certitude, our method draws the
attention on suspected FIs, which then need to be checked
(automatically or manually). This is the price to pay to reduce

very significantly the state space complexity.
In this Section, we propose an off-line cause–restrict-based

method for detecting FIs between services. The approach is to

have a CR-behavior model of each type of subscriber of service
and to merge the CR-behavior models of the subscribers of
services that are run together. FIs are detected by analyzing
the resulting CR-behavior model.
3.1. Inputs: CR-behavior models

During the design of a service S1, we have to check whether
there exist FIs between S1 and existing services S2,. . .,Sn that
may have to be run together with S1. When we say that services

S1,. . .,Sn are run together, we mean that subscribers of those
services are engaged in a same call session. The CR-behavior
models of the subscribers of S1,. . .,Sn are the inputs of the FI
detection procedure. An approach is to require that the service

provider that is the owner of any deployed service S provides
the CR-behavior model of a subscriber of S; this CR-behavior
model will be available for designers of new services.

3.2. Step 1: Merging and enriching the CR-behavior models

In order to detect FIs between S1,. . .,Sn that may have to be

run together, we merge the CR-behavior models of their
subscribers. The merging consists in obtaining a single CR-
behavior model by putting together the n CR-behavior models.

After the merging, the resulting CR-behavior model is
enriched in the following two ways:

(a) The rules R5–R10 and r5–r8 of Section 2.7 are applied maxi-

mally. That is, we synthesize all the new CR-relations that

can be obtained from those rules. This can be done by using

a fix-point method, which repeats the application of the rules

until no new CR-relation is generated. The method converges

because the number of possible CR-relations is finite. Note that

this enrichment is automatable. Note that rules R1–R4 and

r1–r2 are not used here because they permit to derive weaker

CR-relations, which is not relevant for FI detection.

(b) New CR-relations can be added for stating relations between

variables or methods of various services. For example, a rela-

tion between a variable of S1 and a variable of S2. This enrich-

ment is generally non automatable and is realized by the

designer in order to model relations he has identified.

3.3. Step 2: FI Detection

In the sequel, by ‘‘cause’’ we mean ‘‘cause!’’ or ‘‘cause?’’, and
by ‘‘restrict’’ we mean ‘‘restrict!’’ or ‘‘restrict?’’. As already
mentioned, our method does not target to indicate FIs with

certitude, it rather draws the attention on suspected FIs, which
then need to be checked (automatically or manually). FI detec-
tion consists in analyzing the whole CR-behavior model ob-
tained in Step 1, and in generating an FI detection verdict.

The analysis consists in checking the existence of the following
FI patterns in the CR-behavior model obtained in Step 1. In
the following, U and V are said to be compatible if and only

if we can have them at the same time.

(a) cause–loop: There exists a series of CR-relations ‘‘U1 � Y1 cause

U2’’, . . .,‘‘Ui � Yi cause Ui+1’’,. . .,‘‘Un � Yn cause U1’’ such that

U1 is a method invocation. This is a symptom of loop (or cycle)

that may induce a blocking behavior. This is more understand-

able with the simple form where all Yi equal to true, which gives

‘‘U1 cause U2’’,. . .,‘‘Un cause U1’’. In fact, we obtain the simple

form by applying rule R1 of Section 2.7 to the general form.

Hence, instead of considering the general form of the cause–

loop pattern, an alternative is to first apply rules R1 and then

to consider uniquely the simple form.In the presence of a

cause–loop symptom, we have to check if the cycle or blocking

A high abstraction level approach for detecting feature interactions between telecommunication services 107
really occurs and if it is problematic. Cause–loop is illustrated

in Section 4.1.1.

(b) cause–restrict: There exists a pair of CR-relations ‘‘U cause W’’

and ‘‘V restrict W’’ such that we have no certitude that U and V

are incompatible. More precisely, either we have the certitude

that U and V are compatible, or we are uncertain of their com-

patibility. This is a symptom of conflict (or contradiction), where

an action or condition W may be at the same time caused and

forbidden. A particular case is when U equals to V, that is, W

may be at the same time caused and forbidden by the same U.In

the presence of a cause–restrict symptom, we have to check if

there really exists a situation where an action (or condition) is

at the same time caused and forbidden. Cause–restrict is illus-

trated in Sections 4.2.1 and 4.2.2.Note that there is no symptom

of FIs if we are certain that U and V are incompatible.

(c) cause–cause: There exists a pair of CR-relations ‘‘U � Y cause

V’’ and ‘‘U � Z cause W’’, such that we have no certitude that Y

and Z are incompatible. More precisely, either we have the cer-

titude that Y and Z are compatible, or we are uncertain of their

compatibility. This may be a symptom of conflict or confusion.

This is more understandable in the particular case where Y and

Z equal to true, which gives ‘‘U cause V’’ and ‘‘U cause W’’.

Intuitively, the same U causes both V and W.In the presence

of a cause–cause symptom, we have to check if V and W are,

for example, incompatible or redundant. Section 4.3.1 contains

an example of cause–cause corresponding to a conflict. Sec-

tion 4.3.2 contains an example of cause–cause which corre-

sponds to a conflict only under specific conditions.

Fundamentally, cause–restrict can be seen as a particular

case of cause–cause, because ‘‘V restrict W’’ can be written
‘‘V cause neg(W)’’, where neg(W) denotes the negation of W.
Hence, the pattern ‘‘U cause W’’ and ‘‘V restrict W’’ can be
written ‘‘U cause W’’ and ‘‘V cause neg(W)’’. But we preferred

to keep the two patterns so that the designer can select the one
which is closer to the intuition, depending on the example.

4. Examples of FI detection

In this section, we apply the method described in Section 3
for the detection of several FIs between two services among

the services presented in Section 2. Other examples are gi-
ven in Appendix B. Each FI is named in the form S1–S2,
where S1 and S2 are the two services that interact. Each

FI S1–S2 is firstly presented intuitively by a context and a
scenario:

– Context: we indicate the users involved in the FI; we also indicate

the user who subscribes to each service S1 or S2 and specify how

each S1 and S2 are programmed.

– Scenario of FI: We present an example of execution where the FI

S1–S2 arises.

Then, we show how the FI is detected using the FI detection
method of Section 3. Sometimes, we conclude by indicating
other resembling FIs. The resemblance is meant in the way
the FI is detected at the formal level.

4.1. Cause–loop FI

4.1.1. CFU–CFU

Context: Consider A and B who are subscribers of CFU. As-
sume that A (resp. B) has programmed an automatic forward

of his incoming calls towards B (resp. A).
Scenario of FI: A calls B who calls A. We have a loop (or
cycle) of actions.

Let us now show how this FI is detected by our FI detection

method. By adapting the 1st CR-relation of Section 2.4.1, we
obtain:

– For the subscriber B of CFU that has programmed a forward

toward A:

M1 : ðB:forward ¼ AÞ ^ A:callðBÞ cause!ðB:callðAÞÞ
– For the subscriber A of CFU that has programmed a forward

toward B:

M2 : ðA:forward ¼ BÞ ^ B:callðAÞ cause!ðA:callðBÞÞ

The pair of CR-relations (M1,M2) constitutes a cause–loop
symptom in the form ‘‘U1 � Y1 cause U2’’, ‘‘U2 � Y2

cause U1’’, where U1=’’A.call(B)’’, U2=‘‘B.call(A)’’,
Y1=‘‘B.forward=A’’ and Y2=‘‘A.forward=B’’. We have
checked that the corresponding loop A.call(B)–B.call(A)–
A.call(B) can occur (see the above Context-Scenario).

We obtain resembling FIs if we replace CFU by other ver-
sions of Call Forward, like Call Forward on Busy Line
(CFBL), Call Forward on No Reply (CFNR), Call Forward

on Time (CFT). We can hence define various combinations
of FIs, like CFU–CFBL, CFBL–CFBL, CFNR–CFBL, etc.
4.2. Cause–restrict FI

4.2.1. AR–TCS

Context: Consider two users A and B, where B is subscriber to
TCS and AR. Assume that B has put A in his list LTCS, with
the idea that a call involving B but not initiated by B has no
effect on A (hence B is not authorized to be joined by A).

Scenario of FI: TCS prevents that B is directly joined by A.
But consider that A calls B while B is busy. As soon as B be-
comes not busy, an automatic recall will connect B to A (and B

is joined by A), although A is in LTCS. Here, we say that B is
joined by A (and not that B joins A), because A is the initiator
of the call in the sense that A is the original cause of the call.

Let us now show how this FI is detected by our FI detection
method:

– For the subscriber B of TCS that has put A in LTCS, we have by

using the 3rd CR-relation of Section 2.4.2:

M1 : ðA 2 B:ListTcsÞ ^ ðB 2 Call:Participants n fCall:InitiatorgÞrestrict!
A 2 Call:Participants

– For the subscriber B of AR that has programmed an automatic

recall and receives a call from A while he is busy, we have by using

CR-relation of Section 2.4.3:

M2 : ðB:ar¼ trueÞ^ðCall¼A:callðBÞÞ^ðB:busy¼ trueÞ cause!
B:callðAÞ^ ðB2Call:ParticipantsnfCall:InitiatorgÞ^ ðA¼Call:InitiatorÞ

– For the user A that initiates a call, we have by using the 2nd CR-

relation of Section 2.3:

M3 : A ¼ Call:Initiator cause! A 2 Call:Participants

By applying rule R9 To M2 and M3 with V=’’ A=Call.Ini-
tiator’’, W=’’ A2Call.Participants’’, U=’’(B.ar=true) �

108 Z. Chentouf, A. Khoumsi
(Call=A.call(B)) � (B.busy=true)’’, Z=’’ B.call(A) �
(B2Call.Participants n {Call.Initiator})’’, we obtain:

N1 : ðB:ar ¼ trueÞ ^ ðCall ¼ A:callðBÞÞ ^ ðB:busy ¼ trueÞ cause!
B:callðAÞ ^ ðB 2 Call:Participants n fCall:InitiatorgÞ ^ ðA 2 Call:ParticipantsÞ

By applying rule R3–N1 with Z=’’B.call(A) �
(B2Call.Participants n {Call.Initiator})’’, we obtain:

N2 : ðB:ar ¼ trueÞ ^ ðCall ¼ A:callðBÞÞ ^ ðB:busy
¼ trueÞ cause! ðA 2 Call:ParticipantsÞ

The pair of CR-relations (M1,N2) constitutes a cause–re-
strict pattern which is a symptom of conflict. We have checked

that we can reach a situation where the participation of A in a
call is at the same time implied by AR and forbidden by TCS
(see the above Context-Scenario).

We obtain a resembling FI AR–OCS if we replace ‘‘B is
subscriber of TCS’’ by ‘‘A is subscriber of OCS’’ (OCS is pre-
sented in Appendix A.1).

4.2.2. TCS–FM

Context: Consider B and C who are subscribers to FM and
TCS respectively, and a third user A. Assume that C has put

A in his list LTCS with the idea that a call involving C but
not initiated by C has no effect on A (hence C is not authorized
to be joined by A). Assume that C is the first user in LFM who
answers.

Scenario of FI: TCS prevents that C is directly joined by A
in a basic call. But if A calls B and B does not answer the call,
C will be joined by A although A is in LTCS.

Let us now show how this FI is detected by our FI detection
method:

– For the subscriber B of FM who is called by A, we have by using

the CR-relation of Section 2.4.6:

M1 : ðCall¼A:callðBÞÞ^ðB:noAnswer¼ trueÞ cause!ðB:FirstAnswer2Call:ParticipantsÞ
M2 : ðCall¼A:callðBÞÞ^ðB:noAnswer¼ trueÞ restrict! ðB2Call:ParticipantsÞ

– For the subscriber C of TCS that has put A in LTCS, , we have by

adapting the 4th CR-relation of Section 2.4.2:

M3 : ðA 2 C:ListTcsÞ ^ ðA ¼ Call:InitiatorÞ restrict! C
2 Call:Participants

Since C=B.FirstAnswer (see assumption in the above

Context), the pair of CR-relations (M1,M3) constitutes a
cause–restrict pattern, which is a symptom of conflict. We have
checked that we can reach a situation where the participation

of C in a call is at the same time implied by FM and forbidden
by TCS (see the above Context-Scenario).

We obtain a resembling FI if we replace ‘‘C subscriber of
TCS’’ by ‘‘A subscriber of OCS’’ (OCS is presented in Appen-

dix A.1).

4.3. Cause–cause FI

4.3.1. AR–CW

Context: Consider two users A and B, where B is a subscriber

to AR and CW.
Scenario of FI: If A calls a busy user B, A is put on hold by

B (according to CW) while A is recalled back later by B
(according to AR). But, it is nonsense to execute the two ac-
tions because they target the same objective, which is to put
A and B in communication. So, which action should be

executed?
Let us now show how this FI is detected by our FI detection

method:

– For the subscriber B of AR that has programmed an automatic

recall and receives a call from A while he is busy, we have by using

the CR-relation of Section 2.4.3:

M1 : ðB:ar¼ trueÞ^ ðCall¼A:callðBÞÞ^ðB:busy¼ trueÞ cause!
B:callðAÞ^ðB2Call:ParticipantsnfCall:InitiatorgÞ^ðA¼Call:InitiatorÞ

– For the subscriber B of CW that receives a call from A while he is

busy and puts A on hold, we have by using the CR-relation of

Section 2.4.4:

M2 : A:callðBÞ ^ ðB:busy ¼ trueÞ cause!B:holdðAÞ

The pair of CR-relations (M1,M2) constitutes a cause–
cause pattern. We have checked that we can reach a situation
where B calls A according to AR while B puts A on hold

according to CW (see the above Context-Scenario).

4.3.2. CW–UM

Context: Consider two users A and B, where B is subscriber to
CW and UM.

Scenario of FI: If A calls a busy B, A is put on hold by B
(according to CW) while B receives a voice message by email

from A (according to UM). Which of the two actions should
be executed? Should we execute both actions?

Let us now show how this FI is detected by our FI detection

method:

– For the subscriber B of CW that receives a call from A while he is

busy and puts A on hold, we have by using the CR-relation of

Section 2.4.4:

M1 : A:callðBÞ ^ ðB:busy ¼ trueÞ cause!B:holdðAÞ
– For the subscriber B of UM that receives a call from A and then

sends him a voicemail message, we have by using the CR-relation

of Section 2.4.5:

M2 : ðB:um¼ trueÞ^A:callðBÞ^ ðB:busy¼ true_B:noAnswer¼ trueÞ cause!
B:unifiedMessagingðA; VoiceMsgÞ

The pair of CR-relations (M1,M2) constitutes a cause–
cause FI symptom. We have checked that we can reach a

situation where B puts A on hold according to CW while B
receives a voice message by email according to UM (see the
above Context-Scenario).

We obtain a resembling FI if we replace ‘‘B subscriber of
UM’’ by ‘‘B is subscriber of VM’’ or ‘‘A subscriber of Email’’
(Email is presented in Appendix A.2).

4.4. Recapitulation

In addition to the FIs of Section 4 that involve the services of

Section 2.4, we have also detected the FIs of Appendix B that
involve also the services of Appendix A. Table 1 outlines the
FIs we have detected between every pair of the thirteen services
of Section 2.4 and Appendix A. The services presented in

Table 1 Detected FIs.

A high abstraction level approach for detecting feature interactions between telecommunication services 109
Section 2.4 are indicated in italic. The pattern of each detected
FI is indicated by cl (cause–loop), cr (cause–restrict), and cc

(cause–cause), while x means ‘‘no FI is detected’’. For clarity,
we also use colors to indicate cl (yellow), cr (green) and cc
(blue). For brevity, some detected FIs have not been

presented; they are indicated with * in Table 1. Considering
that the same FI can be named S1–S2 and S2–S1, Table 1 is a
symmetric matrix; that is why only a triangular half of Table 1

is specified.

4.5. New FIs

Our Cause–Restrict approach has been validated for the

detection of several FIs known and documented in the liter-
ature, like all FIs not using services CC, FM, BLF, PIN and
ML. We have also detected new FIs, i.e., FIs which we were

unaware of (we did not find them in the literature). These
new FIs are those using services CC, FM, BLF, PIN and
ML. Some of these new FIs have been presented in detail

in Section 4 (FM–TCS) and Appendix B (CC–OCS, ML–
BLF, PIN–TCS). Other new FIs have been mentioned as
resembling to the FIs presented in detail, like CC-TCS which

resembles CC–OCS, and FM–OCS which resembles FM–
TCS. Those resembling FIs CC–TCS and FM–OCS can be
easily deduced from the original FIs CC–OCS and FM–
TCS, by using the analogy between OCS and TCS. Other

new FIs have not been presented for brevity. They are indi-
cated by * in Table 1. Let us present their principle intuitively
and briefly.

Interactions ML-S, where S equals to AR, CW, or UM
ML assumes that his subscriber can be at the same time not

idle and not busy, when some (but not all) of his lines are busy.

The other services (AR, CW, UM) assume that B is idle if and
only if he is not idle. Let S be one of these three services and
assume that B is a subscriber of ML and S. If B has one of
his lines busy and receives a call from A, then, should service

S be triggered (by considering B busy, according to S) or not
(by considering B as not busy, according to ML)?

Interactions FM-S, where S equals to CFU, UM, or Email

FM assumes that if his subscriber receives a call and does
not answer and is not busy, then another number is tried.
The other services (CFU, UM, Email) assume that another ac-

tion A (different from trying another number) is executed
when B receives a call. Let S be one of these three services
and assume that B is a subscriber of FM and S. If B receives

a call from A and does not answer, should action A be exe-
cuted (according to S) or should another number be tried
(according to FM)?

Interactions PIN-S, where S equals to AR or BLF
When a subscriber A of PIN calls a subscriber B of S from

the phone of a user C, it is not clear whether S should behave

with respect to A or to C. For example, should AR recall A or
C? And should BLF display information on A or on C?
5. Related work

To our best knowledge, Chentouf et al. (2004) and Kolberg
and Magill (2007) are two approaches that are closely related
to our approch. Let us, therefore, make a comparative analysis

of our contributions with these references.
Chentouf et al. (2004) and Kolberg and Magill (2007) had

the research objective to come out with a service modeling lan-

guage that abstracts service details. Both research works pro-
posed abstract languages and associated FI detection
methods that are based on a syntactical comparison of service

models and FI detection rules that incarnate pre-defined FI
patterns. Unknown FI cannot be detected by those two ap-
proaches unless the corresponding FI detection rules are set.

Our FI detection method is semantics-based. It abstracts all
the actions into two: cause and restrict, and it relies on three
fixed FI patterns that will not need to be updated as new ser-
vices are added: cause–loop, cause–cause, and cause–restrict.

This fundamental difference between our work and the two re-
lated ones clearly shows that ours is better than the two other
approaches.

A second difference between our proposed approach and
the two related ones consists in the expressiveness of the service
modeling languages and the effectiveness of the associated FI

detection methods. In fact, the language proposed by Chen-
touf et al. (2004), called Feature Interaction Management Lan-
guage (FIML), cannot model CC, PIN, BLF, UM, and ML.
The language of Kolberg and Magill (2007) cannot capture

CC, PIN, BLF, UM, ML, FM, Email, and F-Email. Conse-
quently, the other two approaches cannot detect FI among
those services.

110 Z. Chentouf, A. Khoumsi
A third aspect of comparison between our work and the
two related ones is the abstraction level of the modeling lan-
guage. As already explained, our approach is semantic while

the two related works are syntactical. If two service opera-
tors networks need to interoperate, they have to adopt the
CR-language. They only need to exchange the behavior

descriptions of their services; the interface descriptions do
not have to be communicated. Compared with FIML, the
behavior part of the CR-language is situated at the same le-

vel of abstraction as both languages contain the same con-
cepts: user, address, call; events like busy, no answer, etc.;
and actions such as hold, email, etc. However, in FIML,
every service behavior statement has to be written under a

specific processing point. A processing point indicates the
step of the call processing, for example, dialing, response re-
ceived, call established, etc. This level of details is not re-

vealed in the CR-language, and hence the CR-language is
more abstract than FIML.

The work of Kolberg and Magill (2007) contains two parts:

the first part defines a modeling language and the second part
adaptes the language to SIP, which is a signaling protocol
(Rosenberg et al., 2002). The first part can be exploited as an

offline FI solution. The second part is meant to be executed
at runtime.

Compared with the language proposed by Kolberg and
Magill (2007), the CR-language appears to be less abstract

at a first glance. Their proposed language describes the con-
nections the caller’s device might establish with other user
terminals during the call. There are two types of connec-

tions: the original connection that is supposed to be set
up, and the effective connection that is set up after the ser-
vice has been executed. Service models also contain the so

called treatments. A treatment is any processing that is run
in the network, i.e., in any server that is involved in the
ongoing call. Such a processing is triggered by an event that

may be call-related like busy tone, or not call-related like
network congestion. By introducing this concept, the authors
aimed at abstracting all kinds of events in the concept of
treatment. However, abstracting all events and kinds of

processing that a server may run in only one concept has
a serious side effect: as formulated, the treatment is vague.
This engenders a FI detection drawback. In fact, if a service

execution results in connecting the caller address to a treat-
ment instead of the targeted callee address, the detection
procedure concludes that there is a FI. The article does

not explain how the detection procedure can distinguish a
final treatment, after which the caller will never be con-
nected to the callee, from intermediary treatments, after
which the connection between the caller and the callee can

be established. We conclude that the language proposed by
Kolberg and Magill is too abstract to the extent that the
fundamental concept of treatment is vague and might engen-

der ambiguity.
Although our work presents an offline FI solution, we

think that analyzing the online part of Kolberg and Magill

work is interesting. Kolberg and Magill applied their
approach to SIP. They then explained how the solution can
be exploited at runtime. In this part of their work, treatment

becomes clearer as they consider any SIP response and the
processing that it may trigger in a server as a treatment.
However, the authors do not explain how to distinguish
between the two types of treatments (intermediary and final).
We think that the distinction should be based on the SIP
response types: intermediary treatments are triggered by
intermediary SIP responses, i.e., 1xx, 2xx, and 3xx messages,

and final treatments are fired by final SIP responses, i.e., 4xx,
5xx, and 6xx responses (Rosenberg et al., 2002). However,
some exceptions to this rule have to be carefully examined.

Indeed, 200 OK SIP response message, for example,
sometimes causes the session termination depending on the
preceding SIP request(s). The 407 Proxy Authentication

Required does not terminate the call; it simply requires the
caller’s device to send its authentication credentials. We
conclude that to be exploitable on line (i) the approach of
Kolberg and Magill needs to be tailored to the underlying

signaling protocol, (ii) the proposed SIP implementation of
the approach needs to be refined based on the SIP response
types.

Another advantage the CR-language has over the two re-
lated works emanates from the fact that it is object-oriented.
We think that the derivation of CR-models from object ori-

ented analysis documents (UML diagrams, for example), can
be automated.
6. Conclusion

We have first developed a Cause–Restrict language to model
subscribers of telecommunication services at a high abstraction

level. A Cause–Restrict model of a subscriber provides infor-
mation such as: what is the cause of what, and what restricts
what, and specifies coarsely the frequency of each operation
‘‘cause’’ or ‘‘restrict’’ by ‘‘always’’ or ‘‘sometimes’’. Then, we

have developed a method that detects feature interactions be-
tween telecommunication services modeled in the Cause–Re-
strict language. The latter has permitted to reduce the state

space explosion encountered in several feature interaction
detection methods. We have demonstrated the applicability
of our approach for the description of several services and

the detection of several feature interactions between them.
Known FIs and, more interestingly, new FIs have been
detected.

As a future work, we plan to study the feature interaction
resolution phase, which consists in finding solutions to the de-
tected feature interactions. Both of the online and off-line res-
olutions will be investigated.

Appendix A.

A.1. Subscriber of Originating Call Screening (OCS)

A subscriber of OCS registers users in a list LOCS so that every

outgoing call from A toward a user registered in LOCS is auto-
matically blocked (note the symmetry with TCS).

Interface model: subscriber of OCS

userOCS extends user

// Attributes

users ListOcs // Specific attribute corresponding to LOCS

// of the current subscriber of OCS

// Methods

call call(user) // Overrides the method call() of the class user

tions between telecommunication services 111
The method call() of user is overridden because calls to

users registered in LOCS must not be established.

CR-behavior model: subscriber A of OCS

The following CR-relations are added to the basic
behavior:

ðB 2 A:ListOcsÞ ^ A:callðBÞ restrict! A:anyComðBÞ

ðB 2 A:ListOcsÞ ^ A:callðBÞ restrict! B:anyComðAÞ

ðB 2 A:ListOcsÞ ^ ðA ¼ Call:InitiatorÞ restrict! B 2 Call:Participants

A high abstraction level approach for detecting feature interac
A.2. Subscriber of email

If a subscriber A of Email calls a user B, an email is automat-

ically sent from A to B. Such an email may contain advertise-
ment, for example.

Interface model: subscriber of Email

userEmail extends user

// Attributes: no new attribute is defined

// Methods

call call(user) // Overrides the method

call() of the class user.

void email(user, text) // New method: it sends a

text message to a user.

// The user and message

// are given as parameters.
The method call() of user is overridden because Email adds

an email sending with every call. A new method email() is
added.

CR-behavior model: subscriber A of Email

The following CR-relation is added to the basic
behavior:

A:callðBÞ cause! A:emailðB; textÞ
A.3. Subscriber of F-email

A subscriber of F-email can forbid the reception of emails
which come with calls.

Interface model: subscriber of F-email

userFemail extends user

// Attributes

boolean forbidEmail // Generic attribute

// indicating whether reception

// of emails is forbidden,

// i.e., if service is enabled.

// We consider here

//only emails that come with

// calls, not all the emails.

// Methods

void receiveEmail(user, text) // New method: it receives an

// email with a call from a user.
A new method receiveEmail() is added.
CR-behavior model: subscriber B of F-email
The following CR-relation is added to the basic behavior:
A:callðBÞ
^ ðB:forbidEmail

¼ trueÞ restrict! B:receiveEmailðA; anyMessageÞ
A.4. Subscriber of Conference Call (CC)

A subscriber A of CC can ask his provider’s server to pro-
gram a conference call at a given future time T. The server
sends a phone number N and a password P to A who for-
wards this information to users he wants to invite to the

conference call. Any user (including A) that knows (N, P)
can join the conference at time T by calling N and then
entering P. A is considered the initiator of that conference

call.

Interface model: subscriber of CC

userCC extends user

// Methods

call program() // New method: program a

// conference call

void join(call) // New method: join a

// programmed conference call.
Two new methods are defined in userCC: Call=A.pro-
gram() means that A programs a conference call, A.join(Call)

means that A joins a conference call.
CR-behavior model: subscriber A of CC
The following CR-relations are added to the basic

behavior:

ðCall ¼ A:programðÞÞ ^ A:joinðCallÞ cause! A ¼ Call:Initiator

Call:acceptðXÞ cause! X ¼ Call:Participants
A.5. Subscriber of PIN-Calling (PIN)

This is an office service where some privileged employees have
the right to use some services. For that, they have to dial a PIN
(Personal Identification Number). If a PIN owner A uses the

phone of a colleague
B, A has access to all his services even if B, the phone own-

er, has not the right to use those services.

Interface model: subscriber of PIN

userPIN extends user

// Attributes

user phoneOwner // Owner of the phone used

// by the subscriber of PIN.
CR-behavior model: subscriber A of PIN
The following CR-relations are added to the basic

behavior:

ðA:phoneOwner ¼ CÞ ^ ðCall ¼ A:callðBÞÞcause!C:anyComðBÞ
ðA:phoneOwner ¼ CÞ ^ ðCall ¼ A:callðBÞÞ cause!B:anyComðCÞ

112 Z. Chentouf, A. Khoumsi
A.6. Subscriber of Busy Lamp Field (BLF)

The service Presence permits to users and servers to know the
status of other users. BLF is a specific service that needs Pres-
ence in the following way. A subscriber A of BLF can specify a

list of users for whom he wants to watch the status: idle or
busy. If A watches the status of B, every time B makes or re-
ceives a call, A’s phone displays the information that B is busy.
If B is not on the phone, A’s phone displays the information

that B is idle.

Interface model: subscriber of BLF

userBLF extends user // Attributes

user watchee // Watchee is the user watched by

// the BLF service subscriber.

boolean watcheeBusy // True means that watchee is

// busy, false means he is idle.
CR-behavior model: subscriber A of BLF

The following CR-relations are added to the basic
behavior:

ðA:watchee ¼ BÞ ^ ðB:busy ¼ trueÞ cause!ðA:watcheeBusy ¼ trueÞ
ðA:watchee ¼ BÞ ^ ðB:busy ¼ falseÞ cause!ðA:watcheeBusy ¼ falseÞ
ðA:watchee ¼ BÞ ^ ðA:watcheeBusy ¼ trueÞ cause!ðB:busy ¼ trueÞ
ðA:watchee ¼ BÞ ^ ðA:watcheeBusy ¼ falseÞ cause!ðB:busy ¼ falseÞ
A.7. Subscriber of Multiple Lines (ML)

A subscriber A of ML has several lines (say N) in the same

phone sharing the same number. A can accept a new call while
he is already on the phone. And so on, A can accept other calls
until all the N lines are busy.

Interface model: subscriber of ML

userML extends user

// Attributes

int busyLines // Number of busy lines
CR-behavior model: subscriber B of ML
The CR-relation 5b ((B.idle=false) cause! (B.busy=true))

of the basic behavior is removed from the basic behavior,
and the following CR-relations are added:

ðB:busyLines < NÞ restrict! B:busy ¼ true;

ðB:busyLines ¼ NÞ cause! B:busy ¼ true:
Appendix B.

B.1. OCS–CFU

Context: Consider A and B who are subscribers to OCS and
CFU respectively, and a third user C. Assume that A has

put C in his list LOCS, with the idea that a call initiated by A
has no effect on C (hence A is not authorized to join C). As-
sume that B has programmed an automatic unconditional for-

ward of his incoming calls towards C.
Scenario of FI: OCS prevents that A joins directly C. But if

A calls B, A will be forwarded to C (and hence A joins C)

although C is in LOCS.
Let us now show how this FI is detected by our FI detection
method:

– For the subscriber B of CFU that has programmed a forward

towards C, we have by using the 2nd CR-relation of Section 2.4.2:

M1 : ðB:forward ¼ CÞ ^ ðCall ¼ A:callðBÞÞ cause!C
2 Call:Participants

– For the subscriber A of OCS that has put C in LOCS, we obtain by

adapting the 3rd CR-relation of Appendix A.1:

M2 : ðC 2 A:ListOcsÞ ^ ðA ¼ Call:InitiatorÞ restrict! C
2 Call:Participants

The pair of CR-relations (M1, M2) constitutes a cause–re-
strict pattern which is a symptom of conflict. We have checked

that we can reach a situation where the participation of C in a
call is at the same time implied by CFU and forbidden by OCS
(see the above Context-Scenario).

We obtain resembling FIs if we replace CFU by CFBL
(Call Forward on Busy Line), CFNR (Call Forward on No
Reply), or CFT (Call Forward on Time). Another resembling
FI is TCS–CFU (studied in Section 4.2.2), which is obtained if

we replace ‘‘A is subscriber of OCS’’ by ‘‘C is subscriber of
TCS’’.

B.2. TCS–CFU

Context: Consider B and C who are subscribers to CFU and
TCS respectively, and a third user A. Assume that C has put

A in his list LTCS, with the idea that a call involving C but
not initiated by C has no effect on A (hence C is not authorized
to be joined by A). Assume that B has programmed an auto-

matic unconditional forward of his incoming calls toward C.
Scenario of FI: TCS prevents that C is directly joined by A.

But if A calls B, A will be forwarded to C (and hence C is
joined by A) although A is in LTCS.

Let us now show how this FI is detected by our FI detection
method:

– For the subscriber B of CFU that has programmed a forward

toward C, we obtain by adapting the 2nd CR-relation of

Section 2.4.1:

M1 : ðB:forward ¼ CÞ ^ ðCall ¼ A:callðBÞÞ cause!C
2 Call:Participants

– For the subscriber C of TCS that has put A in LTCS, we obtain by

adapting the 4th CR-relation of Section 2.4.2:

M2 : ðA 2 C:ListTcsÞ ^ ðA ¼ Call:InitiatorÞ restrict! C
2 Call:Participants

The pair of CR-relations (M, M2) constitutes a cause–re-
strict pattern which is a symptom of conflict. We have checked
that we can reach a situation where the participation of C in a

call is at the same time implied by CFU and forbidden by TCS
(see the above Context-Scenario).

We obtain a resembling FI if we replace CFU by Call For-
ward on Busy Line (CFBL), Call Forward on No Reply

(CFNR), or Call Forward on Time (CFT).

A high abstraction level approach for detecting feature interactions between telecommunication services 113
B.3. TCS–UM

Context: Consider two users A and B, where B is subscriber to
TCS and UM. Assume that B has put A in his list LTCS, with
the idea that a call involving B but not initiated by B has no

effect on A (hence B is not authorized to be joined by A).
Scenario of FI: TCS prevents that B is directly joined by A

in a basic call. But if A calls B who is busy or does not answer,
B receives by email a voice message from A. Hence, the call ini-

tiated by A has an effect on B, contrary to the aforementioned
idea of B when he has put A in LTCS.

Let us now show how this FI is detected by our FI detection

method:

– For the subscriber B of TCS has put A in LTCS, we have by using

the 2nd CR-relation of Section 2.4.2:

M1 : ðA 2 B:ListTcsÞ ^ A:callðBÞ restrict! B:anyComðAÞ
– For the subscriber B of UM who receives a call from A, we have by

using the CR-relation of Section 2.4.5:

M2 : ðB:um¼ trueÞ ^A:callðBÞ^ðB:busy¼ true_B:noAnswer¼ trueÞ cause!
B:unifiedMessagingðA; voiceMsgÞ

If in M1 we replace anyCom(A) by unifiedMessaging (A, ‘‘I
called you but I did not answer.’’), the pair of CR-relations
(M1, M2) constitutes a cause–restrict pattern which is a symp-

tom of conflict. We have checked that we can reach a situation
where a communication of B with A is at the same time im-
plied by UM and forbidden by TCS (see the above Context-

Scenario).
We obtain a resembling FI TCS–Email if we replace ‘‘B is

subscriber of UM’’ by ‘‘A is subscriber of Email’’. Another

resembling FI is OCS–UM, which is obtained if we replace
‘‘B is subscriber of TCS’’ by ‘‘A is subscriber of OCS’’. Yet an-
other resembling FI is OCS–Email which is studied in the fol-
lowing subsection B4. Since UM contains the service

Voicemail (VM), we can obtain more FIs if we replace ‘‘B is
subscriber of UM’’ by ‘‘B is subscriber of VM’’. Hence the
interactions OCS-VM and TCS-VM.

B.4. OCS–Email

Context: Consider two users A and B, where A is subscriber to

OCS and Email. Assume that A has put B in his list LOCS with
the idea that a call initiated by A has no effect on B (hence A is
not authorized to join B).

Scenario of FI: OCS prevents that A joins directly B in a ba-
sic call. But if A calls B, A sends an email message to B (hence
A joins B) although B is in LOCS.

Let us now show how this FI is detected by our FI detection

method:

– For the subscriber A of OCS that has put B in LOCS, we have by

using the 1st CR-relation of Appendix A.1:

M1 : ðB 2 A:ListOcsÞ ^ A:callðBÞ restrict! A:anyComðBÞ
– For the subscriber A of Email that calls B and sends him an auto-

matic email to B, we have by using the CR-relation of Appendix

A.2:

M2 : ðA:callðBÞÞ cause! A:emailðB; emailMsgÞ
If in M1 we replace anyCom(B) by email(B, ‘‘hello, I am
calling you.’’), the pair of CR-relations (M1,M2) constitutes
a cause–restrict pattern which is a symptom of conflict. We

have checked that we can reach a situation where a communi-
cation of A with B is at the same time implied by Email and
forbidden by OCS (see the above Context-Scenario).

We obtain a resembling FI if we replace Email by EBL
(Email on Busy Line) where the caller sends an email only if
the callee is busy, for example to inform him that he has called

him.

B.5. Email–F-email

Context: Consider A and B who are subscribers to F-email and
Email respectively. Assume that A has forbidden the reception
of emails.

Scenario of FI: the FI is due to contradictory objectives of

Email and F-email: If B calls A, should B send an email mes-
sage to A (according to Email) or should not he (according to
F-email) ?

Let us now show how this FI is detected by our FI detection
method:

– For the subscriber B of Email that calls A and sends him an auto-

matic email to A, we obtain by adapting the CR-relation of Appen-

dix A.2:

M1 : ðB:callðAÞÞ cause! B:emailðA; emailMsgÞ
– For the subscriber A of F-email that forbids reception of emails, we

obtain by adapting the CR-relation of Appendix A.3:

M2 : B:callðAÞ ^ ðA:forbidEmail

¼ trueÞ restrict! A:receiveEmailðB; anyMessageÞ

– The following CR-relation is added by the designer (Step 1b) to

state that the sending by B of an email toward A is followed by

the reception by A of an email from B:

M3 : B:emailðA; emailMsgÞ cause! A:receiveEmailðB; emailMsgÞ

By applying rule r5 to M1 and M3, we obtain:

N1 : ðB:callðAÞÞ cause! A:receiveEmailðB; emailMsgÞ

The pair of CR-relations (N1, M2) constitutes a cause–re-

strict pattern which is a symptom of conflict. We have checked
that we can reach a situation where the transmission of an
email from B to A is at the same time implied by Email and

forbidden by F-email (see the above Context-Scenario).
We obtain a resembling FI EEC–F-email if we replace

Email by EEC (Email on end of call) where a call participant
sends an email when he terminates a call. Another resembling

FI UM–F-email, which is obtained if we replace ‘‘A subscriber
of Email’’ by ‘‘B subscriber of UM’’.

B.6. OCS–CC

Context: Consider a subscriber A of OCS and CC. Assume that
A has put B in his listLOCS with the idea that a call initiated byA

has no effect on B (hence A is not authorized to join B).
Scenario of FI: OCS prevents that A joins directly B in a ba-

sic call. But if A programs a conference call which is joined by

A and B, A can join B although B is in LOCS.

114 Z. Chentouf, A. Khoumsi
Let us now show how this FI is detected by our FI detection
method:

– For the subscriber A of CC that programs a conference which is

joined by A and B, we have by using the CR-relations of Appendix

A.4:

M1 : ðCall ¼ A:programðÞÞ ^ A:joinðCallÞ cause!A ¼ Call:Initiator

M2 : Call:acceptðXÞ cause!X ¼ Call:Participants

– For the subscriber A of OCS that has put B in LOCS, we have by

using the 3rd CR-relation of Appendix A.1:

M3 : ðB 2 A:ListOcsÞ ^ ðA ¼ Call:InitiatorÞ restrict! B
2 Call:Participants

By applying rule R7 To M1 and M3 with U=’’(Call=A.pro-
gram()) � A.join(Call)’’, V=’’A=Call.Initiator’’, W=’’ B2
Call.Participants’’, Z=’’B2A.ListOcs’’, we obtain:

N1 : ðB 2 A:ListOcsÞ ^ ðCall
¼ A:programðÞÞ ^ A:joinðCallÞ restrict! B
2 Call:Participants

If we replace X by B in M2, the pair of CR-relations (M2,
N1) constitutes a cause–restrict pattern which is a symptom of
conflict. We have checked that we can reach a situation where

the participation of B in a call is at the same time implied by
CC and forbidden by OCS (see the above Context-Scenario).

We obtain a resembling FI if we replace ‘‘A subscriber of

OCS’’ by ‘‘B subscriber of TCS’’.

B.7. BLF–ML

Actually, this FI involves also the Presence service. The latter
is implicit in BLF–FM because BLF necessitates Presence (see
Appendix A.6).

Context: Consider A and B who are subscribers of BLF and

ML, respectively, and a third user C. Presence is designed so
that the status busy is set to true when the watched user is
on the phone. Hence, a subscriber of BLF will see the ‘‘wat-

chee’’ as busy when he is on the phone.
Scenario of FI: A calls B who is on the phone with C. B is

seen as busy according to BLF, while he is considered as idle

according to ML. In other words, BLF and ML do not use
the same semantic for B.busy.

Let us now show how this FI is detected by our FI detection
method:

– For the subscriber A of BLF, we have by using the 3rd CR-relation

of Appendix A.6 and the CR-relation 5b of Section 2.3:

M1 : ðA:watchee ¼ BÞ ^ ðA:watcheeBusy ¼ trueÞ cause!ðB:busy ¼ trueÞ
M2 : ðB:idle ¼ falseÞ cause! ðB:busy ¼ trueÞ

– For the subscriber B of ML, we have by using the CR-relation of

Appendix A.7:

M3 : ðB:busyLines < NÞ restrict! ðB:busy ¼ trueÞ

The pairs of CR-relations (M1, M2) and (M1, M3) consti-
tute cause–restrict patterns which are symptoms of conflict.
We have checked that we can reach a situation where at the
same time B is seen is busy according to BLF while he is seen
as non busy according to ML (see the above Context-Scenario).

B.8. PIN–TCS

Context: Consider A and B who are subscribers of PIN and
TCS, respectively, and a third user C. Assume that B has put

C in his list LTCS, with the idea that C is not authorized to
be joined by B. PIN is designed so that if A uses C’s phone
to enter his PIN and calls B, the latter sees A as C.

Scenario of FI: A uses C’s phone to enter his pin and calls B.
The call of A is blocked although A is not in LTCS, because the
phone used by A (C’s phone) is in LTCS.

Let us now show how this FI is detected by our FI detection
method:

– For the subscriber A of PIN that uses C’s phone to call B, we have

by using the 1st CR-relation of Appendix A.5:

M1 : ðA:phoneOwner ¼ CÞ ^ ðCall
¼ A:callðBÞÞ cause! C:anyComðBÞ

– For the subscriber B of TCS that has put C in LTCS, we obtain by

adapting the 1st CR-relation of Section 2.4.2:

M2 : ðC 2 B:ListTcsÞ ^ ðC:callðBÞÞ restrict! ðC:anyComðBÞÞ

The pair of CR-relations (M1, M2) constitutes a cause–re-

strict pattern which is a symptom of conflict. We have checked
that we can reach a situation where TCS blocks a call which,
according to PIN, should not be blocked (see the above Con-
text-Scenario).

B.9. AR–UM

Context: Consider two users A and B, where B is subscriber to

AR and UM.
Scenario of FI: If A calls a busy user B, B receives an email

from A containing a voice message (according to UM) while A

is recalled back later by B (according to AR). Which of the two
actions should be executed? Should we execute both actions?

Let us now show how this FI is detected by our FI detection

method:

– For the subscriber B of AR that has programmed an automatic

recall and receives a call from A while he is busy, we have by using

the CR-relation of Section 2.4.3:

M1 : ðB:ar ¼ trueÞ ^ ðCall ¼ A:callðBÞÞ ^ ðB:busy ¼ trueÞ cause!
B:callðAÞ ^ ðB 2 Call:Participants n fCall:InitiatorgÞ ^ ðA ¼ Call:InitiatorÞ

– For the subscriber B of UM that receives a call from A and then

sends him a voicemail message, we have by using the CR-relation

of Section 2.4.5:

M2 : ðB:um¼ trueÞ^A:callðBÞ^ ðB:busy¼ true_ B:noAnswer¼ trueÞ cause!
B:unifiedMessagingðA;voiceMsgÞ

The pair of CR-relations (M1, M2) constitutes a cause–
cause pattern.

We obtain a resembling FI if we replace ‘‘B subscriber of

UM’’ by ‘‘B is subscriber of VM’’ or ‘‘A subscriber of Email’’.
We have checked that we can reach a situation where B calls A

A high abstraction level approach for detecting feature interactions between telecommunication services 115
according to AR while B receives a voice message by email
according to UM (see the above Context-Scenario).

References

Amer, M. et al., 2000. Feature interactions resolution using fuzzy

policies. In: [5], pp. 94–112.

Amyot, D. et al., 2000. Feature description and Feature Interaction

analysis with Use Case Maps and LOTOS. In: [5], pp. 252–261.

Amyot, D., Logrippo, L. (Eds.), 2003. Feature Interactions in

Telecommunications and Software Systems VII. IOS Press,

Amsterdam.

Blom, J. et al., 1994. Using temporal logic for modular specification of

telephone services. Feature Interactions in Telecommunications

Systems. In: [1], pp. 197–216.

Blom, J. et al., 1995. Automatic detection of feature interactions in

temporal logic. In: [5], pp. 1–19.

Bouma, L.G., Velthuijsen, H. (Eds.), 1994. Feature Interactions in

Telecommunications Systems. IOS Press, Amsterdam.

Calder, M., Magill, E. (Eds.), 2000. Feature Interactions in Telecom-

munications and Software Systems VI. IOS Press, Amsterdam.

Calder, M. et al., 2007. Hybrid solutions to the feature interaction

problem. In: [8], pp. 295–312.

Charnois, T., 1997. A natural language processing approach for

avoidance of feature interactions. In: [3], pp. 347–363.

Cheng, K.E., Ohta, T. (Eds.), 1995. Feature Interactions in Telecom-

munications Systems III. IOS Press, Amsterdam.

Chentouf, Z. et al., 2004. Service interaction management in SIP user

device using Feature Interaction Management Language. In:

Proceedings of the 2004 Conference Nouvelles Technologies de la

Repartition (NOTERE), Morocco.

Cherkaoui, S., Khoumsi, A., 2002. Mobile and static agents for service

interactions resolution in telecommunication environments. In: 9th

IEEE International Conference on Telecommunications

(ICT’2002), Beijing.

Dini, P. et al. (Eds.), 1997. Feature Interactions in Telecommunication

Networks IV. IOS Press, Amsterdam.
Du Bousquet, L., Richier, J.-L. (Eds.), 2007. Feature Interactions in

Software and Communication Systems IX. IOS Press.

Gammelgaard, A., Kristensen, J.E., 1994. Interaction detection, a

logical approach. In: [1], pp. 178–196.

Gibson, P., Mery, D., 1997. Telephone feature verification: translating

SDL to TLA+. In: Eighth SDL Forum (SDL’1997), Evry, France.

Griffeth, N.D., Velthuijsen, H., 1994. The negotiating agents approach

to runtime interaction resolution. Feature Interactions in Telecom-

munications Systems. In: [1], pp. 217–235.

Khoumsi, A., 1997. Detection and resolution of interactions between

services of telephone networks. In: [3], pp. 78–92.

Kimbler, K., Bouma, L.G. (Eds.), 1998. Feature Interactions in

Telecommunications and Software Systems V. IOS Press,

Amsterdam.

Kolberg, M., et al., 2002. Feature Interactions in Services for Internet

Personal Appliances. In: Proceedings of IEEE International

Conference on Communications (ICC 2002), New York, pp.

2613–2618.

Kolberg, M., Magill, E., 2007. Managing feature interactions between

distributed SIP call control services. Computer Networks 51, 536–

5575.

Nakamura, M. et al., 1997. Petri-net based detection method for non-

deterministic feature interactions and its experimental evaluation.

In: [3], pp. 138–152.

Nakamura, M., Reiff-Marganiec, S. (Eds.), 2009. Feature Interactions

in Software and Communication Systems X. IOS Press.

Reiff-Marganiec, S., Ryan, M. (Eds.), 2005. Feature Interactions in

Telecommunications and Software Systems VIII. IOS Press,

Amsterdam.

Rosenberg, J. et al., 2002. SIP: Session Initiation Protocol. IETF RFC

3261.

Tsang, S., Magill, E.H., 1997. Behavior based run-time feature

interaction detection and resolution approaches for intelligent

networks. In: [3], pp. 254–270.

Weiss, M. et al., 2007. Towards a classification of web service feature

interactions. Computer Networks 51, 359–381.

	app38
	A high abstraction level approach for detecting feature interactions between telecommunication services
	1 Introduction
	1.1 Existing approaches to FI detection and resolution
	1.2 Our approach to FI detection
	1.3 Structure of the paper

	2 Cause–Restrict language to model interfaces and behaviors
	2.1 Outline and Objective of the Cause–Restrict language
	2.2 Classes call and user
	2.3 Basic behavior model
	2.4 Subscriber of a service
	2.4.1 Subscriber of Call Forward Unconditional (CFU)
	2.4.2 Subscriber of Terminating Call Screening (TCS)
	2.4.3 Subscriber of Automatic Recall (AR)
	2.4.4 Subscriber of Call Waiting (CW)
	2.4.5 Subscriber of Unified Messaging (UM)
	2.4.6 Subscriber of Follow-Me (FM)

	2.5 Subscriber of several services
	2.6 Less accurate CR-Relations: cause? restrict?
	2.7 Some properties and rules of CR-relations
	2.8 Discussion on how to onstruct interface and Behavior Models

	3 FI detection method based on Cause–Restrict language
	3.1 Inputs: CR-behavior models
	3.2 Step 1: Merging and enriching the CR-behavior models
	3.3 Step 2: FI Detection

	4 Examples of FI detection
	4.1 Cause–loop FI
	4.1.1 CFU–CFU

	4.2 Cause–restrict FI
	4.2.1 AR–TCS
	4.2.2 TCS–FM

	4.3 Cause–cause FI
	4.3.1 AR–CW
	4.3.2 CW–UM

	4.4 Recapitulation
	4.5 New FIs

	5 Related work
	6 Conclusion
	Appendix A
	A.1 Subscriber of Originating Call Screening (OCS)
	A.2 Subscriber of email
	A.3 Subscriber of F-email
	A.4 Subscriber of Conference Call (CC)
	A.5 Subscriber of PIN-Calling (PIN)
	A.6 Subscriber of Busy Lamp Field (BLF)
	A.7 Subscriber of Multiple Lines (ML)

	Appendix B
	B.1 OCS–CFU
	B.2 TCS–CFU
	B.3 TCS–UM
	B.4 OCS–Email
	B.5 Email–F-email
	B.6 OCS–CC
	B.7 BLF–ML
	B.8 PIN–TCS
	B.9 AR–UM

	References

