
Journal of King Saud University – Computer and Information Sciences (2013) 25, 7–24
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Analysis of accounting models for the detection of

duplicate requests in web services
S. Venkatesan a,*, M.S. Saleem Basha b, C. Chellappan c, Anurika Vaish a,

P. Dhavachelvan b
a Indian Institute of Information Technology, Allahabad, India
b Department of Computer Science, Pondicherry University, Pondicherry, India
c Department of Computer Science and Engineering, Anna University, Chennai, India
Received 31 December 2011; revised 5 April 2012; accepted 15 May 2012

Available online 24 May 2012
*

E

Pe

13

ht
KEYWORDS

Request history;

DoS attack prevention;

Critical infrastructure pro-

tection;

Web service security
Corresponding author.

-mail address: venkalt_s@y

er review under responsibilit

Production an

19-1578 ª 2012 King Saud U

tp://dx.doi.org/10.1016/j.jksu
ahoo.co.i

y of King

d hostin

niversity

ci.2012.0
Abstract The Denial of Service (DoS) attack is the major issue in the web service environment,

especially in critical infrastructures like government websites. It is the easiest one for the attackers

where they continuously generate the duplicate request with less effort to mitigate the availability of

server resources to others. To detect and prevent this type of duplicate request attacks, accounting

the client history (i.e., client request detail) is very important. This paper proposes a cookie based

accounting model, which will record each and every client request in the cookie and the hash value

of the cookie in the server database to detect the client’s misbehavior like modifying the cookie

information or resending (replay) the prior request cookie with the current request. Also this paper

has analyzed all the accounting models including the proposed accounting model with respect to

qualitative and quantitative results to prove the proposed model efficiency. The proposed model

achieves more than 56% efficiency compared to the next efficient existing model.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Adenial of Service is an attack generated by the attackers simply
by sending the huge number of spam or duplicate requests to the
server to make it unavailable to others or legitimate clients. The

Computer Emergency Response Team (CERT-DoS 2001) clas-
sifies denial of service attacks into three broad categories. The
n (S. Venkatesan).

Saud University.

g by Elsevier

. Production and hosting by Elsev

5.003
first category aimed at the consumption of resources such as

network bandwidth orCPU.The second category is the physical
destruction or alteration of network components. The third cat-
egory is the destruction or alternation of configuration manage-

ment. Amongst the three types, the first type of attack is easy for
the attackers to do without taking much effort. This attack will
be either through the protocol exploitation (TCP SYN flood:
sending only the TCP SYN request continuously without

responding to the TCP/ACK, UDP flooding: sending large
number of UDP packets to the servers port, Smurf attack:
broadcasting the ping request with the source address of the vic-

tim and the reply of the ping request will reach the victim from
all machines, Ping flood: sending massive number of ping re-
quests) or through the massive number of application layer level

duplicates (spam) requests. This paper is intended to
concentrate on the application layer level duplicate requests.
ier B.V. All rights reserved.

mailto:venkalt_s@yahoo.co.in
http://dx.doi.org/10.1016/j.jksuci.2012.05.003
http://dx.doi.org/10.1016/j.jksuci.2012.05.003
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2012.05.003

8 S. Venkatesan et al.
In application layer level spam requests, attackers may
frequently send the requests (may be same page or data re-
quests or different requests) to the server as a legitimate host

but with the intention to reduce the availability of resources.
Attackers may be the human or compromised machines (Zom-
bies or Botnet). A botnet comprises thousands or compro-

mised machines to disrupt the availability of critical
resources, which will become a major issue in the web services
(Alonso et al., 2004). To overcome the issue of the botnet, the

concept of Completely Automated Public Turing test to tell
Computers and Humans Apart (CAPTCHA) (Kandula
et al., 2005) is used, such as the challenge response method.
There are various CAPTCHA models available where the ser-

ver will request the client to respond to the challenge. For
example, a client has to send the textual format of the words
given in the image. In web services, we cannot use this concept

for all the web pages and for every request because it will in-
crease the computational cost and will also hurt the clients.
Also, some of the CAPTCHA’s are recognized by the zombies

or bots (Gaddam, 2008). In case the human is performing this
application layer level attack, then it is not possible to detect.

The denial of service may also be handled through the var-

ious difficult level puzzles (Aura et al., 2000; Feng and Kaiser,
2010; Khor and Nakao, 2011), but it is very difficult to have
that in the web services because we cannot have the puzzles
for every page. It will hurt the legitimate clients and it will in-

crease the computational cost for generating the puzzle for
every request and verify it for every response.

Alfantookh (2006) developed the DoS intelligent detection

system using neural networks. However to detect the attack
in the web service environment the client history is required.
In order to detect and prevent the duplicate request attack in

the web service environment, some efficient model is needed,
which requires the client request (client history) details. Hence,
we need the proper client history accounting model. With this

motive, this paper proposes an accounting model for web ser-
vices. The first focus of this paper is to efficiently account the
request history and servicing the client with less computational
time. The second focus of this paper is to prevent the replay

and the modification attack on the request history.
To keep the client history, a cookie is used and the creden-

tials of the cookie will be stored in the server log. We all know

that the cookie is a client side tool and has low security. How-
ever, this proposed model will increase the security level of the
cookie through integrity verification. The request history of the

client will be analyzed based on different criteria provided by
Aura et al. (2000), Yuan and Mills (2005), and Ranjan et al.
(2006) to detect the duplicate or spam requests. The request
history consists of the total count of the pages visited, the

count of every web page access, inter-arrival time of the re-
quest, date and time of very first request, etc.

The cookie will get updated for every request and is trans-

ferred to the client along with the response. It is obvious that
the client has the open opportunity to make any modification
on the cookie (request history) because it is available to client.

To overcome this issue, the hash value of the cookie is stored
on the server side and it is verified for every request. In case the
client makes any modification on the cookie or resends the

cookie of the second or third request, the client can be easily
captured by the server with the help of the hash value (any tiny
modification on the data will give the avalanche affect on the
hash value) stored in the server log.

The experimental results given in this paper has been taken

with 250 legitimate user access to prove that this proposed
model is more efficient, with respect to space and computa-
tional complexity, than the existing models.

The remaining of this paper is organized as follows: Sec-
tion 2 gives a brief description of the related works. Section 3
describes the proposed accounting model for detecting and

preventing the spam requests. Section 4 describes the proper-
ties of the proposed model. Section 5 describes the analysis
of all the accounting models and the experimental analysis of
the proposed model in comparison with the existing models,

including the inconsistency removal. Section 6 concludes the
paper with some directions on future enhancements.

2. Related work

The Business Process Execution Language (BPEL) engine
executes the specifiedbusiness processeswithweb services by con-

suming reasonable memory and processing time, but when the
massive number of spam requests come, then consumes more
memory and CPU time (Jensen et al., 2007, 2008) and it causes

a denial of service. Also, the comparison chart given by Jensen
et al. (2008) shows that the prevention of this type of attack is very
important compared to other DoS attacks like TCP SYN flood.

Suriadi et al. (2010) also analyzed the application layer level de-
nial of service attack impacts on web services (Web Service Def-
inition Language (WSDL) flooding: sending massive number of
WSDL requests where every WSDL request itself having a very

complicated security process to secure itself from the public; hea-
vy cryptographic process: adding multiple signature block and
multiple heavy encryption blocks; and deep XML DoS attack:

embedding the excessivelynestedXMLin themessagepart). Suri-
adi et al. (2010) also shows that a lot of memory and CPU cycles
are consumed for these kinds of attacks. Hence, the prevention of

these application layer level DoS attacks is very much important
to save the memory and CPU cycle, and therefore, protect the
critical infrastructures. This is our main motivation, namely de-

velop an accounting model, which will be necessary to detect
and prevent the duplicate or spam requests attack.

To prevent the spam request DoS attack, the following
different approaches for accounting the request history are

given by Jensen and Schwenk (2009).

(i) Monitoring approach: Every request to the server must

be notified to the monitor for global trace back. The
serious problem with this model is performance reduc-
tion by monitoring all the requests. Also, it does not

have the concept of request history, which is important
to detect the attack.

(ii) Server side logging approach: Every request to the servers
is logged in the local files. In the event of a request, the

server may look up the appropriate request history in its
log files to analyze it and contacts the service to fulfill the
request of the customer if it is a legitimate request,

otherwise the request would be dropped. The issue with
this approach is storing all information in the server log.
It will raise the size of the log files and the complexity of

searching for a particular entry.

Analysis of accounting models for the detection of duplicate requests in web services 9
(iii) Request history approach: In order to overcome the issue

of the maximum log file, a more viable approach is the
service invocation history, that is, to place the complete
history into the request message itself. Every service that

processes a request takes the history from the incoming
request message, appends its own service address, and
puts the resulting history block into each outgoing
request message that belongs to the same request context.

This way, each request message can be examined to
exactly identify all services that are previously processed.
In the event of an attack, the service at the observation

point can directly investigate the attack request messages
in order to determine the attack at the entry point.
The drawback with this model is that there is no guaran-

tee that the client will send the next request with the very
first preceding request history. There is a possibility to
send the second or third preceding request history with
the current request. For example, consider that the client

has sent its second request and got the response with the
history up to the second request. After that, the client
sends its third request with the history received for the

first response. In this situation, the server cannot detect
the attack either at the entry point or at the processing
point.

(iv) Extended request history approach: In the above
approach, the attacker can have the chance to insert
the fake service invocation history aiming to cheat the

observation point. In order to prevent this kind of fake
insertion, the concept of a security token is introduced.
That is, every incoming request issues a token (consists
of message id and timestamp) which is encrypted with

the symmetric key and embedded with the request his-
tory. For the forthcoming requests (consists of the pre-
vious history), they will analyze the request history

after verifying the tokens, which will be decrypted using
the symmetric key available with the observation point.
Even though a security token is available, the possibility

is there to add the fake history or modify the requests
history. To overcome this issue, they have added the dig-
ital signature scheme to protect the integrity. The
request history will be verified based on the digital signa-

ture and the token validity. Every request history is valid
for a period of time which is available in the token. The
request history comes after the timeout period elapsed.

The issue in this model is with the overhead related to
computational time of the symmetric cryptographic
operation, verifying the digital signature. Also, it has

the vulnerability of the replay attack; that is, within
the time period the attacker has the opportunity to per-
form the replay.

(v) Context-based access control: In this approach, the
access is restricted to the persons related to their process.
For example, create customer billing account is only
allowed to the create customer. The problems with this

model are: First, setting up the customer access control
policy in the initial stage is difficult in a web service; Sec-
ond, it is not applicable for the inter company service

invocations. Third, the customer account persons
(attackers) can perform the flooding here, which cannot
be detected.
Apart from the above request history accounting models,
some other models are also available to maintain confidentiality
and integrity of the session cookies, whichmay also be helpful to

detect the spam request. The main motive of all the models is to
secure the cookie (session) information, not to have the proper
request history accounting and preventing the replay attack.

All research works discussed in this section have the perspective
of accounting the history and avoiding the replay and modifica-
tion attacks. Before going into that, one thingwe need to empha-

size that all the models are using the cookie to maintain the
session histories but Sit and Fu (2001) identified the two impor-
tant issues of using the cookie. The first one is that most of the
websites rely on cookie expiration to automatically terminate

a login session. But cookies can be modified by users to extend
expiration times. The second issue is that most of the websites
are using plaintext cookies without SSL protection. This may

cause the eavesdropping of the cookie which will lead to leakage
of the user movements. Hence, if we maintain the client request
history in the cookie, then it is possible for the attackers to mod-

ify, eavesdrop or replay the request history. However, most of
the following existing models had solved the above issues of
using cookie through encryption and verifying the integrity.

Park and Sandhu (2000) used IP-based cookie, a hashed

password-based cookie, and signature-based cookie to secure
the cookie. However, this mechanism is not efficient in pre-
venting the replay attack (Wu et al., 2010).

Fu et al. (2001) proposed the model for securing the cookie
using the keyed non-malleable Message Authentication Code
(MAC). Keyed non-malleable MAC is used to hash the cookie

information along with time stamp and the data. This method
provides the confidentiality with the keyed Hash based MACs
(HMAC) and also maintains the protection of replay attack

through time stamp mechanism. For a period of time, the
HMAC key will be updated or new one will be generated to
avoid the replay protection, but the problem is within the time
period, a user can easily perform the replay attack.

Xu et al. (2002) proposed a session protection model by
adopting the One-Time Pad (OTP) for credit card session pro-
tection. The credit card security is very important in the e-com-

merce service, which is also discussed by the Panigrahi et al.
(2009) along with the solution to prevent the credit card fraud,
but the cookie information needs to be protected (i.e., the coo-

kie information related to credit card flow from the client
should not be replayed). In the OTP-based model, for every
new cookie or for each update of an old one, a new random
key will be created and the cookie information is encrypted

and the older keys are removed. Whenever the server creates
the cookie or updates the cookie, it also needs to create a
new random key to encrypt the information and also the ran-

dom key will be stored by replacing the older one in the data-
base with additional details like session time and the index
string to identify the database. Whenever the server receives

the cookie, it will decrypt the cookie using the key stored in
database and allow the client request for process if the cookie
is valid. At the end, again, the updated cookie will be en-

crypted with a new key and embedded within the response.
In this model, the client cannot change the cookie or per-

form replay attack because it is encrypted with one time key.
Nevertheless, this solution has a major drawback, that is, gen-

eration of random numbers (OTP: where key length should be

10 S. Venkatesan et al.
greater than or equal to the message length) for every request.
It is costly to generate OTP for every request.

Yue and Wang (2009) discussed the overload (DoS)

protection in e-commerce websites. Here, the concept of two
hash-tables is introduced, one ofwhich is going to store the IP ad-
dress of the premium customers and the second is to store the net-

work ID prefixes of all the customers. Under the overload model
condition, any customer coming with the IP address, which is
available in the IP hash table, is allowed to access the service with

full probability, otherwise they will get the low probabilities to
access the services. This low probability IP will be checked with
the randomized function whether to allow the request or not.
Even though it seems good, it is having some issues like

� It is applicable only for e-commerce sites which have regis-
tered customers.

� No new users are allowed to access the sites during
overload.
� It needs more space to maintain the data of all customers,

IP and network ID always (we cannot expect or restrict
the client to access our services from the dedicated IP only).

Pujolle et al. (2009) developed a security architecture by
adopting the proxy in the protection scenario. The architecture
is performing the encryption and hashing operations to secure
the cookie in the proxy server, instead of doing that at the web

server end, to avoid the unwanted bottlenecks of the server.
The issue with this approach is the same as in the Xu model
(2002), but at the proxy end, that is, random number genera-

tion for the one time pad (OTP). To mitigate the cost, if they
are using the same key for the whole session, then it will be vul-
nerable to the replay attack.

Wu et al. (2010) had proposed the model for securing cook-
ies based on MAC address encrypted key ring. In this model,
the client needs to send the initial request to the server along

with its public key. On the server side, the cookie will be gen-
erated for the client and it will be put into the digital envelope
along with the server public key, timestamp and the server’s
signature of the cookie. In the next step, the server encrypts

the digital envelope using the public key of client and forwards
it to the client with the response.

Whenever the client gets the digital envelope, the client will

decrypt the envelope using its private key. At first, the client
will verify whether the signature is correct or not using the ser-
ver public key. Second, the client will check whether the time-

stamp is legal or not. At last, the client will send the envelope
consisting of the server key, cookie, timestamp, and signature
with the next request to the server. After receiving the enve-
lope, the server will verify the signature and timestamp after

decrypting the envelope using its private key. If the signature
and timestamp match then the cookie will be accepted, other-
wise it will be rejected. This model uses the database to store

the client information (like user’s preferences & other informa-
tion, whenever the user surfs the website).

The drawback is that the cookie is not stored in the data-

base to verify the integrity of the cookie. This model shows
the cookie and the database are updated for every request,
but there is no discussion that the cookie is stored in the data-

base. Hence, the model is analyzed in two ways:
First, in case the cookie is stored in the database: The coo-

kie from the clients is not verified against the cookie available
in the database by the server to check for a replay attack.
Second, in case the cookie is not stored in the database:
Nothing is with the server to identify the replay of the cookie
by the client.

This model is applicable for the prevention of man-in-the-
middle attack not for the prevention of the replay attack. Also,
it requires more cryptographic operations, which will consume

more memory and CPU cycles.
Casado et al. (2006) introduced the concept of flow-cookie

which will be handled by the third party cookie box to prevent

the DoS attack. The request from the client to the server and
the response from the server to the client will pass through the
third party cookie box. The function of the cookie box is to iden-
tify themalicious request and block it. For this purpose, it is using

the cookie, which is called as flow cookie here. After establishing
the TCP connection using the flow cookie (TCP timestamp),
whenever the server sends response to the client request the new

flow cookie will be generated by the cookie box and it will be ver-
ified when it is echoed by the client. The flow cookie will be gen-
erated using the secret (Sr) known only to the cookie box and

counter (Cr) value which will be incremented for every n seconds,
source and destination port (srcport and dstport) and IP address
(srcip and dstip). All these items will be hashed using a UMAC-

32 or HMAC algorithm and hold the cookie as given below.

cookie ¼MACðSrkCrksrcipksrcportkdstipkdstportÞ

The maximum lifetime of the cookie is two times the incre-
ment period of Cr. The flow cookie along with the next request
or acknowledgement coming after the given timeout period

will be rejected and considered as malicious. Hence, the replay
of the cookie, creation of a fake cookie, and modifying the
cookie is not possible. However, the replay of flow cookie is

possible within 2*n seconds.
The next major drawback of this model is setting up the ex-

piry period. In theweb service, we cannot expect the next request

from the client in n seconds (in case the value of the n is small)
because the pagemay need a lot of time to fill the form or the cli-
ent may be interrupted. To solve this issue, the solution given in

themodel is that the web server can issue anHTTPkeep-alive by
updating the client flow-cookies for every15 s.

Even though the cookie size is small and it will not consume
significant bandwidth according to the claim of the authors, it

will disturb the client machine devices like firewall, Intrusion
Detection System (IDS) for frequent verification of the frequent
flow cookie. Also, if all the web servers use the same concept,

then the significant amount of the bandwidth will be consumed
for the cookie renewal. It will also consume the execution time of
the third party cookie box orweb server for creating a cookie for

every 15 s tomassive number of clients. Also this kind of renewal
of a cookie for every 15 s may be considered as the TrojanHorse
by the IDS or some other detection systems because of the fre-
quent packet transmission.

Similarly, Oppermann (2006) has proposed the cookie based
model, which was also discussed by Eddy (2006) along with the
otherTCPSYNfloodpreventionmodels. In thismodel, the coo-

kie is generated with the three following parameters.

(a) Truncated hash value of secret bit, SYN sequence num-

ber, connection Information structure like IP and Port
address and index to current secret bit pool.

(b) Secret index.

(c) Encoded Maximum segment size.

Analysis of accounting models for the detection of duplicate requests in web services 11
To validate the cookie, the new hash value will be generated
using the connection information, SYN sequence number and se-
cret index available in the cookie along with the secret bit in the

pool indexed by the index bit of the cookie. If the newly generated
truncated hash value and truncated hash value in the cookie
match, then the packet is accepted andwill be allowed for further

activities; otherwise it will be dropped. Hence, the fake cookie
generation and modification is not possible. However, replay is
possible if the samemodel applied in the web service environment

because the secret bit is always the same for the same index. To
overcome this issue, it is possible to have the secret bits only for
a period of time then afterwards it will move onto the next loca-
tion, or it will replacedwith another secret value so that the replay

cookie after the time elapsedwill not get the equivalent hash value
available in the cookie, and in this case the attack will be identi-
fied. Similar to the above third party cookie box approach (Casa-

do et al., 2006), the expiry time based replay detection will hurt
the client, because to detect the replay attack we need to set the
expiry time (in case the expiry time is small, then the genuine cli-

ent is also unable to send the next request in the short time due to
interruption). If we set long time expiry period like five minutes,
then it will give a way to the replay attack. Hence, detecting the
replay of cookie using expiry period cannot give better results.

Eid andAida (2010) proposed themodel to protect the server
from the flooding attack through the access nodes.When the cli-
ent send the request to the server, after establishing theTCP con-

nection, then the request will be diverted to the access nodes.
Further all the requests should go via the access nodeswhichwill
do the rate limiting and access control functionalities.

The main disadvantage of this model is having a lot of ac-
cess nodes and all the transmissions are redirected to the access
nodes, which will consume more bandwidth. Also, there is no

solution to mitigate the DoS attack. It is simply like having a
proxy which will get affected by the attackers, not the real web
servers. However, the request of the legitimate client will also
pass through the access nodes. If the access nodes are in a bot-

tleneck situation, then the service to the legitimate will not be
delivered. Also, they have suggested to have the massive num-
ber of access nodes to solve this bottleneck problem but the

trust is another problem coming out of this.
Hang and Hu (2009) proposed a flooding prevention model;

their main aim is to mitigate the collision attack in the MAC. A

collision attack means identifying the new message which will
produce hash output exactly similar to the originalmessage hash
output. In order to mitigate this attack, the hash output bit
needs to be increased. Hence, in this model, instead of having

the less number of bits (24 bits) for hash algorithm output, they
increased the number of bits to 32 bits. According to the crypt-
analysis, the 2n/2 (n-number of hash output bits) brute force is re-

quired to get the collision. In case the output size is 24 bits, then
the combination required is 212 but in case of the 31 bits, it will be
215. In this way, we can mitigate the collision through which the

duplicate request will be detected without any false negative.
Also this model is setting up the expiry time for the response,

like the previous models, to avoid the fake or modified or replay

of cookies. It uses a secret key for generating the hash value for
every time period. If the response time is expired, then the secret
key will be changed. This model is very well applicable for the
TCP SYN flood attack, but it is not applicable for the web ser-

vice because of the problem that we discussed for the previous
approach (Casado et al., 2006; Oppermann, 2006), that is, the
client is unable to send the response in the given timeout period.
Hence, it will give the false positive. Not only that, there may be
the possibility for the replay attack within the timeout period

when it comes to the web service.
Alhabeeb et al. (2010a,b) proposed a model with client

authentication (CA) and authenticated client communication

(ACC) components to prevent flooding and malicious packet
attack. According to the model, the client should first register
and get approval from the CA component to contact the ACC

component for service. The packets from the client should
come with encrypted tag consisting of (i) ID of the first equip-
ment which the client connected to; (ii) ID of the network ser-
vice provider which owned this equipment; (iii) the IP address

of the client; and (iv) Time of issuing the tag. All this informa-
tion in the tag is to prevent the flooding attack in an effective
manner. However, it is not suitable to avoid the replay attack.

Alhabeeb et al. (2011a,b) added a random number concept
along with the four above elements in the tag. For every re-
quest, the client will be issued the random number which will

come from the random number table. The random number
from the table will be chosen according to the time the tag gen-
erated. The particular random number used for all tags created

during the given interval. The interval provided is very small,
which will allow at most two tags to be generated. Hence, this
model can prevent the replay attack with the help of the ran-
dom number. However, the problem with this model is holding

and generating the huge number of random numbers with
good length of bits to complicate the brute force attack and
with expiry time (time interval). R. Baskaran et al. (2012)

developed the History based Accounting and Reacting DoS
Attack (HARA) model which is like the proposed model of
this paper. Even though the HARA model is having few spe-

cial features similar to the proposed model, it cannot efficiently
handle the cookie for accounting and to detect the attack be-
cause of the improper way of handling the client request coo-

kie. Also it does not address many issues like recovering the
model from network failure, etc.
3. Proposed cookie based accounting model

To help in detecting and preventing the spam requests, we pro-
posed the cookie based accounting model which will consume
less computational time and memory space. Fig. 1 shows the

detailed architecture of the proposed model for accounting
the client history and detecting the attack. According to this
model, every client should send the request and get the re-

sponse via the entry and exit points, respectively. When the cli-
ent request enters the server, the client request history integrity
will be verified through the hash value verifier and the request

history will be analyzed through the history analyzer (both ac-
tions are applicable only starting from the second request from
the client but not for the very first request).

If the request is legitimate, the request of the client will be

processed by the client request processor (may be BPEL en-
gine: required information will be retrieved from the server
database, if needed) and the respective response is prepared

and sent to the request history generator. The request history
generator, in turn, will generate the request history in case of
the first request, otherwise it will update the request history

based on the request. In addition to that, it will generate the
hash value and store it in the hash value database for preced-

CReq – Client Request OC – Old Cookie UC – Updated Cookie CH – Cookie Hash
PCRD – Processed Client Request Detail CR – Client Response CFR – Client Full Response

V-Violation

V

Integrity
failure

CH

Hash Value DB with less
storage capacity

CReq with
old cookie

CReq with
old cookie

OCUC

PCRD
UC

CRCFR
CReq

C
lie

nt
 I

P

CH

CH

Client 1

Client 2

Client 3

Client n

H HHH

Cookie Integrity
Verifier

Client Request
Processor

Service
DB

E
nt

ry
 &

 E
xi

t p
oi

nt

M
es

sa
ge

 to
 f

ir
ew

al
l t

o
bl

oc
k

th
e

cl
ie

nt

Information
embedding 1

History
Analyzer

History
Generator

Information
embedding 2

Figure 1 Cookie based architecture for accounting and processing the client history.

12 S. Venkatesan et al.
ing history verification. At last, it will forward the response to
the client along with the cookie (Information Embedding 2).

The process of the proposed model for the second and its con-
secutive requests are defined in Algorithm 1.

This proposed model needs two prior processes, that is, be-

fore processing the actual client requests, and one post process,
that is, after processing the client requests. The prior processes
are hash value verification and the request history analyzing.

The post process is the history generator (and updater). The
modules of the proposed model are working as follows.

� Hash function verification:Whenever the client request comes
to the server along with the cookie (request history), this
module will verify the integrity of the request history by gen-

erating the hash value for the request history in the cookie
and compare it with the available hash value in the database
(H) equivalent to the client IP address or identity (ID). If the
hash values match, then the request will be allowed for fur-

ther activities; otherwise the request will be dropped.
� Request Analyzer: Analyzing the request is based on the envi-
ronment. In case of a payment site, the client sends the same

request for a number of times, then that request should be
dropped and the respective client will be informed to wait
for some time before coming again. The decision depends on

the administrator of the respective web service environment.

In case of a result publication server, some clientmaywant to
see the results for different registration numbers. They will start

to send the request with different numbers. In case of an attack-
er, they will send the n number of requests for the same registra-
tion number. If n is greater than m (m is the threshold limit

decided by the administrator of the server) then it will be blocked
through the firewall but this scenario is very basic and old. Now,
the botnet attackers are applying their intelligence to perform
the advanced kind of attacks, it is very complex to detect.

Hence, the client request needs to be analyzed in different
formats to detect the spam request coming like the repetition
of the request, similar request inter-arrival time for all requests

and pseudo random request inter-arrival time. The following
four conditions can also be used to detect and prevent the
spam request efficiently. The parameters for the conditions

are: a is the request inter-arrival time; r is the request webpage;
k is the constant value for a session; n is the maximum thresh-
old limit of the single page access.

Algorithm 1 Request History Handling

Step 1: Arrival of second and its consecutive request with cookie.

Step 2: Retrieve the hash value (HVD) of the respective IP from the

database using the indexing information (ID) available in the

cookie.

Step 3: Generate the hash value (HVG) for the cookie received from

client.

Step 4: Compare both HVG and HVD.

Step 5: If both hash matches then client request will be diverted to

history analyzer; otherwise client request will be rejected.

Step 6: If history analyzer detects any spam then it will reject the

request and block the client; otherwise transfer the request to BPEL

engine for process (this step is not ellaborated in the paper because

the focus is on efficient accounting of the request history).

Step 7: After client request processor (BPEL) completes the process,

update the cookie with relevant information (Information

embedding 1).

Step 8: Generate the hash value for the updated cookie and store it

in the database by replacing the existing (previous request) hash

value.

Step 9: Embed the updated cookie with the client response

(Information embedding 2) and send it to client.

quests in web services 13
(i) a5 = a4 = a3 = a2 = a1; all the request inter-arrival
Analysis of accounting models for the detection of duplicate re
time of the client is equal (given only for 5 request).
(ii) a5–a4 = a4–a3 = a3–a2 = a2–a1; the request inter-

arrival time is increasing in same difference.

(iii) a5–a4 + k = a4–a3 + k = a3–a2 + k= a2–a1 + k; the
request inter-arrival time is increasing in same
difference.

(iv) ri > n, (n value is based on the service); the specific page
access requests exceeds the threshold limit; this is very
important because the attackermayconcentrate on theweb-

page which will consume more computational complexity.

Apart from the above simple conditions, the analyzing condi-
tions given byDas et al. (2011), Yuan andMills (2005), andRan-

jan et al. (2006) will also be used to detect spam requests
efficiently. The decisions with the help of the request inter-arrival
time will give the false negative and false positive because the

inter-arrival time may vary based on the network performance
between the client and the server. To mitigate this, it is recom-
mended to consider every request initiation time for taking the

decision. However, this paper does not elaborate on the analysis
part because main focus of the paper is on accounting.

� History generator and updater: After the BPEL engine pro-
cesses the client request, this module will generate the coo-
kie, which contains the request date, time, request page,
unique identity (ID) and other information based on the

requirements. Next, it will generate the hash value for the
request history in the cookie and store it in the database
along with the ID and IP of the client. For the second

and its consecutive requests, the cookie will be updated
based on the client request and the hash value will be gen-
erated for this updated cookie, and then the new hash value

will be stored in the database in place of the old hash value.
� Information fusion 1: is to update the old cookie based on
the new client request. The client request processor will pro-

cess the request and give the information that it processed
to the client. Based on the information, the old cookie
(OC) will be updated. For example, the webpage processed
for the client (PCRD) will be the input along with the old

cookie, then cookie will get updated by incrementing the
counter of that particular webpage and the total counter
of the client access on the website.

� Information fusion 2: is to combine the server response and
the cookie before delivering the response to the client.

4. Properties of the proposed model

Our proposed model has the following properties compared to
the existing accounting models:

� Less overhead time for searching: The server stores the hash
value of every client in the database.Hence it needsmore time
to search, store or update the hash value in the huge capacity

database. To mitigate the time complexity in the proposed
model, multiple databases are usedwith less storage, and also
the location (database number or name which is database

indexing) of the hash value is included with the request his-
tory. Whenever the client request comes to the server, the
hash verifier will look for the database name or number in

the cookie and it will get the hash value from that respective
database instead of searching in all the databases. Also, the

proposed model needs less fields (IP, Hash value and unique
ID) in the database when compared to the existing models.
� Replacement of the log details: In order to avoid the usage of

huge memory capacity database to store all the hash values,
the low capacity database will be used and updated automat-
ically that is the older log details are replaced with the new cli-
ent informationwhendatabase is full. It will increase the speed

of the SQL query. The older information is transferred to the
auditing log databases, which is the offline process used for
future auditing purposes (Srivatsa et al., 2007; Jansen, 2008).

� Replay attack prevention: No client can send the cookie of
the second or third preceding response with the current
request. It can be easily identified with the help of the

updated hash value available with the server for every pre-
ceding request. Only the request with the very first preced-
ing response cookie is allowed. Hence, replay attack is not
possible in the proposed model. Also, the client is not able

to modify the request history (i.e., they can modify the
request history but that will be easily identified with the
help of the hash value available in the server log).

� Integrating this approach in Web Service: We all know that
nowadays the web service environment uses three tiers in
the server side (Presentation tier, Component tier and Back

office tier). This model can be implemented in the compo-
nent tier (which is responsible for processing the client
request), that is, before doing the client request process,

we can have the Hash verifier and History analyzer, and
after the completion of client request process, we can have
the History generator as given in the proposed model.
� Cookie format: The format of the cookie is {Unique Iden-

tity, Database Number, Page 1 Access: Number of Times,
Page2 Access: Number of Times,}. The adversary (third
party) can capture the plain cookie and may see the infor-

mation of the client page access. This raises the privacy
issue for the client. To overcome this issue, the server can
send the cookie information over the SSL protocol channel,

which will give secure transmission (to avoid eavesdropping
by attackers); otherwise the request history maintained in
the cookie should be in different format which is under-
standable only by the server not by others. Hence, the

eavesdropper cannot interpret the request history.

5. Analysis of accounting models

5.1. Reliability analysis

In the related works, we have discussed the accounting models
used to detect and prevent the spam request. This subsection ana-
lyzed all themodels reliability efficiency with respect to the replay

attack. The modification attack is not possible in all the models
because the request histories are encrypted or hashed. To analyze
the models, a few acronyms are used in this section:C-Client,

S-Server, R-Request, Re-Response and ‘‘||’’ – concatenation.

5.1.1. Server Side Logging Model (Jensen and Schwenk, 2009)

� C —R1—— > S {Client History (client IP, Time and other
information) will be stored in Database}

� C <——Re1—S
� C —R2—— > S {Update Client History in the Database}

14
� C <——Re2—S

� C —R3—— > S {Update Client History in the Database}
� C<——Re3—S
In this scenario, the client history is always with the server.
Hence, there is no possibility of a modification attack, a fake
insertion or a replay attack.

5.1.2. Fu et al. (2001) Keyed Hash (HMAC) Model

Normal scenario

C —R1– –>S

{1: cookie1= Client History (client IP, Time and other

information), 2: Key K1 creation, 3: Generate hash value

H1=MACK1 (cookie1) and 4: store the key K1 and client IP or ID

in Database}|

C<——Re1|| cookie1||H1—S

C —R2|| cookie1||H1– –>S

{0: the hash value will be generated for the received cookie1 using

key K1 equivalent to the client in the database and verified with

the hash value H1 received from the client. If they match then, 1:

cookie2=Update cookie1 based on client new information, and 2:

Generate hash value H2=MACK1(cookie2). If they do not

match, the request will be dropped}

C<——Re2|| cookie2||H2—S

C —R3||cookie2||H2– –>S

{0: the hash value will be generated for the received cookie2 using

key K1 equivalent to the client in the database and verified with

the hash value H2 received from the client. If they match then, 1:

cookie3=Update cookie2 based on client new information, and 2:

Generate hash value H3=MACK1(cookie3). If they do not

match, the request will be dropped}

C<——Re3| cookie3|H3—S
Attack scenario
C —R1– –>S

{1: cookie1= Client History (client IP, Time and other

information), 2: Key K1 creation, 3: Generate hash value

H1=MACK1 (Cookie1) and 4: store the key K1 and the client IP

or ID in Database}

C<——Re1|| cookie1||H1—S

C —R2|| cookie1||H1– –>S

{0: the hash value will be generated for the received cookie1 using

key K1 equivalent to the client in the database and verified with

the hash value H1 received from the client. If they match then, 1:

cookie2=Update cookie1 based on client new information, and 2:

Generate hash value H2=MACK1(cookie2). If they do not

match, the request will be dropped}

C<——Re2|| cookie2||H2—S

C —R3||cookie2||H2– –>S

{0: the hash value will be generated for the received cookie2 using

key K1 equivalent to the client in the database and verified with

the hash value H2 received from the client. If they match then, 1:

cookie3=Update cookie2 based on client new information, and 2:

Generate hash value H3=MACK1(cookie3).If they do not match,

the request will be dropped}

C<——Re3|| cookie3||H3—S

C—R4||cookie1|| H3– –> S: Replay Attack

{0: the hash value will be generated for the received cookie1 using

key k1 equivalent to the client in the database and verified with

the hash value H1 received from the client. If they match (here

they will match) then, 1: cookie2=Update cookie1 based on client

new information, 2: Generate new Key K2, 3: Generate hash

value H2=MACK2(Cookie2)and 4: replace the old key K1 with

new key K2 in Database.}

C<——Re4|| cookie2||H2—S: Replay attack is successful
In the above attack scenario cookie is replayed and it is not iden-

tified by the server because the key remain same for a period of

time. The key will get changed after a period of time. If the key
get changed then the replay attack will not be successful. Hence
the client can perform the attack within the timeout period.

5.1.3. Xu et al. (2002) OTP Model

Normal scenario

C —R1– –>S

{1: cookie1= Client History (client IP, Time and other

information), 2: OTP Key K1 creation, 3: Encrypt the cookie with

key K1, EC1=EK1 (cookie1), 4: store the key K1, key expiration

time and the client IP or ID in database and 5: create the

envelope consisting of database identity (Did) and the encrypted

cookie E1=(EC1||Did)}

C<——Re1||E1—S

C —R2||E1– –> S

{0: de-encapsulate the E1 and get the respective client key from

the database using database identifier DID and decrypt the cookie

EC1 with key K1 available in the database and verify the history.

If satisfies then, 1: cookie2 =Update cookie1 with new client

information, 2: new OTP Key K2 creation, 3: Encrypt the cookie

with K2, EC2 = EK2 (cookie2), 4: update the database with the

new key K2 and expiration and 5: create the envelope of database

identity and the encrypted cookie E2=(EC2||Did)}

C<——Re2||E2—S

C —R3||E2– –> S

{0: de-encapsulate the E2 and get the respective client key from

the database using database identifier DID and decrypt the cookie

EC2 with key K2 available in the database and verify the history.

If satisfies then, 1: cookie3 =Update cookie2 with new client

information, 2: new OTP Key K3 creation, 3: Encrypt the cookie

with K3, EC3 = EK3 (cookie3), 4: update the database with the

new key K3 and expiration and 5: create the envelope of database

identity and the encrypted cookie E3=(EC3||Did)}

C<——Re3||E3—S

S. Venkatesan et al.
Attack scenario

C —R1——> S

{1: cookie1 = Client History (client IP, Time and other

information), 2: OTP Key K1 creation, 3: Encrypt the cookie with

key K1, EC1 = EK1 (cookie1), 4: store the key K1, key expiration

time and the client IP or ID in database and 5: create the

envelope consisting of database identity and the encrypted cookie

E1=(EC1||Did)}

C<——Re1||E1—S

{0: de-encapsulate the E1 and get the respective client key from

the database using database identifier DID and decrypt the cookie

EC1 with key K1 available in the database and verify the history.

If satisfies then, 1: cookie2 =Update cookie1 with new client

information, 2: new OTP Key K2 creation, 3: Encrypt the cookie

with K2, EC2 = EK2 (cookie2), 4: update the database with the

new key K2 and expiration and 5: create the envelope of database

identity and the encrypted cookie E2=(EC2|Did)}

C<——Re2 ||E2—S

C —R3 ||E1——> S : Replay Attack

{0: de-encapsulate the E1 and get the respective client key from

the database using database identifier DID and decrypt the cookie

EC1 with key K2 available in the database and verify the history.

In this situation, the encryption key is different and the

decryption key is different. Hence the decrypted cookie will give

meaningless data to the server, which will not be understandable.

Hence, the client request will be dropped.}

Analysis of accounting models for the detection of duplicate requests in web services 15
Since the cookie is encrypted with one time key, the replay of

the cookie is not possible.

5.1.4. Alhabeeb et al. (2011a,b) Random Number

Normal scenario

C —R1——> S

{1: cookie1 =ClientHistory (client IP, Time and other information),

2: Get random number R1 from the random number table, 3:

Encrypt the cookie, random number and token creation timeT1with

K1, EC1 = EK1(cookie1||R1||T1) which will be called as token, 4:

Store the token creation time T1 with the random number R1}

C<——Re1||EC1—S

C —R2|| EC1——> S

{0: decrypt theEC1with the keyK1, get the randomnumberR1 and

compare that with the random number taken from the random

number table based on the token creation time T1. If both match

there is no change in the cookie, then 1: cookie2 =Update cookie1
with new client information, 2: Get the new random number R2

from the random number table, 3: Encrypt the cookie, random

number and token creation time T2 with K1,

EC2 = EK1(cookie2||R2||T2), 4: Store the token creation time T2

with the random number R2}

C<——Re2||EC2—S

C —R3|| EC2——> S

{0: decrypt the EC2 with the key K1, get the random number R2

and compare that with the random number taken from the

random number table based on the token creation time T2. If

both match then 1: cookie3 =Update cookie2 with new client

information, 2:Get the new random number R3 from the random

number table, 3: Encrypt the cookie, random number and token

creation time T3 with K1, EC3 = EK1(cookie3||R3||T3), 4: Store

the token creation time T3 with the random number R3}

C<——Re||EC3—S
Attack scenario
C —R1——> S

{1: cookie1 =ClientHistory (client IP, Time and other information),

2:Get randomnumberR1 from the randomnumber table, 3: Encrypt

the cookie, random number and token creation time T1 with K1,

EC1 = EK1(cookie1||R1||T1) which will be called as token, 4: Store

the token creation time T1 with the random number R1}

C<——Re1||EC1—S

C —R2 ||EC1——> S

{0: decrypt the EC1 with the key K1, get the random number R1

and compare that with the random number taken from the

random number table based on the token creation time T1. If

both match then 1: cookie2 =Update cookie1 with new client

information, 2: Get the new random number R2 from the random

number table, 3: Encrypt the cookie, random number and token

creation time T2 with K1, EC2 = EK1(cookie2||R2||T2), 4: Store

the token creation time T2 with the random number R2}

C<——Re2||EC2—S

C —R3||EC1——> S :Replay Attack

{0: decrypt the EC1 with the key K1, get the random number R1

and compare that with the random number taken from the

random number table based on the token creation time. In this

situation, if the random number R1 is allotted to any other token

creation time then the replay attack will be identified. If it is not

assigned to another token creation time and still with the old

token creation time then the replay attack will be successful}
The model is fool proof against the replay in case the random
number allotted to other token or random number removed
from the random number table after a period of time; other-

wise the model is vulnerable.
5.1.5. Jensen and Schwenk (2009) Extended history approach

with digital signature

Normal scenario

C —R1——> S

{1: cookie1=Client History (client IP, Time and other information),

2: Generate unique token T consists of message ID and timestamp

for the cookie 3: Create the digital signature for the token and cookie

using the key generated for the client DS1= EK1 (H (cookie1||T))

and encrypt the token and cookie EC1= EK1 (cookie1||T), 4: Store

the key in the database along with the client IP or ID}

C<——Re1||EC1||DC1—S

C —R2||EC1||DC1——> S

{0: get the decryption key K1 from the database using the client IP

and decrypt theEC1, get the token and cookie. Also decrypt and get

the hash value fromDC1. 2. Verify the digital signature by creating

the hash value for the decrypted token and cookie and comparewith

the hash value in theDC1. If both match then 1: cookie2 =Update

cookie1 with new client information and update token, 3: Encrypt

the cookie and token T with K1, DS2 = EK1 (H (cookie2||T)) and

encrypt the token and cookie EC2 = EK1 (cookie2||T)}

C<——Re2||EC2||DC2—S

C —R3||EC2||DC2——> S

{0: get the decryption key K1 from the database using the client IP

and decrypt theEC2, get the token and cookie. Also decrypt and get

the hash value fromDC2. 2. Verify the digital signature by creating

the hash value for the decrypted token and cookie and comparewith

the hash value in theDC2. If both match then 1: cookie3 =Update

cookie2 with new client information and update token, 3: Encrypt

the cookie and token T with K1, DS3 = EK1 (H (cookie3||T)) and

encrypt the token and cookie EC3 = EK1 (cookie3||T)}

C<—— Re3||EC3||DC3—S
Attack Scenario
C —R1——> S

{1: cookie1 =ClientHistory (client IP, Time and other information),

2:Generate unique tokenT consists ofmessage IDand timestamp for

the cookie 3: Create the digital signature for the token and cookie

using thekey generated for the clientDS1 = EK1 (H (cookie1||T)) and

encrypt the token and cookie EC1 = EK1 (cookie1||T), 4: Store the

key in the database along with the client IP or ID}

C<——Re1||EC1||DC1—S

C —R2||EC1||DC1——> S

{0: get the decryption key K1 from the database using the client IP

and decrypt theEC1, get the token and cookie. Also decrypt and get

the hash value fromDC1. 2. Verify the digital signature by creating

the hash value for the decrypted token and cookie and comparewith

the hash value in theDC1. If both match then 1: cookie2 =Update

cookie1 with new client information and update token, 3: Encrypt

the cookie and token T with K1, DS2 = EK1 (H (cookie2||T)) and

encrypt the token and cookie EC2 = EK1 (cookie2||T)}

C<——Re2||EC2||DC2—S

C —R3||EC1||DC1——> S: Replay attack (Assumption: the time

period is not exceeded)

{0: get the decryption key K1 from the database using the client IP

and decrypt theEC1, get the token and cookie. Also decrypt and get

the hash value fromDC1. 2. Verify the digital signature by creating

the hash value for the decrypted token and cookie and comparewith

the hash value in theDC1. If both match then 1: cookie2 =Update

cookie1 with new client information and update token, 3: Encrypt

the cookie and token T with K1, DS2 = EK1 (H (cookie2||T)) and

encrypt the token and cookie EC2 = EK1 (cookie2||T)}

EC2=EK1 (Cookie2||T)}

C<——Re3||EC2||DS2—S: Replay attack is successful
This model is unable to prevent the replay attack if the attack
comes within the time period; otherwise a replay attack is not
possible.

16 S. Venkatesan et al.
5.1.6. Proposed Model

Normal scenario

C —R1-—> S

{1: cookie1 =Client History (client IP, Time and other

information), 2: Generate the hash value H1 = Hash (cookie1)

and store in the database along with the client IP or ID}

C<——Re1||cookie1—S

C —R2||cookie1——> S

{0: get the cookie and generate the hash value RH1 =Hash

(cookie1) and fetch the hash value H1 from the database. If both

hash values H1 and RH1 match then there is no change in the

cookie then 1: cookie2 =Update cookie1 with new client

information, 2: Generate the hash value H2 =Hash(cookie2) and

replace the old hash value H1 with new hash value H2 in the

database}

C<——Re2||cookie2—S

C —R3||cookie2——> S

{0: get the cookie and generate the hash value RH2 =Hash

(cookie2) and fetch the hash value H2 from the database. If both

hash values H2 and RH2 match then there is no change in the

cookie then 1: cookie3 =Update cookie2 with new client

information, 2: Generate the hash value H3 =Hash(cookie3) and

replace the old hash value H2 with new hash value H3 in the

database}

C<——Re3||cookie3—S
C —R1-—> S

{1: cookie1 =Client History (client IP, Time and other

information), 2: Generate the hash value H1 = Hash (cookie1) and

store in the database along with the client IP or ID}

C<——Re1||cookie1—S

C —R2||cookie1——> S

{0: get the cookie and generate the hash value RH1 =Hash

(cookie1) and fetch the hash value H1 from the database. If both

hash values H1 and RH1 match then there is no change in the

cookie then 1: cookie2 =Update cookie1 with new client

information, 2: Generate the hash value H2 =Hash(cookie2) and

replace the old hash value H1 with new hash value H2 in the

database}

C<——Re2||cookie2—S

C —R3||cookie1——> S : Replay Attack

{0: get the cookie and generate the hash value RH1 =Hash

(cookie1) and fetch the hash value H2 from the database. Compare

both the hash values. Here, they will not match so drop the client.

The further action against the client is with the server

administrator}
The replay of the cookie is not possible in the proposed model.
Hence, the model is foolproof against the replay attack. The
interpretation of the above analysis is that the proposed mod-

el, OTP model, Random number based model, and server side
logging model are reliable with respect to the replay attack.
The other models are vulnerable to the replay attack. More-

over, the models based on OTP and Random number are
same. Hence, we consider only the OTP based model for the
further analysis in the paper.

5.2. Involved parameter analysis

This subsection compares all the accounting models, including

the proposed model, with respect to the parameters. The mod-
els like Hash table (Yue and Wang, 2009) and proxy (Pujolle
et al., 2009) are not necessary to compare with. The reason
is that the proxy model is doing the same thing as the OTP
or HMAC model (Yue and Wang, 2009). The second model

is the two hash table model which is not applicable for all
the environments as discussed in Section 2.

Table 1 shows the comparison of all the accounting models

with different usage parameters (Key usage, need of database
storage, hash value generation, use of one-time key, use of coo-
kie, need of encryption, identity of record storage in database,

overhead and foolproof). Out of the five models, two models
are not foolproof (the reason is described in Section 5.1). Also,
these two models need additional processing time for hashing,
encryption, key generation and space for storage of keys com-

pared to the other models given in Table 1. Hence, it is not effi-
cient to use these two models. The remaining three models are
foolproof and, therefore, we considered these three models for

experimental result analysis.

5.3. Experimental result analysis

It is obvious that all spam request detection accounting models
require the additional computational time and memory than
the normal scenario. The additional computational time re-

quired for log information retrieval, storage, encryption,
decryption, hash value generation, and so on. Similarly, the
proposed model also needs additional computational time
for hash value generation, insertion, updating and retrieval

of the hash value into and from the database.
The computational time complexity and the memory (space)

complexity of the three models (server side logging, OTP based

model and proposed model) are analyzed with the simple web-
site created by us. It is developed with the PHP (Server side lan-
guage), HTML, JavaScript (Client side language), MySQL

(database) and Apache (Web server) with the server system con-
figuration of 3.2 GHz processor and 2 GB RAM.

The website consists of six pages: (1) Home cum Login

page, (2) Login Verification page, (3) Content Upload page,
(4) Content Insertion Page, (5) Content reading instruction
page and (6) Secure Content viewing page.

The information (request history) available in the cookie

for the proposed model include: all webpage access count
(overall page request count), individual page request count,
and the initial request time. The database record consists of

the hash value of the request history (cookie), IP address
and the unique ID. The database table format of the proposed
model is shown in Fig. 2.

The information available in the database for server side
logging are webpage request total count, individual page
request count, initial request time, IP address, and the unique
ID. The database table format of the existing server side log-

ging model is shown in Figs. 3 and 4 shows the database table
format of the OTP model. The experiment was conducted with
250 legitimate users to prove the efficiency of the proposed

model. Fig. 5 shows the extracted experimental database infor-
mation of all the three models.

The main intention of the experiment is to show how much

processing time and memory required by the three models to
prove their efficiency. Also, the normal scenario is used for
the comparison with other models, only with respect to time

complexity not for memory because it does not need any addi-
tional memory. Normal scenario means there is no mechanism

Table 1 Comparison between the accounting models.

Accounting models Key usage Database storage Hashing One-time key Cookie Encryption Location identity

Server side logging approach No Yes No No No No No

Extended request history model with

digital signature

Yes Yes Yes No Yes Yes No

Use of one-time Pad model Yes Yes No Yes Yes Yes Yes

Use of HMAC model Yes Yes Yes Yes Yes No No

Proposed model No Yes Yes No Yes No Yes

Accounting Models Overhead Foolproof

Server side logging approach Needs more storage and request processing time Yes

Extended request history

with digital signature

Needs more processing time for encryption and hashing.

Also needs storage space for Key

No

Use of one-time pad model More cost required to generate massive keys and needs storage space for Key Yes

Use of HMAC model More cost required to generate massive keys and needs storage space for Key No

Proposed cookie based hashing Needs more storage and request processing time Yes

ID IP Hash Value

Figure 2 Database format of proposed cookie based model.

ID IP Initial Request Time One-Time Key

Figure 4 Database format of OTP model.

Table 2 Processing Time Difference between the existing and proposed cookie based model (time in microseconds).

Number of

users

Average processing time for server

side logging (A)

Average processing time of the

proposed model (B)

Difference between

(A) and (B)

10 Users 0.040555 0.038748 1.81E-03

20 Users 0.051719 0.043091 8.63E-03

50 Users 0.059521 0.048759 1.08E-02

80 Users 0.061105 0.046572 1.45E-02

100 Users 0.06957 0.054494 1.51E-02

250 Users 0.173929 0.136235 3.77E-02

Analysis of accounting models for the detection of duplicate requests in web services 17
adopted to handle the request history to detect the duplicate

requests (i.e., website without any protection mechanism).
The first experimental analysis is with the memory require-

ments of the models. Fig. 6 shows the memory requirements of

the three models for the different set of users (from 10 to 250).
The illustration of Fig. 6 clearly states that the existing server
side logging model requires more memory when compared to
the proposed model. The existing OTP model consumes less

memory compared to the proposed model. However, the key
size taken for implementation of the OTP model is 40 bits. If
the key size goes high like 128 bits or 256 bits for strong

encryption of the cookie (which is very much required to in-
crease the iteration of the brute force attack) or the size of
the cookie goes high (OTP key should be equal to or greater

than the cookie size) then it requires more memory than the
ID IP

Total page
access
count

Initial
Request

Time

Page1 (P1) –
access count c

Figure 3 Database format of exis
memory consumed by the proposed model. Hence, the pro-

posed model will be efficient in terms of memory complexity
in case the key size is high in OTP model; otherwise the pro-
posed model needs more memory than the OTP model.

The second analysis is with the time complexity. In a normal
web service, whenever client sends request for a page, the pro-
cess execution engine will process it and send the response. To
detect the spam request, the existing and proposed model

needs some additional processing than the normal website
process. This will increase the processing time complexity of
the process execution engine. For example, the proposed mod-

el includes the hash value generation time, history analyzing
time (simple analysis: that is how many times the singe page
has been accessed. If it is greater than the threshold limit five
P2 –
ount

P3 –
count

P4 –
count ……

Pn –count

ting server side logging model.

OTP Model information in DB: "1";"127.0.0.1";"57";"3";"ssssssssss"

OTP Model fields in DB: "ID";"IP";"Min";"Sec";"One-Time Key"

Server side Logging Model information in DB: "1";"127.0.0.1";"1";"0";"0";"0";"0";"0";"1";"22";"44"

Server side Logging Model fields in DB: "ID";"IP";"P1count";" P2count ";" P3count ";" P4count ";" P5count
";" P6count ";"total page access count";"Min";"Sec"

Proposed Model information in DB: "1";"172.0.0.1";"1f9e4d0aaf625b4173e1b858ad80a9f1"

Proposed Model fields in DB: "ID";"IP";"Hash Value"

Figure 5 Exported data from the database for all models.

Figure 6 Experimental results with respect to memory.

Figure 8 Processing time difference between the server side

logging and proposed model.

18 S. Venkatesan et al.
then the client will be blocked), hash value mapping, storing,
updating, retrieval time from the database and cookie update
time, in addition to the normal request processing time. Simi-

larly, the existing server side logging model includes the history
information storing, updating, retrieval time from the database
and history analyzing time (same as the proposed model), in

addition to the request processing time. This is similar for
the OTP model. The experimental results of all the accounting
models and normal scenario for accessing the six pages of the
website by the set of 10–250 users are shown in Fig. 7. The

number of records in the database is equal to the number of
Figure 7 Average computa
users. The experimental output of every user includes the total
six webpage access time.

For the OTP model, our implementation concept is differ-
ent from the actual concept given by the developers. In the ac-
tual model, the cookie will be encrypted through one time key

and then sent to the client with the response but we have
implemented a similar approach, namely after storing the
cookie in the database, the cookie is encrypted and sent to
the client with the response.

In the next step of the actual implementation, whenever the
client send the encrypted cookie embedded in the request, then
the cookie will be decrypted and verified for violation. If there

is no violation, then the request will be processed, new key will
be generated, cookie will be updated, updated cookie will be
encrypted with the new key, the new key will be stored in
tional time comparison.

Table 3 Actual experimental results of 100 users

Average

users

Processing time of

OTP based model (xo)

Processing time of the

server – side logging (xs)

Processing time of

the proposed model (xp)

1st 10

users

0.317655 0.038802 0.035963

2nd 10

users

0.320129 0.147793 0.073363

3rd 10

users

0.284886 0.066969 0.149392

4th 10

users

0.298514 0.06302 0.14318

5th 10

users

0.286461 0.073168 0.056617

6th 10

users

0.286909 0.049881 0.041531

7th 10

users

0.318381 0.079164 0.046918

8th 10

users

0.303875 0.092625 0.037471

9th 10

users

0.278412 0.042267 0.038168

10th 10

users

0.296241 0.092382 0.169679

Analysis of accounting models for the detection of duplicate requests in web services 19
the database and the response along with the new encrypted

cookie will be sent to the client.
In our implementation, whenever the client sends the en-

crypted cookie to the server, it will be decrypted with the key

available in the database. Next, the history information will
be retrieved from the database and compared with the de-
crypted request history information (cookie) to verify the integ-
rity of request history. If they match, then the request will be

processed, new key will be generated, cookie will be updated,
updated cookie will be encrypted with the new key, the new
key and the updated cookie will be stored in the database

and the response along with the new encrypted cookie will be
sent to the client. The modified implementation of this model
causes more computational time consumption when compared

to the other models. However, this model has the greater draw-
back which are the one time key for every request and the OTP
key should be equal to or greater than the cookie size.

Even if we have implemented the OTP model as it was given
by the developer, the processing time consumption would be
more or equal to the proposed model, because the number
of fields in the database is one more than the proposed model.

The reason for implementing it in our way is to check its reli-
ability. That is, just by seeing the decrypted value; we cannot
determine the exact value. For example, 0 may change to 1.

It will not be determined that this value is modified or not, be-
cause we do not have the original value to check the integrity.
However, we may say one thing that the decrypted cookie

(modified cookie) will not get the cookie format so that we
can identify the integrity violation.

Fig. 7 shows that the proposed model always takes less time
compared to the existing models for all users. Also, it is obvi-

ous that the normal scenario (without any protection mecha-
nism) always takes less processing time compared to all the
models because there is no additional computation. Table 2

and Fig. 8 clearly show the increase of time differences between
the proposed model and existing server side logging model
when the number of users increases. The reason for the in-

crease in the processing time is the number of user entries in
the database. Hence, if the number of users increases then
our proposed model can save processing time compared to

the existing models.

5.4. Inconsistency analysis

The results taken from the real time experiments cannot give

the normalized results for every access. Few accesses may take
more time/less time compared to other accesses because of the
CPU load. The same thing happened in our above experimen-

tal results. In this situation, we took the previous request ac-
cess time and used in that place. However, it is not good to
give the comparison between the models by this approach.

Hence, we used the standard deviation to identify and remove
the access which is having the inconsistent processing time.

We have taken only the first hundred users access for the

analysis. All the hundred users access are segregated into ten
for all models as shown in Table 3. The reason for taking
the set of 10 users instead of the individual user is to give
the clear representation.

For the value given in Table 3 for server side logging model
(xs), we have applied the Standard Deviation (SD) function to
identify the upper limit and the lower limit of the access time to

avoid the inconsistent output.

meanof server side logging ðlÞ ¼
Pn

i¼1xi

n
¼
P10

i¼1xsi
10

¼ 0:074607microseconds ðmsÞ

varianceof server side logging ðr2Þ ¼
Pn

i¼1ðxi � lÞ2

n

¼
P10

i¼1ðxsi � 0:074607Þ2

10
¼ 0:00091547ms

Figure 12 Server side logging model vs cookies based model.

Figure 9 Inconsistency representation of server side logging

model.

Figure 10 Inconsistency representation of proposed model.

Figure 11 Inconsistency representation of OTP model.

20 S. Venkatesan et al.
StandardDeviation for server side loggingðrÞ ¼
ffiffiffiffiffi
r2
p

¼
ffi
0:000915147
p

¼ 0:030251ms

After finding the SD value, Fig. 9 has been generated to iden-

tify the inconsistent values. Fig. 9 shows that the inconsistent
values are the 1st, 2nd and 9th set of users which is shown in
bold in column three (xs) of Table 3.

The same SD function is used for the proposed model (xp)
to identify the lower and upper limit of the access time as
shown below.

meanofproposedmodelðlÞ ¼
Pn

i¼1xi

n
¼
P10

i¼1xpi
10

¼ 0:07928microseconds ðmsÞ

varianceofproposedmodelðr2Þ ¼
Pn

i¼1ðxi � lÞ2

n

¼
P10

i¼1ðxpi � 0:079228Þ2

10

¼ 0:002550631ms
StandardDerivation forproposedmodelðrÞ ¼
ffiffiffiffiffi
r2
p

¼
ffi
0:002550631
p

¼ 0:050504ms

After finding the SD value, Fig. 10 has been generated to iden-
tify the inconsistent values. Fig. 10 shows, that the improper

values are the 3rd, 4th and 10th set of users which is shown
in bold in column four (xp) of Table 3.

Similarly, the SD function was used for the OTP model (xo)

to identify the lower and upper limit of the access time.

meanofOTPbasedðlÞ ¼
Pn

i¼1xi

n
¼
P10

i¼1xoi
10

¼ 0:299146microseconds ðmsÞ

varianceofOTPbasedðr2Þ ¼
Pn

i¼1ðxi � lÞ2

n

¼
P10

i¼1ðxoi � 0:299146Þ2

10

¼ 0:000221796ms

Standard Derivation for OTP ðrÞ ¼
ffiffiffiffiffi
r2
p

¼
ffi
0:000212796
p

¼ 0:014588ms

After finding the SD value, Fig. 11 has been generated to iden-
tify the inconsistent values. Fig. 11 shows, that the improper
values are the 1st, 2nd, 7th and 9th set of users which is shown

in bold in column two (xo) of Table 3.
After obtaining these mathematical results, we have identi-

fied the inconsistent processing time caused by the CPU and it

Table 4 Consistency vs inconsistency.

OTP

model

Server side

logging model

Proposed cookies

based model

Average output of 100 users (inconsistency) 0.299146 0.074607 0.079228

Average output of 100 users after removing the

inconsistent results (consistency)

0.292814 0.073887 0.047147

Analysis of accounting models for the detection of duplicate requests in web services 21
was removed. But the OTP has four improper values whereas
the other two models have only three improper values. To bring
the proper comparison, one more value needs to be taken from

the othermodels.Hencewe removed the valuewhich is very near
to the standard deviation upper and lower limits. The values in
gray color in Table 3 are very near to the upper or lower limit.

Now, the four set of users (inconsistent set) in all the mod-
els are removed and compared with one another as shown in
Fig. 12, which shows that the proposed model consumes less

time when compared to the existing models.
Table 4 shows that the actual results taken from the exper-

iment for average output of 100 users. It shows that the pro-
posed model consumes more time when compared to the

existing server side logging model. After removing the incon-
sistency results (through standard deviation) which was caused
due to the CPU load, it shows that the proposed model takes

less processing time than the existing server side logging model.
Hence, the request processing time of the proposed model is
more than the existing server side logging model means due

to the inconsistency only, not because of the model. Hence,
the proposed model is efficient to handle the multi-millions
of users request history in the web service environment with re-

spect to time complexity.
The above analysis among the models shows that the pro-

posed model is efficient for accounting the request history of
the clients to detect the spam request attack.
5.5. Network connection fault tolerant analysis

Earlier, Bernstein (1996) and Bona (1996) proposed the cookie

based model to prevent the TCP SYN flood attack. When client
sends a SYN request, the server calculates a one-way hash of
the sender’s sequence number, ports, the server’s secret key,

and a counter that changes every minute and sends that to
the client along with the TCP/ACK response without allotting
the space in the Transmission Control Block (TCB). Nothing is

stored in the server side. When the client replies with an ACK
packet, the server recalculates the same hash function with the
help of the secret key which is denoted by the counter value. If
the recalculated hash value and hash value that comes with the

ACK do not match then the ACK packet will be dropped;
otherwise the request will be accepted for further activities.
The disadvantage of this model is, when the TCP/ACK packet

is lost, the server is prevented from resending SYN + ACK
packets, because there is no information regarding the client
(Ricciulli et al., 1999). So, the cookie based approaches are

not that much evolved in the TCP SYN flooding design.
If we bring the same protection model into the web service
denial of service attack then this problem will be solved by
resending the request. For example, the client sent a request

to the server for a service and the server processed the request
and responded to the client, but it was not received by the cli-
ent due to the network problem. In this case, the client may re-

send the request to the server for the same service. According
to the TCB, if the same request comes again then it will be con-
sidered as new, but in web services it will not be considered as

new because the request will come with the old cookie. In case
the client sent the first request and not received the response
with the cookie, the client needs to resend the request and it
will be considered as new client and have to pass through some

puzzle test again, which is inconvenient to the customer. To
avoid this issue, we may maintain the cookie information in
the client side for the first request; after that it will be removed

for the future requests. In case of the second and its consecu-
tive request, even though the client did not receive the re-
sponse, they may resend the earlier request and receive the

equivalent response.
As per the proposed model, the resend or replay is not pos-

sible so it is very difficult to handle the above legitimate replay

request situation. The following scenario clearly illustrate this
false positive issue.

C —R1– –>S

1. Create cookie: c1
2. Create hash value H1 =H (c1).

3. Store in database

C —R2||c1– –>S

1. Create hash value for the cookie received RH1 = H (c1).

2. Retrieve equivalent hash value of the cookie from database,

that is, the hash value H1

3. Compare H1 and RH1. If there is no match drop the request;

otherwise follow the remaining steps.

4. Update cookie: c2 = update (c1, R2).

5. Create hash value H2 =H (c2).

6. Store the new hash value in the database by replacing

the old one.

C< – · --Re2||c2––S: The response failed to reach the client

C —R2||c1– –>S

1. Create hash value for the cookie received RH1 = H(c1)

2. Retrieve equivalent hash value of the cookie from database

that is the hash value H2.

3. Compare H2 and RH1. There is no match, so connection

dropped.

22 S. Venkatesan et al.
To solve this problem, the only solution is having the last
two credentials in the database (Xu et al., 2002). For example
consider the following scenario where the genuine client is

continuing the dialogue with the server.

C —R1– –>S

1. Create cookie: c1
2. Create hash value H1 =H(c1)

3. Store in database (that is in 1st credential column)

C<——Re1||c1–S

C —R2||c1– –>S

1. Create hash value for the cookie received RH1 = H(c1)

2. Retrieve equivalent hash value of the cookie from database,

that is, the hash value H1.

3. Compare H1 and RH1. If there is no match drop the request;

otherwise follow the remaining steps

4. Update cookie: c2 = update(c1, R2)

5. Create hash value H2 =H(c2)

6. Store in the another column (that is in the 2nd credential

column) of the database

C< – · –Re2||c2––S: The response failed to reach the client

C —R2||c1– –>S

1. Create hash value for the cookie received RH1 = H (c1).

2. Retrieve equivalent hash value of the cookie from database,

that is, the hash value H2.

3. Compare H2 and RH1. There is no match, so follow

the remaining step.

4. Retrieve second equivalent hash value of the cookie from

database, that is, the hash value H1.

5. Compare H1 and RH1. If there is no match drop the packet;

otherwise follow the remaining steps.

6. Update cookie: c2 = update(c1, R2)

7. Create hash value H2 =H(c2)

8. Replace the last entry hash value with the new cookie hash

value in the database(that is in the 2nd credential column)

C<——Re2||c2–S

C —R3||c2– –>S

1. Create hash value for the cookie received RH2 = H (c2).

2. Retrieve equivalent hash value of the cookie from database

that is the hash value H2.

3. Compare H2 and RH2. If there is a match follow the remaining

step.

4. Update cookie: c3 = update(c2, R3)

5. Create hash value H3 =H(c3)

6. Replace the credential column with the new cookie hash

value in the database(that is 1st credential column)
The samewith the view of the following basic set theory is the

intersection function f with inputs set s1 and s2 provides the null
output if there is nomatchwith any of the two hash values and it

will be dropped; otherwise the valid cookie output will be there.

fðs1; s2Þ ¼ s1 \ s2 where s1 ¼ fH1;H2g and s2 ¼ fRHg

fðs1;s2Þ¼
¼;;packet failed to prove its identity¼H1 orH2packet proved its identityf

Even though it will consume additional memory, it is vital to

avoid network connection problems. With respect to the pro-
cessing time, additional time is consumed only at the time of re-
play; otherwise there is no additional processing time. In view of

verifying the cookie with the stored credential, the latest one
should be verified first to avoid the additional processing time
if there is no replay attack. In case the attacker starts to send
the replay intentionally, it will affect the process power so we

need to set the threshold limit to send the replay of very first pre-
ceding request notmore than that. This networkproblem issue is
not only applicable for the proposed model and the model pro-

posed by Xu et al. (2002); it is applicable for all the models.
The next important thing to consider is setting the expiry

time which is discussed in the Section 2 for the existing models.

There, we claimed that the expiry time hurts the client and also
gives false positives. If we will not give expiry time for the client
to send a request or response then the web service will be vulner-
able to the attack, even though we are proposing or creating the

very effective securitymodels. Another important consideration
is on setting the timeout period; for example if we set the expiry
period five minutes, then the replay attack is very well achieved

and if the expiry time is 30 s then the client will suffer from the
false positive. All the existing models are identifying the replay
through the expiry time so that the expiry time is very crucial

for all the existingmodels but for the proposedmodel, the replay
attack, the fake cookie, or the modified cookie detection is not
dependent on the expiry time. Hence, setting up a reasonable
expiry time will not affect our model robustness and legitimate

clients will be serviced properly.
5.6. Analysis of the cookie modification

In our model, to protect the cookie from replay attack, fake
creation attack, and modification attack the hash code is used.
As we know, the hash is vulnerable to the collision attack (two

inputs may produce the same hash output), i.e., to get the new
input producing the hash output equivalent to the original in-
put we need 2n/2 (n is the number of output bits) brute force. In

order to achieve the memory complexity, we suggested the
minimum output bit hash algorithm but it is vulnerable to
the collision attack. However, to perform the collision attack,
the attacker has to achieve the next two things according to

our model.

a. The newly created or modified cookie, which gives hash

output similar to the original cookie, should have the IP
address remaining constant in the cookie field because it
is available in the server side to verify.

b. There is a server accepted format for the cookie in
Fig. 4. If the cookie is not in the similar format then
the request will not be allowed to enter the processing

environment. Hence, the collided input should also have
the similar cookie format.

Hence, it is complex for the attackers to bring out the coo-

kie in the similar format and the particular part of the content
constant in the 2n/2 brute force. Thus, it needs more brute force
to achieve the collision.

6. Conclusion and future work

The application layer denial of service (spam or duplicate re-

quest) is a smart attack to minimize the availability of the re-
sources without any risk. To help in detecting and preventing
this application layer duplicate or spam request based denial of

service attack, this paper proposed a cookie based hashing
accounting model with special properties given in Section 4.
After analyzing all the existing and proposed accounting mod-

els, the three (OTP model, server side logging and proposed
cookie based hashing model) models are identified as fool

Analysis of accounting models for the detection of duplicate requests in web services 23
proof. Later, these three models’ experimental results are ana-
lyzed with respect to memory (space) and time complexity. The
analysis output has shown that the server side logging model

consumes more time and more memory compared to the pro-
posed model. The OTP models consumes less memory and
more computational time when compare to the proposed mod-

el. In case, the size of the OTP key is increased then the mem-
ory complexity of the OTP model will also be more than the
proposed model. Also, OTP incurs extra cost to generate a

new key for every request. Hence, the proposed model is more
than fifty-six percentage computationally efficient than the
next efficient server side logging existing model to account
the request history in the web service environment (especially

for critical infrastructures like government websites) and help
in detecting the spam request. The future work of this paper
is to efficiently analyze the accounting model through History

Analyzer to detect the spam requests.

References

Alfantookh, Abdulkader.A., 2006. DoS attacks intelligent detection

using neural networks. Journal of King Saud University �
Computer and Information Science 18, 27–45.

Alhabeeb, Mohammed, Le, Phu Dung, Srinivasan, Bala. (2011a).

‘‘Preventing denial of service attacks in government e-services using

a new efficient packet filtering technique’’. In: Proceedings of Ninth

IEEE International Symposium on Parallel and Distributed Pro-

cessing with Applications, pp. 262–269..

Alhabeeb, Mohammed, Le, Phu Dung, Srinivasan, Bala. (2011b).

‘‘Evaluating the functionality of the token filtering technique in

filtering denial of service packets using a new formal evaluation

model.’’ In: Proceedings of Ninth IEEE International Symposium

on Parallel and Distributed Processing with Applications, pp. 318–

323..

Alhabeeb, Mohammed A., Almuhaideb, Abdullah, Le, Phu Dung,

2010a. Holistic approach for critical system security: flooding

prevention and malicious packet stopping. International Journal of

Telecommunications 1 (1), 14–24.

Alhabeeb, Mohammed, Alsunbul, Saad, Almuhaideb, Abdullah, Le,

Phu Dung, Srinivasan, Bala. (2010b), ‘‘A novel security approach

for critical information systems: preventing flooding in the non-

authenticated client area using a new service from local network

service providers.’’ In: Proceedings of 2010 11th ACIS Interna-

tional Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing, pp. 49–54..

Alonso, Gustavo, Casati, Fabio, Konu, Harumi, Machiraju, Vijay,

2004. Web Services: Concepts, Architectures and Applications.

Springer.

Aura, Tuomas, Nikander, Pekka, Leiwo, Jussipekka, 2000. DOS-

resistant authentication with client puzzles. Lecture Notes in

Computer Science 2133, 170–177.

Baskaran, R., Saleem Basha, M.S., Balasubramanian, A., 2012. Two

Tier Security Framework for Service Oriented Systems: Intelligent

Security Measures. LAP LAMBERT Academic Publishing, pp. 1–

176..

Bernstein, D.J. (1996). ‘‘Syn floods – a solution’’ <http://www.op.net/

~jaw/syn-fix.html>..

Bona, R. (1996). ‘‘TCP SYN attacks – a simple solution’’. <http://

www.cctec.com/maillists/nanog/historical/9610/

msg00155.Html>..

Casado, Martin, Cao, Pei, Akella, Aditya, Provos, Neils. (2006).

‘‘Flow-cookies: using bandwidth amplification to defend against

DDoS flooding attacks’’ Stanford HPNG Technical Report..

Das, D., Sharma, U., Bhattacharyya, D. K. (2011). ‘‘Detection of

HTTP flooding attacks in multiple scenarios.’’ In: Proceedings of
the 2011 International Conference on Communication, Computing

& Security (ICCCS’11), pp. 517–522..

Denial of service attack, White paper by Software Engineering

Institute, Carnegie Mellon University, (2001). <http://www.cer-

t.org/tech_tips/denial_of_service.html> [Latest access on 18

August 2011]..

Eddy, Wesley M., 2006. Defenses against TCP SYN flooding attacks.

The Internet Protocol Journal 9 (4), 2–16.

Eid, Mohamad Samir A., Aida, Hitoshi, (2010). ‘‘Securely hiding the

real servers from DDoS floods.’’In: Proceedings of 10th Annual

International Symposium on Applications and the Internet, pp.

165–168..

Feng, Wu-chang, Kaiser, Ed, (2010). ‘‘kaPoW Webmail: effective

disincentives against spam.’’ In: Proceedings of CEAS 2010 –

Seventh Annual Collaboration, Electronic messaging, Antiabuse

and Spam Conference, pp. 1–9..

Fu, Kevin, Sit, Emil, Smith, Kendra, Feamster, Nick, (2001). ‘‘Dos

and don’ts of client authentication on the web’’. In: Proceedings of

the 10th USENIX Security, Symposium, pp. 1–16..

Gaddam, Ajit, (2008). ‘‘Yahoo! CAPTCHA Cracked’’, Root 777

posts, January 31. <http://www.root777.com/hacking/yahoo-capt-

cha-cracked> [Latest access on 18 August 2011]..

Hang, Bo, Hu, Ruimin, (2009) ‘‘A novel SYN cookie method for TCP

layer DDoS attack.’’In: Proceedings of 2009 International Confer-

ence on Future BioMedical Information, Engineering, pp. 445–

448..

Jensen, Meiko, Schwenk, Jorg, (2009). ‘‘The accountability problem of

flooding attacks in service-oriented architectures.’’ In: Proceedings

of 2009 International Conference on Availability, Reliability and

Security (2009 ARES), pp. 25–32..

Jensen, Meiko, Gruschka, Nils, Herkenhoner, Ralph, Luttenberger,

Norbert, (2007). ‘‘SOA and Web Services: new technologies, new

standards new attacks.’’ In: Proceedings of the 5th IEEE European

Conference on Web Services, pp. 35–44..

Jensen, Meiko, Gruschka, Nils, Luttenberger, Norbert, (2008). ‘‘The

impact of flooding attacks on network-based services.’’ In:

Proceedings of The Third International Conference on Availability,

Reliability and Security, pp. 509–413..

Kandula, S., Katabi, D., Jacob, M., Berger, A. W. (2005) ‘‘Botz-4-sale:

Surviving organized DDoS attacks that mimic flash crowds’’, in

proceedings of. Symposium on Networked Systems Design and

Implementation (NSDI), Boston, May 2005..

Khor, Soon Hin, Nakao, Akihiro, (2011). ‘‘DaaS: DDoS mitigation-

as-a-service.’’In: Proceedings of 2011 IEEE/IPSJ International

Symposium on Applications and the Internet, pp. 160–171..

Oppermann, A., (2006) ‘‘FYI: Extended TCP syncookies in FreeBSD-

current’’, Post to the tcpm mailing-list. <http://www.ietf.org/

mailarchive/web/tcpm/current/msg02251.html>..

Panigrahi, Suvasini, Kundu, Amlan, Sural, Shamik, Majumdar, A.K.,

2009. Credit card fraud detection: A fusion approach using

Dempster–Shafer theory and Bayesian learning. International

Journal on Information fusion 10, 354–363.

Park, Joon S., Sandhu, Ravi, 2000. Secure cookies on the Web. IEEE

Internet Computing, 36–44.

Pujolle, Guy, Serhrouchni, Ahmed, Ayadi, Ines., (2009).‘‘Secure

session management with cookies.’’ In: Proceedings of the 7th

international conference on Information, communications and,

signal processing, pp. 1–6..

Ranjan, S., Swaminathan, R., Uysal, M., Knightly, Edward W. (2006)

‘‘DDoS-Resilient Scheduling to Counter Application Layer

Attacks Under Imperfect Detection’’, In: proceedings of 25th

IEEE International Conference on Computer Communications

(INFOCOM 2006), pp. 1–13..

Ricciulli, L., Lincoln, P., Kakkar, P., 1999. TCP SYN flooding

defense. CNDS.

Sit, Emil., Fu, Kevin., 2001. Web cookies: not just a privacy risk.

Communications of the ACM 44 (9), 120.

http://www.op.net/~jaw/syn-fix.html
http://www.op.net/~jaw/syn-fix.html
http://www.cctec.com/maillists/nanog/historical/9610/msg00155.Html
http://www.cctec.com/maillists/nanog/historical/9610/msg00155.Html
http://www.cctec.com/maillists/nanog/historical/9610/msg00155.Html
http://www.cert.org/tech_tips/denial_of_service.html
http://www.cert.org/tech_tips/denial_of_service.html
http://www.root777.com/hacking/yahoo-captcha-cracked
http://www.root777.com/hacking/yahoo-captcha-cracked
http://www.ietf.org/mailarchive/web/tcpm/current/msg02251.html
http://www.ietf.org/mailarchive/web/tcpm/current/msg02251.html

24 S. Venkatesan et al.
Srivatsa, Mudhakar, Iyengar, Arun, Mikalsen, Thomas A., Rouvellou,

Isabelle, Yin, Jian, (2007). ‘‘An access control system for web

service compositions’’. In: Proceedings of the IEEE International

Conference on Web Services (ICWS), pp. 1–8..

Suriadi, Suriadi, Clark, Andrew, Schmidt, Desmond, (2010). ‘‘Vali-

dating denial of service vulnerabilities in web services’’. In:

Proceedings of 2010 Fourth International Conference on Network

and System, Security, pp. 175–182..

Wu, Heng, Chen, Weiting, Ren, Zhongjie, (2010). ‘‘Securing cookies

with a MAC address encrypted key ring’’. In: Proceedings of 2010

Second International Conference on Networks Security, Wireless

Communications and Trusted, Computing, pp. 62–65..
Xu, Donghua, Lu, Chenghuai, Dos Santos, Andre, (2002). ‘‘Protecting

web usage of credit cards using one-time pad cookie encryption’’.

In: Proceedings of the 18th Annual Computer Security Applica-

tions Conference (ACSAC’02), pp. 51–58..

Yuan, Jian, Mills, Kevin, 2005. Monitoring the macroscopic effect of

DDoS flooding attacks. IEEE Transactions on Dependable Secure

Computing 2 (4), 324–335.

Yue, Chuan, Wang, Haining, 2009. Profit-aware overload protection

in E-commerce Web sites. Journal of Network and Computer

Applications 32 (2), 347–356.

	Analysis of accounting models for the detection of duplicate requests in web services
	1 Introduction
	2 Related work
	3 Proposed cookie based accounting model
	4 Properties of the proposed model
	5 Analysis of accounting models
	5.1 Reliability analysis
	5.1.1 Server Side Logging Model (Jensen and Schwenk, 2009)
	5.1.2 Fu et al. (2001) Keyed Hash (HMAC) Model
	5.1.3 Xu et al. (2002) OTP Model
	5.1.4 Alhabeeb et al. (2011a,b) Random Number
	5.1.5 Jensen and Schwenk (2009) Extended history approach with digital signature
	5.1.6 Proposed Model

	5.2 Involved parameter analysis
	5.3 Experimental result analysis
	5.4 Inconsistency analysis
	5.5 Network connection fault tolerant analysis
	5.6 Analysis of the cookie modification

	6 Conclusion and future work
	References

