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Abstract A multi-criteria vertical handoff system sensitive to various mobile-terminals’ mobility

parameters including distance and velocity in a heterogeneous wireless network is analytically for-

mulated and validated via simulations. It is targeted to estimate the essential handoff parameters

including outage probability, residual capacity, and signal to interference and noise threshold as

well as network access cost. In order to avoid the ping–pong effect in handoff, a signal evolution

prediction system is formulated and its performance is examined. Moreover, the handoff scheme

is triggered using an on line handoff-initiation-time estimation scheme. When initiated, the handoff

procedure begins with a network scoring system based on multi-attribute strategy which results in

selection of potentially promising network parameters. Simulation results are shown to track well

the analytical formulations.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

For seamless wireless communications, integration of wireless
local area network (WLAN) and third generation (3G) cellular

networks (CN), should be developed, in order to achieve the
targeted next generation wireless networks (NGWN). These
wireless access networks (WANs) are combined to provide a

ubiquitous environment of wireless access for terminals
equipped with multiple network interfaces (see Fig. 1). When
mobile terminals (MT) transfer from one network to another,

the quality of service (QoS) offered by the network could de-
crease under certain predefined level. This transfer mechanism
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is known as vertical handoff (VHO). A great deal of, previous,
studies on VHO are based on received signal strength (RSS), in
which handoff decisions are made by comparing the received

RSS with a preset threshold values (Benmimoune and Kadoch,
2010; Ahmavaara et al., 2006; Lott et al., 2006). Since RSS
based VHO is not a QoS aware scheme, it cannot provide bet-

ter QoS to user to support multimedia services (Han et al.,
2009; Nasser et al., 2006; Rouil et al., 2010). However, as the
achievable data rate of a MT is a function of received signal
to interference and noise ratio (SINR). Therefore, a SINR

based VHO is not expected to achieve maximum throughputs
and minimum dropping probabilities only, but also, it is ex-
pected to provide a unified radio resource management for

the heterogeneous wireless networks (Khadivi et al., 2006).

2. Literature survey

Vertical Handover (McNair and Zhu, 2004), is a mechanism in
which user maintains connection when switched from one
ier B.V. All rights reserved.
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WAN to another WAN technology (e.g., from WLAN to
UMTS and vice versa (see Fig. 1). In IEEE, 2005; Lee et al.,
2009, VHO is different from conventional horizontal handover

where the MT moves from one base station to another within
the same network. In VHO, a session is seamlessly handed over
to a new WAN in an interoperable region based on a criterion
which evaluates the signal quality. The handover management

procedures remain a widely studied issue in the case of hetero-
geneous network environment. In (Patowary, 2010), MTs
should be able to move among these heterogeneous networks

in a seamless manner. Various activities of working groups
are currently under way such as IEEE 802.21 (I. 802.21,
2006), IETF MIP (Perkins, 2002), or 3GPP standards

(3GPP, 2007). IEEE 802.21 supports a mobile-controlled
handover (MCHO) scheme and MIP as its mobility manage-
ment protocol. The details of network selection entity and
the specification of handover policies that control handovers

are outside the scope of the 802.21.
The objective of a VHO strategy is to guarantee QoS for a

variety of applications. In general, the strategy can perform a

complex decision criterion that combines large number of
(QoS) metrics. The first VHO decision scheme, that considered
multiple criteria policies, was proposed by Wang et al. (1999).

It introduced a cost function to select the best available WAN
based on three policy parameters (bandwidth, power consump-
tion, and cost). Reference (Zhu and McNair, 2006) proposed

also a multiservice VHO decision algorithm based on cost
function. However, for more efficiency and taking into account
more criteria, context-aware decision solution has inspired the
authors in Ahmed et al. (2006), Hasswa et al. (2006), Balasubr-

amaniam and Indulska (2004). In Hasswa et al. (2006), Saaty
(1990), the authors designed a cross-layer architecture provid-
ing context-awareness, smart handover, and mobility control

in a W-WAN to WLAN environment. They proposed a
VHO decision, with a cost function-based solution, taking into
account network characteristics and higher level parameters

from transport and application layers. References (Ahmed
et al., 2006; Balasubramaniam and Indulska, 2004; Xu et al.,
2010) are based on a multiple criteria decision-making algo-

rithm, analytic hierarchy process (AHP). A more advanced
multiple criteria decision algorithms are presented in Chan
et al. (2001, 2002), wherein the authors applied the concept
of fuzzy logic (FL). They employ decision criteria such as user

preferences, link quality, cost, or QoS. Upon literature review,
mobility prediction schemes in handoff procedure were found
to be very critical in the handoff performance. The handoff

procedure is typically based on the received RSS from the base
station. There exist several models, schemes and algorithms for
handoff procedure which is based on the RSS values as pro-

posed in Chiu and Bassiouni (2000), Pollini (1996), Liu et al.
(2008), Taniuchi et al. (2009). These published methods are
regularly based on hysteresis and threshold methods.

In this paper, we propose a comprehensive methodology for

mobility-prediction based VHO scheme. In this respect, the
proposed VHO algorithm considers the received SINR as its
handoff criterion. Moreover, the handover process is split into

number of phases: handover initiation decision which involves
the decision to which point of attachment to execute the hand-
over and its timing. Next is the radio link transfer, which is the

task of establishing links to the new point of attachment. This
phase is based on the estimates of a number of significant QoS
metrics that are seen to satisfy the basic requirements of a vari-

ety of applications. This paper is organized as follows; Sec-
tion 3 outlines the SINR based VHO strategy. Section 4,
presents a signal prediction model to predict future SINR evo-
lution and enhances the handoff process. In Section 5, a set of

QoS parameters necessary for handover is analytically formu-
lated. Section 6, presents a network selection scheme with
examples to validate its performance in Wi Fi, Wi MAX and

UMTS networks. The research work carried out in this paper
is concluded in Section 7.

3. SINR-based vertical handoff strategy

In order to provide guaranteed QoS, the VHO algorithm must
be QoS aware. Traditional received signal strength (RSS)

based vertical handoff algorithm cannot achieve this (Yang
et al., 2007; Xiaohuan et al., 2010). Therefore, we have consid-
ered the SINR as handoff criteria similar to that proposed in

Xu et al. (2010). A SINR based vertical handoff technique,
according to Shannon’s capacity formula, states that, the max-
imum achievable data rate RAP from WLAN (Access point,
AP) and, RBS from WCDMA (Base station, BS) can be repre-

sented by the receiving SINR: cAP and cBS;.

RAP ¼WAP log2 1þ cAP
CAP

� �
ð1Þ

RBS ¼WBS log2 1þ cBS
CBS

� �
ð2Þ

where WAP = 22 MHz Krishnamurthy et al. (2006), and
WBS = 5MHz Zahran and Liang (2005) are carrier band-
widths of WLAN and WCDMA, CAP=3 dB (Kim et al.,

2010) and CBS = 12 dB (Krishnamurthy et al., 2006) are chan-
nel coding loss factors. Since, the data rates of both the net-
works are different, therefore to compare the SINR of the
two networks, the SINR from the source network must be con-

verted into the SINR of the destination. Thus, assuming that
the data rates RAP, and RBS are equal, the relationship between
the SINR of WCDMA and Wi-Fi can be obtained as given

below:
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Figure 2 Effect of mobile (relative) speed on SINR.
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cBS ¼ CBS 1þ cAP

CAP

� �WAP
WBS

� 1

 !
ð3Þ

The relationship in (3) makes the SINR based VHO meth-
od applicable, in which the receiving SINR from WCDMA is

being converted to the equivalent, cAP required to achieve the
same data rate in WLAN, and compared with the actual
receiving SINR from WLAN. Handoff is triggered when the

user receives higher equivalent SINR from another access net-
work. This gives the vertical handoff mechanism the ability to
make handoff decision based on specific multimedia QoS
requirements such as maximum downlink throughput and

minimum probability of (HO) dropping.

4. SINR prediction scheme for heterogeneous wireless networks

As previously mentioned, the achievable data rate of MT is a
function of received SINR,which is proportional to the distance
between access point (AP) (or (BS)) to the mobile user and to its

current interference level. A significant characteristic of the
SINR is its high fluctuations caused by user speed as well as
the effect of fading, shadowing attenuations. Such variations

could cause some unnecessary handoffs especially at cell bound-
aries, a phenomenon referred to as ping–pong effect. In the rest
of this paper we present a SINR evolution–prediction model

that is to be adopted. The main task of the prediction system
is to extract realistic governing laws of the SINR using available
SINRmeasurements. This process is known as the generation of
the grey sequence (Cao, 2003; Deng, 1982; Wen and Huand,

2004; Kayacan et al., 2010). In grey models, the future values
of a time series are predicted based only on a set of the most re-
cent measurements depending on the window size of the predic-

tor. Consider the following time sequence of measurements,

X0 ¼ X0ð1Þ;X0ð2Þ; . . . ;X0ðnÞ; n P 4 ð4Þ

where X0, is a non-negative sequence and n is the sample win-
dow size of the received data. To obtain the predicted value of
the data at time (k + 1), the following formula is used, (see
Appendix for details),

X0
pðkþ 1Þ ¼ X0ð1Þ � b

a

� �
e�akð1� eaÞ ð5Þ

and the predicted value of data at a future time instant

(k+ H),

X0
pðkþHÞ ¼ X0ð1Þ � b

a

� �
e�aðkþH�1Þð1� eaÞ ð6Þ

To demonstrate the efficiency of the proposed SINR predic-
tion model, the actual value X0 and the forecasted value
X0

pðkþHÞ are compared in the following subsection.

4.1. Preliminary simulations: parameters and modeling

The simulation study is underpinned by a series of assump-
tions that we shall now describe. A WLAN simulation model

is developed (see Fig. 1). In this model, MTs move from one
cell to another with varying speeds. The received signals from
the base stations are affected by two major factors: path loss

and shadow fading.

LdB ¼ PLþ 10n log ðdÞ þ S ð7Þ
where PL is the constant power loss, n is the path loss exponent
with values between 2 to 4, d represents the distance between

the MT and WLAN’s AP and S, represents shadow fading
which is modeled as Gaussian with mean l = 0 and standard
deviation r with values between 6 and 12 dB depending on the

environment (Zahram et al., 2006).

4.2. Simulation results

The SINR received from AP is calculated at different mobile
speeds and is shown in Fig. 2. In the simulation model, mobile
speeds are controlled using two parameters: Dx and Dt repre-
senting, respectively, the difference of distances, Dx, travelled
during fixed time intervals Dt. Fig. 2, shows the relationship
between SINR and the ‘‘relative’’ (simulation) mobile speeds
across the WLAN coverage area for speeds ranging from 1

to 100 km/h.
Of importance here to mention that, in real life systems, a

‘‘calibration’’ based formula should, initially, be defined via

a set of ‘‘practical’’ experiments in order to quantify the real
life relationship between the SINR measurements and the ac-
tual mobile speeds in real wireless networks.

Basically, the mobile node measures SINR periodically
every Dt-seconds, the evolution of SINR can, then, be trans-
lated into the evolution of the ‘‘relative’’ distance between mo-
bile nodes and their base stations as well as their speeds.
Figure 3 SINR prediction.
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As can be seen (Fig. 2), SINR is significantly sensitive to
mobility of the users in terms of their distances and speeds.
Moreover, an evident characteristic of the SINR is its signifi-

cant fluctuations caused by fading and shadowing as well as
by the speeds of MTs.

Fig. 3, compares the actual values of received SINR and the

corresponding prediction values. The simulation results show
that the grey model tracks well the evolution of the measured
SINR data over a speed range of 1:100 km/H. A desirable fea-

ture of the prediction results is that it reveals the exact trends
of the current SINR measurements.

5. A multiple metric handoff scheme for heterogeneous wireless

networks

This section presents different parameters that are seen to be nec-

essary and sufficient for mobility management in VHO systems.
The objective is to provide the proper information required to of-
fer a seamless handover services for the end users. First, we show
how to decide and when to perform VHO. Second, the results of

the proposed VHO protocol are presented. The two phases are
implemented via simulation models including 802.11, 802.16
and UMTS technologies developed for this purpose.

5.1. Vertical handoff triggering-time estimation model

In a heterogeneous network environment, the ping–pong effect

occurs if the VHO decision parameters are changing rapidly
(see Fig. 2), and MT performs handover as soon as it detects
the better AP/BS (Lee et al., 2009). A dwell timer scheme
has been used to avoid such ping–pong effect (Ylianttila

et al., 2001; Hsieh et al., 2003). It starts to work when the ver-
tical handover condition is first satisfied. If the VHO condition
persists during the dwell time, the MT performs vertical hand-

over to the target BS/AP after the dwell timer is expired.
Otherwise, the MT resets the dwell timer (Ye et al., 2002).
Consequently, the MT does not execute premature vertical

handover until the target BS/AP becomes stable. However,
ping–pong effect can occur if the speed of the MT is relatively
high or its moving direction is irregular.

In this paper,wepropose a disconnection (breaking)-time esti-
mation scheme wherein an estimate for the mobile’s speed,eV ¼ limDt!0

Dx
Dt, is obtained, with Dx and Dt designate the differ-

ences of distances travelled and time intervals respectively. Then

an estimate of the disconnection time is calculated. Basically, the
MTmeasures SINR periodically every n second(s).With the pre-
diction model (Section 4) integrated in the present (VHO timing)

model, the SINR variations are smoothed out. Then, the evolu-
tion of SINR is translated into the evolution of the relative dis-
tance between MT and the base station, hence, the relative

speed and disconnection time are estimated as follow,

Since SINR ðdBÞ ¼ A� B � log 10 ðdistanceÞ ð8Þ

with the coefficients A and B vary according to the frequency
of source emitting signal, therefore, the estimated MT speed,

V, is given by,

V ¼ 10
K�SINRðiÞ

B � 10
K�SINRði�1Þ

B

� �
=n ð9Þ

where, the numerator signifies the distance Dx traveled, and the
denominator measures the time interval nDt with Dt is fixed. On
the other hand, SNR(i) is the current measurement and

SNR(i�1) is the previous one. Clearly, V> 0, means the MT
is moving away from the AP, V< 0 indicates that the MT is
moving toward the AP. Note that, this equivalent speed does

not represent the real speed of the mobile node. Once again, a
calibration formula should be used to match the measurements
with real life situations.Now, fromShannon’s capacity formula,
we can define SINR threshold as the critical threshold under

which wireless communications cannot be supported anymore,

cthr ¼ SINRthr ¼ CAP 2
R
W � 1

� �
ð10Þ

Then, we can estimate the relative time (TBreak) when the mo-

bile node will get disconnected according to its current relative
position and positive speed estimate as follows,

TBreak

10
K�SINRthr

B � 10
K�SINRðiÞ

B

� �
T

ð11Þ

From Eqs. (9) and (11), we have,

TBreak ¼ n �
10

K�SINRthr
B � 10

K�SINRðiÞ
B

� �
10

SINRðiÞ
B � 10

K�SINRði�1Þ
B

� � ð12Þ

Eq. (12) allows estimating the future signal variation and,
hence, the MT’s mobility evolution. As such, it can deduce
as when the MT is about to migrate out of the current wireless

coverage. Based on the prediction, the MT is, therefore, able to
decide on triggering the VHO procedures but at the right time.

Fig. 4, shows the simulation results for the disconnection-

time estimation technique (Eq. (12)). As can be seen, due to
estimate fluctuations, it is relatively difficult to decide on the
exact time to trigger the handoff procedure. This is where
the prediction scheme comes into play in order to define a

more accurate VHO timing. Fig. 5, depicts the results of using
the prediction scheme presented in Section 4. As can be seen,
knowing the ‘‘cross-over time’’, the MT can decide on ‘trigger-

ing’ (initializing) the handoff procedure so that it avoids
unnecessary handoffs caused by the significant uncertainties
seen in Fig. 4.

5.2. Outage probability estimation model

In wireless environment, network throughput should be kept

above a target value and, therefore, packet delay can also be
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kept below a target value for a certain application class. This
has been, traditionally, characterized by the SINR values.

However, guaranteeing SINRs of all applications at all time in-
stances may result in low network utilization especially for
bursty traffic. Therefore, in this paper, besides the SINR, we

use another QoS metric, namely, the SINR-outage probability.
That is, instead of guaranteeing the SINR all the time, we can
guarantee that the SINR outage probability is below some tar-

get value. In the following we derive the SINR outage
probability.

In general, the propagation attenuation for a user at a dis-
tance r from the base station is modeled (Nkansah-Gyekye and

Agbinya, xxxx) as,

aðr; nÞ ¼ rl10n=10; ð13Þ

where l is the exponent of the distance and n is the dB atten-

uation due to log-normal shadowing with zero mean and stan-
dard deviation r. Suppose that we impose the requirement that
the link achieves at least the performance of un-shadowed

propagation for all but a fraction, Pout, of the time which is de-
noted the outage probability. This means that the desired per-
formance will be achieved whenever the shadowing
attenuation n 6 c where c here designates the SINR. Hence,

the outage probability, or the fraction of time wherein the per-
formance is not achieved is,
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Pout ¼ PrðncÞ ¼ 1ffiffiffiffiffiffi
2p
p

Z 1

c
e
� n
2r2dn

¼ Q
c
r

� �
ð14Þ

where Q(.) designates the complement Gaussian error func-

tion. Fig. 6, shows the simulation results of the outage proba-
bility at different locations and speeds within the coverage area
of 802.11 network. The prediction mechanism (Section 4) is,

again, integrated within the outage probability estimation
model in order to smooth out the probability results. As can
be seen, the outage probability estimate shows a desirable sen-

sitivity to mobile’s speed as well as its relative location in the
coverage area of the AP. This reveals the fact that our estima-
tion scheme will play a significant role in making efficient
handoff decision as will be seen later.

5.3. Residual capacity estimation model

In VHO, users seek for maximum available bandwidth from

the integrated heterogeneous networks especially for multime-
dia service applications. In this paper, MT keeps measuring re-
ceived SINR for Wi Fi, Wi MAX and UMTS, conducting the

cAP, cBS and cMAX conversions (Section 3). The handoff strat-
egy (next section), allocates users with low bandwidth require-
ments to networks optimized for a particular data rate and

service provisioning and, hence, leaves high speed connections
free for users requiring rather high QoSs. In (Wang et al.,
2003), the concept of residual capacity was introduced, defined
as the additional number of calls a base station can accept such

that the system wide outage probability will be guaranteed to
remain below a certain level. The residual capacity is dynami-
cally updated at each cell according to the SINR measure-

ments. The residual capacity is defined as follows,

Crsd

1

SINRthr

� 1

SINRk

� �
ð15Þ

where SINRthr and SINRk are, respectively, the minimum
SINR required to support the service rate and the actual SINR
received. It is envisaged that a SINR-based Crsd will play an
important role in the handoff strategy proposed in this paper.

Fig. 7, depicts the simulation/prediction results for the
residual capacity estimation scheme. Here, the estimator/pre-
dictor obtains the Crsd estimates of all neighboring, potential,
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networks and decides as to which network it should hands off.
As can be seen, the residual capacity prediction follows well
the simulation results and it overcomes the significant fluctua-
tions which is an inherited theme of the real life measurements.

In the following section we present our handoff strategy.

6. The multi metric vertical handover strategy

This section proposes a mobility management strategy for inte-
grated heterogeneous wireless networks. The objective is to
guarantee QoS for a variety of applications with different

QoS requirements. In general, the strategy can perform a com-
plex decision criterion that combines a large number of (QoS)
parameters including (in our case), outage probabilities, resid-

ual capacities, SINR thresholds in addition to network access
Table 1A Decision matrix D.

Network Technology D: Decision Matrix: Monitored/Predicte

Pout Crsd

802.11 6.527380E-01 8.795717

802.16 2.409183E-01 3.886717

UMTS 1.958555E-01 1.313916
costs if necessary. Selection of potential network(s) will be
based on a network scoring scheme that will be presented later.
But, for now, the handoff process is seen to be composed of

three phases: network discovery, handoff-triggering/initiation
decision and handoff execution. In the following, the network
discovery and handoff initiation phases are presented.

6.1. Handoff initiation/triggering decision

The simplest way for a multiple interface MT to discover

reachable wireless networks is to keep all air-interfaces ON
at all times. However, keeping an air interface active all the
time consumes a great deal of battery power and bandwidth

even when the MT is not sending or receiving any packets.
The handoff decision refers to the process of deciding on the
right moment when to trigger, perform the handoff. It is, thus,
critical to avoid keeping idle air interfaces perpetually ON.

Moreover, in order to avoid the ping–pong effect, MTs must
observe if the neighboring network(s) is consistently better
than the current one before initiating handoff.

Primarily, the SINR is monitored and used in future evolu-
tion prediction for the attached AP and neighboring networks.
An example is shown in Figs. 8 and 9. Note that in Fig. 8, the

SINR monitored, SINRMoni represents the difference between
the observed SINR and that required to satisfy the user’s
application requirements (Eq. (16) below), assuming that the
MT is currently covered under the 802.11, and is migrating

to either 802.16 or UMTS. The same scenario applies for the
outage probability depicted in Fig. 9.

SINRMoni ¼ ðSINRAppl � SINRthrÞ ð16Þ

Next, the handover decision function comes into play (see Sec-
tion 5.1), where it helps estimating the ‘‘cross-over’’ moment

(see Fig. 5) in order to trigger VHO procedures by starting
the network scoring scheme, hence, selection of the most
promising network. The following subsection presents the net-
work scoring scheme.

6.2. Network scoring scheme

In VHO, we are faced with multiple QoS-criteria (e.g., SINRMoni

Pout, Crsd in our case, in addition to network access cost)
during handover decision making, we can no longer easily
rank the candidate networks according to our preference on

a single criterion.
In such cases, different criteria have to be combined and

scaled in a meaningful way. In addition, various criteria in

the decision process may oppose to each other, e.g., when
the desirable QoS increases, it may require an undesirable in-
crease in the price. Thus, trade-offs are sometimes required.
For instance, suppose a user has to make decision among three

candidate networks: 802.11, 802.16 and UMTS respectively.
d Network Parameter measurements

SINRMoni Cost

E-01 29.196250 6.000000

E-01 14.336600 8.000000

E-01 3.338140 10.000000



Table 1B Scaled matrix.

Network Technology DS: Scaled Matrix: Monitored/Predicted Network Parameter measurements

Pout Crsd SINRMoni Cost

802.11 3.000523E-01 1.000000 1.000000 1.000000

802.16 8.129541E-01 3.886717E-01 14.336600 7.500000E-01

UMTS 1.493813E-01 1.313916E-01 3.338140 6.000000E-01

Table 1C Assigned weights.

Service P: Normalized User/Application Preferences

Pout Crsd SINRMoni Cost

Voice 4.092000E-01 2.270000E-01 3.182000E-01 4.550000E-02

Data 4.550000E-02 2.270000E-01 3.182000E-01 4.092000E-01

Table 1D Network scores.

Network Technology Network scores

Voice application Data application

802.11 7.134814E-01 9.680524E-01

802.16 6.233439E-01 6.004476E-01

UMTS 5.067908E-01 3.613108E-01
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The decision problem can be expressed in the decision matrix
D (Table 1A), where the predicted measurements of each can-

didate networks are presented. Moreover, suppose that the
user has two running applications, voice and data for example.
Table 2A Decision matrix D.

Network Technology D: Decision Matrix: Monitored/Pred

Pout Crsd

802.11 7.807536E-01 2.82

802.16 2.004737E-01 3.80

UMTS 1.860872E-01 7.45

Table 2B Scaled matrix.

Network Technology D: Scaled Matrix: Monitored/Predic

Pout Crsd

802.11 2.383430E-01 3.7943

802.16 9.282390E-01 5.1008

UMTS 1.000000 1.0000

Table 2C Assigned weights.

Service P: Normalized User/Application Preferences

Pout Crsd

Voice 4.092000E-01 2.270000E-0

Data 4.550000E-02 2.270000E-0
The preference on handover criteria is modeled as weights as-
signed by the user, as shown (for example) in Table 1C. Now,

all elements in the decision matrix, D, must be in a comparable
scale (Table 1B): if a QoS criterion is benefit, i.e. the larger, the
better, the comparable scale is obtained using Eqs. (17) and

(18), and is applicable for cost criteria.

yij ¼ xij=x
max
i 8i; j; for beneficial criteria ð17Þ

yij ¼ xmin
i =xij; 8i; j; for cost criteria ð18Þ

Now, the weighted average values of network scores with re-

spect to voice and data applications are as follows: network
Score = DS\P (Table 1D).

As can be seen, with such a scoring example, Wi Fi is hav-
ing the highest score for both voice and data applications,
icted Network Parameters

SINRMoni Cost

7938 8.335805 6.000000

1629 22.529620 8.000000

2947 5.603825 10.000000

ted Network Parameters

SINRMoni Cost

89E-01 3.69993E-01 1.000000

40E-01 1.000000 7.500000E-01

00 2.487314E-01 6.000000E-01

SINRMoni Cost

1 3.182000E-01 4.550000E-02

1 3.182000E-01 4.092000E-01



Table 2D Network scores.

Network Technology Network Scores

Voice application Data application

802.11 3.468944E-01 6.239091E-01

802.16 8.479494E-01 7.831240E-01

UMTS 7.426463E-01 5.791664E-01
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7.134814E-01 and 9.680524E-01 respectively. The next exam-
ple, Table 2, repeats but for measurements taken at a distance
of about 80 m from the AP,

As can be seen, in this example, the current network scoring
scheme has decided to migrate to the Wi MAX network,
8.479494E-01 and b7.831240E-01, but, certainly, at due time

as explained in Fig. 5.

7. Summary and conclusions

The convergence of various wireless access technologies has al-
ways been a difficult assignment because of the fact that they
have emerged independently. Future vision of wireless world

is an integrated network of different wireless access technolo-
gies with improved system resources utilization anywhere, any-
time. In this paper, vertical handoff procedure in location and

speed-aware (via estimation) heterogeneous wireless access
network is being proposed. A multi-criteria vertical handoff
algorithm sensitive to various mobility and QoS parameters
is analytically formulated and examined via simulations. It is

targeted to estimate/predict the handoff metrics including out-
age probability, residual capacity, signal to interference and
noise ratio threshold as well as network access cost. In order

to avoid the ping–pong effect, a signal evolution prediction
system is formulated and its performance is examined. The
handoff scheme is triggered using an on line handoff-

initiation-time estimation model. The handoff procedures
begin with network scoring process based on multi-attributes
strategy which results in selection of the most potential
network. Simulation results are shown to track well the analyt-

ical formulations.

Appendix A

Consider a time sequence X0 that denotes the raw of positive
data measurements, (Kayacan et al., 2010),

X0ðX0ð1Þ;X0ð2Þ; . . . ;X0ðnÞÞ; n P 4 ðA:1Þ

the following, accumulating sequence, X(1), is obtained,

Xð1Þ ¼ ðXð1Þð1Þ;Xð1Þð2Þ; . . .Xð1ÞðnÞÞ; n P 4 ðA:2Þ

where,

Xð1ÞðkÞ ¼
Xk
i¼1

X0ðiÞ; k ¼ 1; 2; 3 . . . n ðA:3Þ

and, the mean sequence, Z1 is generated,

Z1 ¼ ðZ1ð1Þ;Z1ð2Þ;Z1ð3Þ; . . . ;Z1ðnÞÞ ðA:4Þ

where Z1(K) is the mean sequence such that,

Z1ðnÞ ¼ 0:5ðXð1ÞðkÞ þ Xð1Þðk� 1ÞÞ k ¼ 1; 2; 3 . . . n ðA:5Þ
Then, the least square estimate sequence of the grey difference

equation, G(t), is defined,

GðtÞ ¼ dX1ðtÞ
dt

þ aX1ðtÞ ¼ b ðA:6Þ

where, in the above, [a, b]T is a sequence of parameters that can

be found as follows:

½ a b �T ¼ ðBTBÞ�1BTY;

where Y[X0(1), X0 (2),. . .X0 (n)]T and,

B ¼

�Z1ð2Þ 1

�Z1ð3Þ 1

..

.

�Z1ðnÞ 1

266664
377775

The solution to Eq. (A.6) at time K is, therefore, given by,

X0
pðkþ 1Þ ¼ X0ð1Þ � b

a

� �
e�akð1� eaÞ ðA:7Þ

and the predicted value of data at a future time (k+ H) is,

X0
pðkþHÞ ¼ X0ð1Þ � b

a

� �
eaðkþH�1Þð1� eaÞ ðA:8Þ
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