
Journal of King Saud University – Computer and Information Sciences (2013) 25, 35–42
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Feasibility of SNMP OID compression
Hari T.S. Narayanan a,*, Geetha Ilangovan a, Sumitra Narayanan b
a Netprowise Consulting, Chennai 600033, India
b SRM University, Ramapuram, Chennai 600089, India
Received 18 December 2011; revised 9 May 2012; accepted 29 May 2012
Available online 8 June 2012
*

98

E

Pe

13

ht
KEY WORDS

Protocol;

SNMP;

OID compression;

Design;

OID encoding;

ASN.1;

Net-SNMP;

Experimental research
Corresponding author. Te

41289525.

-mail address: ts.hari@gmai

er review under responsibilit

Production an

19-1578 ª 2012 King Saud U

tp://dx.doi.org/10.1016/j.jksu
l.: +91

l.com (H

y of King

d hostin

niversity

ci.2012.0
Abstract Simple network management protocol (SNMP) object identifier (OID) compression can

improve bandwidth usage and response time. The current literature includes several OID compres-

sion algorithms to reduce redundancy in SNMP protocol data units (PDUs). The overhead of OID

compression could outweigh the benefits it offers if its tradeoffs are not well understood. The main

objective of this paper is to investigate the OID compression as a viable feature for SNMP libraries.

This is done by adding an OID compression algorithm to Net-SNMP, which is one of the popular

open source implementations of the SNMP framework. Change to image size, lines of code added,

complexity of compression code, the effect of compression on response time, and testing effort

required are the parameters presented to understand the viability of OID compression.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Simple network management protocol (SNMP) (Levi et al.,
2002; Presuhn, 2002a,b,c; McCloghrie et al., 1999; William,
1998) is a popular application layer protocol used in managing

data networks. Almost all networking vendors support SNMP.
A number of telecom equipment vendors are also starting to
support SNMP in order to enable integrated management. A
significant amount of network management activity is cur-

rently carried out using the SNMP framework by a large
percentage of enterprise networks as well as a sizeable number
of service provider core networks. The rest of this section

provides a simple introduction to SNMP needed to understand
44 6565 1234, mobile: +91

.T.S. Narayanan).

saud University.

g by Elsevier

. Production and hosting by Elsev

5.006
the content of this paper; a comprehensive introduction to

SNMP is found in William (1998).
The SNMP framework includes, besides other features, an

information model and an application layer protocol. This
information model provides an abstract as well as virtual rep-

resentation of the networking element to be managed; the pro-
tocol is used in exchanging requests and responses between
network management tasks. The information model of SNMP

is graphically represented by an inverted tree––a MIB (man-
agement information base) tree. In this tree, every leaf node
contains the data items to be Get and Set; every non-leaf node

represents a grouping of related data items. Each node in the
MIB tree is identified by its path from the root of the tree.

The data items of the information model are carried in a list
within the SNMP request and response messages – Fig. 1. This

list is referred to as the varbind list. Each data item in the list is
referred to as a varbind and represents an element in the infor-
mation model. Each varbind includes a unique identifier–

Object identifier (OID) and a value. An OID is a sequence
of sub-identifiers (integers) where each sub-identifier is a
natural number associated with a node in a MIB tree. The
ier B.V. All rights reserved.

mailto:ts.hari@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2012.05.006
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2012.05.006


Figure 1 SNMP message format.

36 H.T.S. Narayanan et al.
entire SNMP message is encoded using Abstract Syntax

Notation’s Basic Encoding Rules (ASN.1––BER) (ITU-T Rec-
ommendation X.690, 2003). The representation of an OID in a
varbind list provides an opportunity to save bandwidth when

multiple data items appear in a varbind list. This optimization
is referred to as SNMP OID compression. This optimization
could provide more valuable savings in CPU cycles as com-

pared to bandwidth requirements for management tasks as
highlighted in Hari et al. (2010). There are three algorithms
proposed for this purpose in the literature (Schoenwaelder,

2001; McLeod et al., 2001; Hari et al., 2011); the effectiveness
of such compression algorithms was discussed in Hari et al.
(2010). This paper validates the feasibility of one such algo-
rithm by adding the algorithm to one of the open source

SNMP framework libraries [Net-SNMP].
This paper is organized as follows. Section 2 provides a

comparative overview of various OID compression algo-

rithms. The objective here is to introduce their relative values
and not to investigate their relative values in depth; such an
investigation is part of Hari et al. (2010). Section 3 describes

normal SNMP OID encoding. Section 4 describes the OID
compression algorithm that is used for this feasibility study.
This is one of our own algorithms and it is integrated into
Net-SNMP open framework for this investigation. Section 5

provides feasibility results based on the OID compression
extension made to Net-SNMP. This section includes image
size, response time, and other performance values. Section 6

concludes the paper and lists further work in this area.

2. Other OID compression algorithms

In general, network performance optimization procedures are
either suggested for transport layers as in Alnuem (2010) or
for application layers. The algorithm presented in this paper

belongs to the latter one.
There are three algorithms (Schoenwaelder, 2001; McLeod

et al., 2001; Hari et al., 2011) for OID compression in the cur-

rent literature. All these algorithms code OID compression
with respect to the preceding object identifier in a varbind list;
the first OID is coded without any compression. The first of
the three algorithms (Schoenwaelder, 2001), OID Delta Com-

pression (ODC), uses a combination of the following three dif-
ferent encodings for compressed representation for an OID:
single sub-identifier substitution, range of sub-identifiers substi-

tution, and truncation. This eliminates more redundancy in a
compressed OID than what is suggested in McLeod et al.
(2001), Hari et al. (2011). The second of the three algorithms

(McLeod et al., 2001) codes only the OID tail replacement
with respect to the preceding OID. This scheme fails to
eliminate the redundancy in the tail that appears after the

point of divergence with respect to anchor OID. However,
its compression logic and decompression logic are simple to

code and maintain. The OID compression studied in this paper
is the algorithm presented in Hari et al. (2011). It encodes only
the range of sub-identifiers substitution and truncation. This is

because single sub-identifier substitution is treated as range
substitution with a single sub-identifier. The substitution and
truncation are represented using a unified encoding struc-

ture––location of substitution, span of substitution, and new
sub-identifier string to be substituted. The algorithm suggested
in Hari et al. (2011) does not include the special optimization

suggested in algorithm (McLeod et al., 2001) for OIDs which
are longer than 119. The uniform and simple compressed OID
structure and lack of special cases lead to simpler implementa-
tion without compromising the compression opportunities

listed in Schoenwaelder (2001).
There are two relevant patents applications found in US

Patent search. The first one by Ghirardi (2010) describes a

compression method for the entire payload of a message. Their
compression method is generic in nature and requires exten-
sion to the data access protocol to which it is applied, thus

making it difficult to develop and deploy. Their method can
still be applied to the payload after applying our encoding
method. The second patent Aseem (2008) describes a compres-
sion method for the storage of hierarchically structured data.

Their method is only suitable for data storage. Additionally,
the exchange of such encoding is justified only for large vol-
umes of data exchange.

3. SNMP OID encoding

The format of an SNMP message is shown in Fig. 1. The entire

message is coded using anASN.1 derivative. The varbind list ap-
pears at the end of this message as an ASN.1 sequence. This se-
quence (varbind list) contains one or more varbind. Each

varbind is a sequence by itself representing a data item from
the underlyingMIB. This sequence includes an OID and its (ob-
ject) value. All the items in the varbind list, including the varbind

list, are coded using the Type/Tag-Length-Value (TLV) format
using ASN.1 BER (ITU-T Recommendation X.690, 2003).

Fig. 2 illustrates the TLV encoding of 3 data items in a var-
bind list of an SNMP message. Lines 1 and 2 are the hex-dump

of the varbind list fromanSNMPmessagewith 3 data items in it.
Lines 3 to 21 are the parsed output of this varbind list for illus-
tration.Value 30 in line 3 represents anASN.1sequence type and

value 3c (decimal 50) identifies its (varbind list) length in octets.
All sequences (in line 4, 10, and 18) are coded the same way––30
to indicate sequence, and followed by the sequence length in

number of octets. Lines 5–9 describe the coding of the first data
item in the varbind list––06 represents the object identifier type
and 04 represents the string type. The string type 04 in line 5 is

followed by string length 06 and the actual string in ASCII.



Figure 2 Illustration of varbind list encoding.

Feasibility of SNMP OID compression 37
All the three objects are of string type in this case and there are a
number of other types supported by SNMP. The three object

identifiers are: 2b 06 01 02 01 01 06 00, 2b 06 01 02 01 01 04
00, and 2b 06 01 02 01 01 05 00. All the three object identifiers
have the same prefix ‘‘2b 06 01 02 01 01’’. In this case, they also

differ by one sub-identifier––the 7th one. The OID compression
reduces these redundancies to conserve the number of octets
used in encoding the varbind list. It is possible to construct the

object identifier of the 2nd object to be sent from the 1st object
identifier and the difference between the 1st and the 2nd object
identifiers. The second object identifier is compressed with re-

spect to its normal form. The receiving side can re-construct
the 2nd object’s object identifier from the 1st object’s object
identifier and the encoded difference between the two (i.e., the
compressed 2nd object identifier).

4. OID compression algorithm implemented

Table 1 illustrates one of the OID compression algorithms

(Hari et al., 2011) described in the literature. This algorithm
Table 1 Compression encoding when length of Object OID (O) is

Type No. Inputs to compression method: A and O C

de1 2 3 4 5 6 7 8 9

Same length

1 A a1 a2 a3 a4 a5 a6 a7 a8 a9 A

O a1 a2 a3 a4 a5 a6 a7 a8 a9
2 A a1 a2 a3 a4 a5 a6 a7 a8 a9 Su

O a1 a2 a3 a4 a5 a6 a7 o8 o9
3 A a1 a2 a3 a4 a5 a6 a7 a8 a9 E

O a1 a2 a3 a4 a5 o6 o7 a8 a9
4 A a1 a2 a3 a4 a5 a6 a7 a8 a9 Sc

A a1 a2 a3 a4 o5 o6 a7 a8 o9

Note: The table does not show scattering with multiple matching groups.

that is considered for encoding.
is implemented and integrated with the Net-SNMP frame-
work for this study. The following terms are used in this

illustration:

� The ‘Anchor ID’ (A) is the Object Identifier of the 1st data

that needs to be transmitted.
� The ‘Object ID’ (O) is the Object Identifier of the 2nd data
that needs to be transmitted.

� The term offset refers to the distance (in sub-identifier units)
from the last sub-identifier of the Anchor ID. The distances
to the left of the last sub-identifier (of the Anchor) are con-

sidered positive and the distances to the right are considered
negative. Since the distance in sub-identifier units between
the last sub-identifier and itself is 0, the offset for the last
sub-identifier is 0 units.

� The matching prefix is not sent for the 2nd object identifier;
only the mismatching part needs to be sent. The mismatch
length is also specified in number of sub-identifiers. Length

of the mismatch sequence is one of the outputs of the com-
pression method.
equal to Anchor OID (A).

ase

scription

Savings in

number

of subids

Output from encoding method

Offset

from

end

Suffix

length

Suffix or

embed

= O

8 0 0 0

ffix mismatch

6 0 2 o8–o9
mbedded -mismatch

6 2 2 o6–o7
attered mismatch

3 0 5 o5–o9

If there are multiple matching groups, the left most group is the one



38 H.T.S. Narayanan et al.
Typically, sub-identifiers are natural numbers in the range
of 1–128. In general, this needs not be true; this algorithm
can handle sub-identifiers that are more than one octet. The

offset is extra information carried along in all compressed
encodings. Thus, if there are five matching sub-identifiers, then
compression saves five units of space (since those five matching

sub-identifiers are seen as redundant information, they need
not be sent), and uses one extra unit of space to code the offset.
This results in savings of four units of space. Savings are also
calculated in sub-identifier units.

The inputs for the object compression encoding method are
the Anchor ID and Object ID. The output from the method
includes the offset, mismatch sequence, and mismatch se-

quence length. Each compressed object encoding includes the
offset, mismatch sequence, and mismatch sequence length with
respect to the Anchor ID. The encoding can be extended when

there are more than two objects in a message. The first object
identifier is sent without any compression and as for the sec-
ond object, only the difference is sent. The second object iden-

tifier is constructed at the receiving end from the anchor
object’s identifier and the encoded difference. If there is a
3rd object, then it can be encoded and decoded with respect
to 2nd object identifier, and so on. The mismatch between

the anchor and the object identifier to be compressed can be
classified into 12 different types. These twelve types are
explained in detail in the following paragraphs using Table 1.

4.1. When the Anchor ID and Object ID are of equal length

The following table (Table 1) illustrates the four types of mis-

matches when the Anchor ID (9 sub-identifiers in length) and
the Object ID (also 9 sub-identifiers in length) are exactly the
same, meaning that the same node is being transmitted twice.

All 9 sub-identifiers of the 2nd object ID need not be transmit-
ted, since there is no mismatch between the Object ID and the
Anchor ID. The encoding process for obtaining the Object ID
from the Anchor ID is as follows: The offset of the mismatch

sequence (which doesn’t exist here) is 0. The mismatch
sequence length is also 0 since there is no mismatch here.

In the second type, there is a suffix mismatch, meaning

that a continuous sequence of sub-identifiers differs only at
the end of the two identifiers. From the example in the table,
we can see that there is no need to transmit the first 7 sub-

identifiers since the first 7 sub-identifiers are exactly the same
for both the Anchor ID and the Object ID. The encoding
process for obtaining the Object ID from the Anchor ID is
as follows: The offset of the mismatch sequence is 0, since

the mismatch starts right from the last sub-identifier of the
Anchor ID. The mismatch sequence length is 2, since the
ending 2 sub-identifiers differ between the Anchor ID and

the Object ID.
In the third type, there is an embedded mismatch, which

indicates that some inner continuous sequence of sub-identifi-

ers differs between the Anchor ID and the Object ID. In the
example from the table, the 6th and 7th sub-identifiers differ
between the Anchor ID and the Object ID. Hence, there is

no need to transmit the 5 sub-identifiers that occur before
the 6th sub-identifier and the two sub-identifiers that occur
after the 7th sub-identifier, which is total savings of seven
sub-identifiers. The encoding process for obtaining the Object

ID from the Anchor ID is as follows: The offset of the
mismatch sequence is +2, since the mismatch starts from the
7th sub-identifier. The mismatch sequence length is 2, since it
includes the 6th sub-identifier and the 7th sub-identifier.

In the fourth type, there is a scattered mismatch, which
means that the mismatches are scattered and do not occur in
a continuous sequence. They occur discontinuously within

the ID. In the above example, the 5th, 6th, and 9th sub-iden-
tifiers differ between the Anchor ID and the Object ID. Hence,
there is no need to transmit the first 4 sub-identifiers that occur

before the 5th sub-identifier. From the 5th sub-identifier on-
ward, there is a mismatch, so even though the 7th and 8th
sub-identifiers in between the 5th and 9th match, they must
also be replaced so that the replacement occurs in a continuous

sequence. The encoding process for obtaining the Object ID
from the Anchor ID is as follows: The offset of the mismatch
is 0, since the mismatch occurs right from the ending sub-iden-

tifier. The mismatch sequence length is 5 since all sub-identifi-
ers right from the 9th to the 5th are to be replaced.

4.2. When the Anchor ID is of longer length than the Object ID

The following table (Table 2) illustrates the four types of mis-
matches when the Anchor ID is longer than the Object ID. In

the first type of this category, the Object ID is a prefix subse-
quence of the Anchor ID. This is known as a prefix subse-
quence match. The Object ID is made up of the first 7 sub-
identifiers of the Anchor ID, and those 7 sub-identifiers need

not be transmitted. The encoding process for obtaining the
Object ID from the Anchor ID is as follows: The offset of
the mismatch sequence from the end of the Anchor ID is

+2, and the mismatch sequence to be appended to the start
of the Anchor ID’s offset is a null sequence. The mismatch se-
quence length is 0 (since it is a null sequence).

The second type of overlap here is a suffix mismatch. The
ending sequence of sub-identifiers differs between the Anchor
ID and the Object ID. In the above example, the 6th and

7th sub-identifiers are the differing ones. The Object ID also
lacks 8th and 9th sub-identifiers which the Anchor ID pos-
sesses. The first 5 sub-identifiers of the Anchor ID need not
be transmitted, so the savings made here are 5 sub-identifiers.

The encoding process for obtaining the Object ID from the
Anchor ID is as follows: The offset of the mismatch sequence
from the end of the Anchor ID is +2 units, since the mismatch

starts from the 7th sub-identifier and also includes the 6th sub-
identifier. The mismatch sequence length is 2 units.

The third type of overlap is a special scattered mismatch.

Here, the mismatch with respect to the Anchor ID appears
to be scattered, whereas with respect to the Object ID, it ap-
pears to be embedded. In the above example, the 5th and
6th sub-identifiers of the Object ID differ from those of the

Anchor ID’s and the Object ID also does not have the 8th
and 9th sub-identifiers which are present in the Anchor ID.
There is no need to transmit the first 4 common sub-identifiers

and the savings made are thus 4 sub-identifiers. The encoding
process for obtaining the Object ID from the Anchor ID is as
follows: The offset of the mismatch sequence is +2 units, and

this includes the matching central sub-identifier (the 7th sub-
identifier), apart from the differing 5th and 6th sub-identifiers,
in the mismatch sequence. The matching sub-identifier is in-

cluded to make the encoding simple and uniform. A similar ap-
proach is used in other scattered mismatches. The mismatch



Table 2 Compression encoding when length of Anchor OID (A) is longer than Object OID (O).

Type No. Inputs to compression method: A and O Case description Savings in

number of

subids

Output from encoding method

1 2 3 4 5 6 7 8 9 Offset from end Suffix length Suffix or embed

Longer anchor identifier

1 A a1 a2 a3 a4 a5 a6 a7 a8 a9 O is prefix of A

O a1 a2 a3 a4 a5 a6 a7 x x 6 2 0 0

2 A a1 a2 a3 a4 a5 a6 a7 a8 a9 Suffix mismatch

O a1 a2 a3 a4 a5 o6 o7 x x 4 2 2 o6–o7
3 A a1 a2 a3 a4 a5 a6 a7 a8 a9 Special scattered

O a1 a2 a3 a4 o5 o6 a7 x x 3 2 3 o5–o7
4 A a1 a2 a3 a4 a5 a6 a7 a8 a9 Scattered mismatch

A a1 a2 a3 o4 o5 o6 o7 x x 2 2 4 o4–o7

Note: The table does not show scattering with multiple matching groups. If there are multiple matching groups, the left most group is the one

that is considered for encoding.

Feasibility of SNMP OID compression 39
sequence length is 3 units, since it includes the 5th, 6th, and 7th
sub-identifiers.

The fourth type of overlap here is a scattered mismatch.
Here, the mismatch sequence within the IDs is discontinuous.
In the above example, the 4th, 5th, and 7th sub-identifiers dif-

fer between the Anchor ID and the Object ID. Also, the Object
ID does not contain the 8th and 9th sub-identifiers which the
Anchor ID has. The first 3 sub-identifiers which are common

between the Anchor ID and the Object ID need not be trans-
mitted, and thereby savings of 3 sub-identifiers are made. The
encoding process for obtaining the Object ID from the Anchor
ID is as follows: The offset of the mismatch sequence is +2

units, since the mismatch is from the 7th sub-identifier onward.
The mismatch sequence length is 4 units, since it includes the
7th sub-identifier, the matching 6th sub-identifier, and the mis-

matched 5th and 4th sub-identifiers.

4.3. When the Anchor ID is of shorter length than the Object ID

The following table (Table 3) illustrates the four types of mis-
matches when the Anchor ID is shorter than the Object ID.
The first type under this category is, again, a prefix subse-

quence match, as in the previous category. However, in this
type, the Anchor ID is shorter and is made up of the first 7
sub-identifiers of the Object ID, and those 7 sub-identifiers
need not be transmitted. The encoding process for obtaining
Table 3 Compression encoding when length of Object OID (O) is

Type No. Inputs to compression method: A and O Case d

1 2 3 4 5 6 7 8 9

Longer object identifier

1 A a1 a2 a3 a4 a5 a6 a7 a8 a9 O is p

O a1 a2 a3 a4 a5 a6 a7 x x

2 A a1 a2 a3 a4 a5 a6 a7 a8 a9 Suffix

O a1 a2 a3 a4 a5 o6 o7 x x

3 A a1 a2 a3 a4 a5 a6 a7 a8 a9 Specia

O a1 a2 a3 a4 o5 o6 a7 x x

4 A a1 a2 a3 a4 a5 a6 a7 a8 a9 Scatte

A a1 a2 a3 o4 a5 o6 a7 x x

Note: The table does not show scattering with multiple matching groups.

that is considered for encoding.
the Object ID from the Anchor ID is as follows: The offset
of the mismatch sequence is �2 units, since the 8th and 9th

sub-identifiers of the Object ID must now be added to the An-
chor ID and for this a distance of 2 units must be traversed to
the right from the end of the Anchor ID. The mismatch se-

quence length is 2 units, since the Object ID contains 8th
and 9th sub-identifiers which must be added into the offset
locations of the Anchor ID to create the Object ID.

The second type of overlap here is a suffix mismatch, where
the ending sequence of sub-identifiers differs between the An-
chor ID and the Object ID. In the above example, the 6th and
7th sub-identifiers of the Anchor ID do not match those of the

Object ID, and moreover, the Anchor ID does not possess the
8th and 9th sub-identifiers which the Object ID has. It is
unnecessary to transmit the first 5 sub-identifiers that are com-

mon between the Anchor ID and the Object ID, so the savings
made are5 sub-identifiers. The encoding process for obtaining
the Object ID from the Anchor ID is as follows: The offset of

the mismatch sequence is �2 units, since the Object ID con-
tains 8th and 9th sub-identifiers which must now be appended
to the Anchor ID, and for this a movement of 2 units to the
right from the end of the Anchor ID is required. The mismatch

sequence length is 4 units, since we need to add in the 9th, 8th,
7th, and 6th sub-identifiers.

The third type of overlap is a special scattered mismatch.

Here, the mismatch with respect to the Anchor ID appears
longer than Anchor OID (A).

escription Savings in number

of subids

Output from encoding method

Offset from

end

Suffix

length

Suffix

or embed

refix of A

6 �2 2 o8–o9
mismatch

4 �2 4 o6–o9
l scattered

3 �2 5 o5–o9
red mismatch

2 �2 6 o4–o9

If there are multiple matching groups, the left most group is the one



Figure 3 Compressed varbind encoding.

40 H.T.S. Narayanan et al.
to be embedded, whereas with respect to the Object ID, it ap-
pears to be scattered. In the above example, the 5th and 6th

sub-identifiers of the Object ID differ from those of the An-
chor ID’s and the Anchor ID also does not have any 8th
and 9th sub-identifiers, which are present in the Object ID.
The savings made are 4, since it is not required to transmit

the first 4 sub-identifiers which are common between the An-
chor ID and the Object ID. The encoding process for obtain-
ing the Object ID from the Anchor ID is as follows: The offset

of the mismatch sequence is �2 units, since the Object ID con-
tains 8th and 9th sub-identifiers which must now be appended
to the Anchor ID. The mismatch sequence includes the 9th,

8th, 7th, 6th, and 5th sub-identifiers and therefore is 5 units
of length.

In the fourth type of overlap, there is a scattered mismatch,

which means that the sub-identifiers that differ between the
Anchor ID and the Object ID are scattered and do not occur
in a continuous sequence. They occur discontinuously within
the ID. In the above example, the 4th and 6th sub-identifiers

differ between the Anchor ID and the Object ID. The Anchor
ID also does not possess the 8th and 9th sub-identifiers which
the Object ID has. It is unnecessary to transmit the first 3 sub-

identifiers which are common between the Anchor ID and the
Object ID. The encoding process for obtaining the Object ID
from the Anchor ID is as follows: The offset of the mismatch

sequence is �2 units, since the Object ID contains 8th and 9th
sub-identifiers which must now be appended to the Anchor ID.
The mismatch sequence includes the 9th, 8th, 7th, 6th, 5th, and
4th sub-identifiers (even though the 7th and 5th sub-identifiers

match, so that the replacement of sub-identifiers may be con-
tinuous) and therefore the mismatch sequence length is 6 units.

When an application receives the three output values (off-

set, mismatch sequence, and mismatch sequence length), it
may not be able to differentiate type 3 of Table 1 from types
1 to 4 of Table 2. In type 3, the receiver is supposed to retain

the sub-identifiers that appear before the offset, whereas it is
supposed to ignore them in types 1–4 of Table 2. In order to
alleviate this problem, type 3 of Table 1 is given a special type
identifier in the message.

Fig. 3 shows the compressed varbind list corresponding to
the one shown in Fig. 2. Although, both the 2nd object and
3rd object in the list could be coded as type 3, for the sake
of illustration, the second varbind is coded as type 2, and the

third varbind is coded as type 3. Eleven fewer octets are used
to encode the three objects in the compressed varbind list. This
is not significant savings; however, with a larger number of re-

lated fixed size objects, a single compressed message can carry
the contents of three normal messages. This is only one of the
benefits; the other critical benefit is the number of CPU cycles

saved by applications in processing those two extra messages.
Two new OID types are to be introduced: type 16 identifies a
partial object identifier for all types with the exception of type

2 and type 26 identifies a partial object identifier for type 2.
These type values (16 and 26) are used for illustration, eventu-
ally, these type values are to be selected suitably and registered
with (IANA, 2011). Offsets are coded by adding a bias of 128

(0x80) to convert negative values to positive. Thus, 0 offset is
coded as 0x80, 2 is coded as 0x82, �2 is coded as 0x7D. A sin-
gle octet is sufficient to encode the full range of offset values

because the number of sub-identifiers in an OID is limited to
128.
5. Results and analysis

The implementation of OID compression to Net-SNMP pro-
vided the following useful results:

1. In all about 800 lines of code (including comments and
white space) are added to the library part. Each applica-

tion (snmpget, snmpbulkget, etc.) required about 50
additional lines of code to offer the new compression
as an option. The user can opt for compression or run
their application without any compression.



Table 4 Comparing response times of the original code with the OID compression enabled code for SNMP Get Command.

No Scalar Tabular Original

code (To)

Comp not

opted (Tn)

Comp

opted (Tc)

Improvement (1)

To/Tc

Improvement (2)

Tn/Tc

1 5 0 1287 1117 681 1.89 1.64

2 25 0 335 341 249 1.35 1.37

3 30 0 1161 1152 764 1.52 1.51

4 60 0 1421 1353 879 1.62 1.54

5 90 0 2738 1393 1022 2.68 1.36

6 128 0 2282 2016 1594 1.43 1.26

7 0 30 6863 6559 6299 1.09 1.04

8 0 60 66074 64586 67076 0.99 0.96

9 0 90 135216 124415 122092 1.11 1.02

10 0 128 175059 168245 163413 1.07 1.03

11 15 15 1166 1162 789 1.48 1.47

12 30 30 7696 7480 7387 1.04 1.01

13 45 45 36227 37637 38038 0.95 0.99

14 60 68 65359 72460 67700 0.97 1.07

Feasibility of SNMP OID compression 41
2. Image Size: All DLLs, applications, and daemons retain
the same size with compression. This is expected because
compression is a part of the dynamic SNMP library.

3. Development Effort: About 3 programmer months to

develop and test.
4. Code Complexity: Encoding of the compressed object

identifier takes O(n) time. This is identical to the cur-

rent complexity seen in Net-SNMP. However, there is
some additional logic required to find offset, length,
and suffix/embedded. This is done by comparing

anchor’s subids against the object’s subids in O(n)
time, where n is the number of sub-identifiers in an
object identifier. The extra effort required to decode

and use suffix/embedded identifier is similar to or less
than handling a full blown object ID as there is no
need to iterate over all redundant sub-identifiers. The
extra effort required encoding to find offset and length

is compensated to some extent by decoding effort.
This results in a response time comparable to the
non-compressed OID case. When the more objects

are packed in the same PDU, it results in additional
savings of CPU cycles at the encoding end as sug-
gested in Hari et al., (2010).

5. Testing Effort: Full-fledged testing has not been per-
formed yet. Code is exercised for typical requests and
performance studies.

6. Execution and Response Time: The following test setup

is used to compare the response time and execution time,
with and without compression.
Table 5 Comparing response times with the compression option is

No Scalar Tabular Repetition Original

code (To)

Co

op

1 0 5 3 1189 12

2 0 4 6 1560 14

3 0 10 3 2626 27

4 0 10 6 3694 35

5 0 10 9 1643 16

6 0 10 10 54403 553

7 2 1 98 28355 210
� Both Net-SNMP agents (the Net-SNMP agent with no
compression feature and the Net-SNMP agent with com-
pression feature) are hosted on a Windows XP desktop.
� The modified SNMP agent with compression is assigned the

server port 161 and the agent with no compression feature is
assigned the server port 1161.
� Client applications with and without compression feature

are hosted on the same desktop.
� All other user applications are terminated to reduce any
contention to the CPU.

� MS Loop back adapter is setup to capture client–server
interaction. This is done to eliminate any network delay
variations. Thus, the response time is a good indication of

the execution time for both the client and agent side
combined.
� Response times are measured using a Tcl script with our
packet capture Tcl extension (Hari et al., 2007)

� Tcl script executes each request 10 times and computes the
average response time
� Get and Getbulk with multiple numbers of scalar and tab-

ular objects are used in these measurements.
� The times listed are in microseconds.
� Table 4 compares the response times for the Get command.

The response time for a Get command with original code
(without compression feature) is denoted by To; response
time with our compression feature turned on is denoted
by Tc; response time with our compression feature turned

off is denoted by Tn. These times are computed from the
time found from the packet capture––request send time
turned off and turned on for Get Bulk Command.

mp not

ted (Tn)

Comp opted

(Tc)

Improvement (1)

To/Tc

Improvement (2)

Tn/Tc

32 616 1.93 2.00

18 1275 1.22 1.11

43 777 3.38 3.53

52 1956 1.89 1.82

32 445 3.69 3.67

34 52953 1.03 1.04

84 21132 1.34 1.00



42 H.T.S. Narayanan et al.
and response arrival time. Each row compares response

times for a Get with a certain number of scalar and tabular
objects. The number of scalar and tabular objects carried in
the Get command is identified by columns 2 and 3, respec-

tively. The last two columns list the performance improve-
ment with respect to To and Tn, respectively. Most of the
cases show a positive improvement and wherever there is
no improvement, the difference in response time is relatively

small. All the objects used in these test cases are standard
MIB-2 objects with some object duplication.
� Table 5 provides similar comparisons for the GetBulk com-

mand. The repetition factor lists the number of rows of tab-
ular objects requested. As expected, Getbulk provides a
better performance improvement in comparison to the

Get command.
7. The byte-savings due to compression are not presented

in this paper. This has been done extensively in our ear-
lier paper (Hari et al., 2010). We did observe IP frag-

mentation for certain requests listed in Table 4 and
Table 5. Our response time calculation has been done
based on the arrival time of the last of these fragmented

PDUs.
8. Windows services were running when we did these per-

formance measurements. These services could have

influenced some of our measurements. To reduce this
effect, we ran each test case a few times and ascertained
that their variations were low. The improvements listed

in the last two columns indicate an overall better perfor-
mance with OID compression. Absolute values in these
columns are not given any importance.

6. Conclusion and future work

The results listed in Section 4 suggest that OID compression is

a feasible and viable feature due to its low overhead. We ex-
pected to see some improvements in overall response times
due to reduction in payload size, transmission time, and pro-

cessing time. This expectation is confirmed with our results.
The effort required for testing is non-trivial; however, it is a
one-time activity with subsequent regression testing. There

are two aspects to using OID compression––viability of its
implementation and the suitability of a given MIB for com-
pression. This paper dealt with the former. We are currently

in the process of analyzing various vendor MIBs to find out
the latter. About 100 of the 260 MIBs analyzed include 80%
or more table objects with average object depth of individual
MIBs varying from 9 to 15; about 165 of the 260 MIBs have

60% or more table objects with the average object depth of
individual MIBs varying from 9 to 15. These MIBs are highly
likely to be conducive for OID compression. However, there

are other aspects (key size, number of fixed size objects in a ta-
ble/group, etc.) to be investigated as well before one can decide
whether to use OID compression for a MIB. We are develop-
ing some tools and reports in this area which we plan to share
in a suitable forum in the future. We are also developing a C
library to decode compressed OID varbinds (Premini and

Narayanan, 2012). This can be used in frame capture applica-
tions like Wireshark.

References

Aseem, Sethi, 2008. Efficient representation of System Network

Management Objects Identifiers. US Patent Application: #7343404.

Alnuem, Mohammed A., 2010. An extended review of techniques for

enhancing TCP performance, in Elsevier. Journal of King Saud

University Computer & Information Sciences 22, 45–61.

Frye, R., Levi, D., Routhier, S., Wijnen, B., 2003. Coexistence between

Version 1, Version 2, and Version 3 of the Internet-standard

network management framework, RFC 3584.

Ghirardi, Maurizio, 2010. Transferring of SNMP Messages over UDP

with Compression of Periodically Repeating Sequence. US Patent

Application #20100306414.

Hari, T.S., Narayanan, et al., 2007. A Tcl Language Extension for

Accessing and Transmitting Data Link Layer Frames, Tcl 2007

Conference, Chicago, IL.

Hari, T.S., Narayanan, L.S., Prakash Raj, Vasumathi Narayanan, A.,

2010. Study on the Effectiveness of SNMP OID Compression, in

Springer, Journal of Network and Systems Management 19(4),

ISSN 1064–7570.

Hari, T.S., Narayanan, Sumitra Narayanan, A Method For Efficient

Encoding /Decoding Of Data Identifiers In Hierarchical Data

Models, A Patent filed with the Official Journal of the Patent

Office, India, Application No.3782/CHE/2011 Date of filing:04/11/

2011 (43) Publication Date: 18/11/2011, International Classifica-

tion: H04Q.

Internet Assigned Number Authority (IANA): http://www.iana.org/.

ITU-T Recommendation X.690, 2003. ‘‘OSI networking and system

aspects––Abstract Syntax Notation One (ASN.1)–ASN.1 encoding

rules: Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)’’.

Levi, D., Meyer, P., Stewart, B., 2002. SNMP applications, RFC 3413.

McCloghrie, K., Perkins, D., Schoenwaelder, J., 1999. Structure of

Management Information Version 2 (SMIv2), RFC 2578.

McLeod, S., Partain, D., White, M., 2001. SNMP object identifier

compression, draft-ietf-eosoidcompression-00.txt.

Premini, Francis, Narayanan, Hari T.S., 2012. Enhancing ‘‘Wireshark

for Seamless Decoding of Compressed and Non-Compressed

SNMP OIDs’’. In: Proceedings of International Conference On

Modelling, Optimisation And Computing (ICMOC-2012),

Elsevier.

Presuhn, R., 2002. Version 2 of SNMP protocol operations, RFC

3416.

Presuhn, R., 2002. Transport mappings, RFC 3417.

Presuhn, R., 2002. Management Information Base (MIB) for the

Simple Network Management Protocol (SNMP), RFC 3418.

Schoenwaelder, J., 2001. SNMP payload compression, draft-ietf-nmrg-

snmpcompression-01.txt.

William, Stallings., 1998. ‘‘SNMP, SNMPv2, SNMPv3, and RMON 1

and 2, 3rd edition’’.

http://www.iana.org/

	Feasibility of SNMP OID compression
	1 Introduction
	2 Other OID compression algorithms
	3 SNMP OID encoding
	4 OID compression algorithm implemented
	4.1 When the Anchor ID and Object ID are of equal length
	4.2 When the Anchor ID is of longer length than the Object ID
	4.3 When the Anchor ID is of shorter length than the Object ID

	5 Results and analysis
	6 Conclusion and future work
	References


