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Abstract The design problem of imposing deeper nulls in the interference direction of uniform lin-

ear antenna arrays under the constraints of a reduced side lobe level (SLL) and a fixed first null

beam width (FNBW) is modeled as a simple optimization problem. The real-coded genetic algo-

rithm (RGA) is used to determine an optimal set of current excitation weights of the antenna ele-

ments and the optimum inter-element spacing that satisfies the design goal. Three design examples

are presented to illustrate the use of the RGA, and the optimization goal in each example is easily

achieved. The numerical results demonstrate the effectiveness of the proposed method.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

An antenna array is composed of an assembly of radiating ele-
ments in an electrical or geometrical configuration. In most
cases, the elements are identical. The total field of the antenna

array is found by vector addition of the fields radiated by each
individual element. Five controls in an antenna array can be
used to shape the pattern properly: the geometrical configura-

tion (linear, circular, rectangular, spherical) of the overall ar-
ray, the spacing between the elements, the excitation
amplitude of the individual elements, the excitation phase of

the individual elements, and the relative pattern of the individ-
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ual elements (Ballanis, 1997; Elliott, 2003). Many communica-

tion applications require a highly directional antenna. Array
antennas have higher gain and directivity than an individual
radiating element. A linear array consists of elements placed

in a straight line with a uniform spacing between the elements
(Haupt and Werner, 2007). The goal of antenna array geome-
try synthesis is to determine the physical layout of the array
that produces a radiation pattern that is closest to the desired

pattern.
The increasing amount of electromagnetic pollution has

prompted the study of array pattern nulling techniques. These

techniques are important in radar, sonar and communication
systems to minimize degradation of the signal to noise ratio
due to undesired interference (Haupt and Werner, 2007).

Much current research on antenna arrays (Haupt, 1997; Steys-
kal et al., 1986; Yang et al., 2004; Mandal et al., 2010; Guney
and Akdagli, 2001) is focused on using robust and easily

adapted optimization techniques to improve the nulling per-
formance. Classical gradient-based optimization methods are
not suitable for improving the nulling performance of linear
antenna arrays for several reasons, including the following:
ing Saud University.
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(i) the methods are highly sensitive to the starting points when
the number of variables, and hence the size of the solution
space, increases, (ii) they frequently converge to local optimum

solutions, diverge or arrive at the same suboptimal solution,
(iii) they require a continuous and differentiable objective
function (gradient search methods), (iv) they require piecewise

linear cost approximation (linear programming), and (v) they
have problems with convergence and algorithm complexity
(non-linear programming). Thus, evolutionary optimization

methods have been employed for the optimal design of deeper
nulls. Different evolutionary optimization algorithms, such as
fuzzy logic (Mukherjee and Kar, 2012; Anooj, 2012; De and
Sil, 2012), the bees algorithm (Fahmy, 2012), the genetic algo-

rithm (GA) (Haupt and Werner, 2007), and particle swarm
optimization (PSO) (Mandal et al., 2012), have been widely
used in the development of design methods that are capable

of satisfying constraints that would otherwise be unattainable.
Of these algorithms, GA is a promising global optimization
method for the design of antenna arrays.

Several methods for the synthesis of array antenna patterns
with prescribed nulls are reviewed below. A method for null
control and the effects on radiation patterns is discussed in

Steyskal et al. (1986). An approach of null control using
PSO, where single or multiple wide nulls are generated by opti-
mum perturbations of the elements’ current amplitude weights
to create symmetric nulls about the main beam, is discussed in

Mandal et al. (2010). An approach for the pattern synthesis of
linear antenna arrays with broad nulls is described in Guney
and Akdagli (2001). In Yang et al. (2002), a differential evolu-

tion algorithm is used to optimize the static-mode coefficients
and the durations of the time pulses, leading to a significant
reduction of the sideband level. A binary coded genetic algo-

rithm is used in Haupt (1995, 1975) and Yan and Lu (1997)
to reduce the sidelobe level of a linear array by excitation coef-
ficient tapering. The spacing is assumed to be equal to half of

the wavelength throughout the array aperture. The study
shows good sidelobe performance (approximately �33 dB)
for a 30 element array. The radiation pattern of linear arrays
with large numbers of elements (20–100) is improved using a

GA in Ares-Pena et al. (1999). The sidelobes for 20 and 100
element arrays are reduced to �20 dB and �30 dB, respec-
tively. A decimal GA technique to taper the amplitude of the

array excitation to achieve reduced side lobe and null steering
in single or multiple beam antenna arrays is proposed in
Abdolee et al. (2007). In Son and Park (2007), a low-profile

phased array antenna with a low sidelobe was designed and
fabricated using a GA. The sidelobe level was suppressed by
only 6.5 dB after optimization. An approach for sidelobe
reduction in a linear antenna array using a GA is proposed

in Recioui et al. (2008), Das et al. (2010). In Das et al.
(2010), the sidelobes for symmetric linear antenna arrays are
reduced without significantly sacrificing the first null beam-

width, and non-uniform excitations and optimal uniform spac-
ing are proposed generate the desired result. Optimal values
are found using the real-coded genetic algorithm (RGA). An

approach to determine an optimum set of weights for antenna
elements to reduce the maximum side lobe level (SLL) in a
concentric circular antenna array (CCAA) with the constraint

of a fixed beamwidth is proposed in Mandal et al. (2009),
Mondal et al. (2010). In (Cafsi et al. (2011), a method of
adaptive beamforming is described for a phased antenna array
using a GA. The algorithm can determine the values of phase
excitation for each antenna to steer the main beam in specific
directions.

The goal of this paper is to introduce deeper null/nulls in

the interference directions and to suppress the relative SLLs
with respect to the main beam with the constraint of a fixed
first null beam width (FNBW) for a symmetric linear antenna

array of isotropic elements. This is done by designing the rel-
ative spacing between the elements with a non-uniform excita-
tion over the array aperture. An evolutionary technique, the

RGA (Haupt and Werner, 2007; Haupt, 1995; Holland,
1975), is used to obtain the desired pattern of the array.
Several aspects of the RGA are different from other search
techniques. First, the algorithm is a multi-path technique that

searches many peaks in parallel and hence decreases the possi-
bility of local minimum trapping. Secondly, the RGA only
needs to evaluate the objective function (fitness) to guide its

search. Hence, there is no need to compute derivatives or other
auxiliary functions, so the RGA can also minimize the non-
derivable objective function. Finally, the RGA explores the

search space where the probability of finding improved perfor-
mance is high.

A broadside uniform linear array with uniform spacing is

considered. The array is symmetric with respect to the origin
with equal spacing between any two consecutive elements.
The phase difference between any two elements is fixed at zero.
The RGA adjusts the excitation coefficients and location of the

elements from the array center to impose deeper nulls in the
interference directions. A cost function is defined that keeps
the nulls and side lobes at lower levels.

The remainder of the paper is arranged as follows. In Sec-
tion 2, the general design equations for a non-uniformly ex-
cited and unequally spaced linear antenna array are stated.

A brief introduction to the Genetic Algorithm is presented in
Section 3, and the numerical simulation results are presented
in Section 4. The paper concludes with a summary of the work

in Section 5.
2. Design equation

A broadside linear antenna array (Ballanis, 1997; Elliott, 2003)
of 2M isotropic radiators, as shown in Fig. 1, is considered.
Each element is excited with a non-uniform current. The array
elements are assumed to be uncoupled and equally spaced

along the z-axis, and the center of the array is located at the
origin. The array is symmetric in both geometry and excitation
with respect to the center.

The radiation characteristics of antennas are most impor-
tant in the far field (Fraunhofer) region. An array consisting
of identical and identically oriented elements has a far field

radiation pattern that can be expressed as the product of the
element pattern and a factor that is widely referred to as the
array factor. Each array has its own array factor. The array
factor, in general, is a function of the number of elements, their

geometrical arrangement, their relative magnitudes, their rela-
tive phases, and their relative spacings. Because the array fac-
tor does not depend on the directional characteristics of the

radiating elements, it can be formulated by replacing the actual
elements with isotropic (point) sources. For the array in Fig. 1,
the array factor, AFðI;u; dÞ Ballanis, 1997; Elliott, 2003 in the

azimuth plane (x–y plane) with symmetric amplitude distribu-
tions (Ballanis, 1997) may be written as (1):



Figure 1 Geometry of a 2M element symmetric linear antenna

array along the z axis.
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AFðI;u; dÞ ¼ 2
XM
n¼1

In cos
2n� 1

2

� �
kd cosðhÞ þ un

� �
ð1Þ

where h denotes the zenith angle measured from the broadside
direction of the array, In and un are the current excitation

amplitude and the excitation phase of the nth array element,
respectively, d is the spacing between two consecutive elements
and k ¼ 2p=k are the wave numbers, where k is the signal
wave-length. In this paper, un is fixed at zero. The array ele-

ments are numbered from 1 to M from the origin in a symmet-
ric array, where the total number of elements is 2M.

After defining the far-field radiation pattern, the next step

in the design process is to formulate the objective function that
is to be minimized. The objective function is defined using the
array factor in such a way that the objective of the optimiza-

tion is satisfied. For the optimization problem of the null
placement in the far field pattern of the array, the array factor
value at the particular null position must be less than the ref-
erence pattern. Similarly, for the side lobe reduction problem,

the array factor values at the side lobe peaks must be less than
the reference pattern. To satisfy these objectives, the array fac-
tor is included in the cost function expression. The objective

function ‘‘cost function’’ (CF) to be minimized with the
RGA to introduce the deeper null and reduce the relative
SLL is given in (2):

CF ¼ C1 �
Qm

i¼1AFðnulliÞ
�� ��
jAFmaxj

þ C2 �
XK
k¼1

HðkÞ � ðQk � dÞ

þ C3 � FNBWcomputed � FNBWðIn ¼ 1Þ
� �

ð2Þ

where m is the maximum number of positions where the null
can be imposed. In this paper, the value of ‘m’ is considered
to be one and two. AFðnulliÞ is the value of the array factor

at the particular null position, and AFmax is the maximum va-
lue of the array factor. The second term in (2) is summed to
reduce the SLL to a desired level. K denotes the number of side
lobes in the original pattern, Qk is the side lobe level in dB

generated by the individual population at some peak point
hk, and d is the desired value of the side lobe level in dB.
HðkÞ is defined as (3):

HðkÞ ¼
1; ðQk � dÞ > 0

0; ðQk � dÞ 6 0

	
ð3Þ

The side lobes whose peaks exceed the threshold d must be
suppressed, so HðkÞ is adopted in the ‘‘cost function’’ expres-
sion. FNBW denotes the first null beamwidth, which is the

angular width between the first nulls on either side of the main
beam. The third term in (2) is introduced to keep FNBW of the
optimized pattern the same as in the initial pattern (the pattern

for In ¼ 1 and d ¼ k=2). In (2), the two beamwidths
FNBWcomputed and FNBWðIn ¼ 1Þ refer to the computed first
null beamwidth in radian for the non-uniform excitation for

the optimal spacing case and for the uniform excitation
ðIn ¼ 1Þ with uniform inter-element spacing ðd ¼ k=2Þ case,
respectively. The actual value of FNBW for a uniform linear
array can be calculated by (4):
hn ¼
2k
Nd

ð4Þ

where N (= 2M) is the total number of elements in the array.
C1;C2, and C3 are weighting coefficients to control the relative

importance of each term of (2). Because the primary aim is to
achieve a deeper null, the value of C1 is higher than the values
of C2 and C3. In the first term of (2), both the numerator and

denominator are absolute values. A smaller value of the cost
function means that the array factor values at predefined posi-
tions are lower. Consequently, RGA controls the amplitude

excitations and the inter-element spacing to minimize the cost
function.
3. Evolutionary optimization technique: genetic algorithm

Genetic algorithms are a family of computational models in-
spired by evolution (Haupt and Werner, 2007; Haupt, 1995;

Holland, 1975). GAs can be used to find approximate solu-
tions to search problems through the application of the princi-
ples of evolutionary biology. GA uses biologically inspired
techniques, such as genetic inheritance, natural selection,

mutation, and sexual reproduction (recombination or cross-
over). The GA was first introduced in 1975 by Prof. Holland
(1975). Real-coded GA (RGA) uses floating-point number rep-

resentations for the real variables and thus is free of binary
encoding and decoding. Hence, it is faster than binary GA.
The algorithm performs the following steps:

(1) Randomly or heuristically generates an initial popula-
tion within the variable constraint range.

(2) Computes and saves the fitness for each individual in the
current population.

(3) Defines the selection probability for each individual so
that it is proportional to its fitness.

(4) Generates the next population by probabilistically
selecting the individuals from the previous current pop-
ulation to produce offspring via genetic operators.

(5) Repeats step 2 until a satisfactory solution is obtained.



Figure 2 The GA flow for determining the optimized excitation

amplitude and optimum location of array elements.

Table 1 SLL and FNBW for uniform excitation (In ¼ 1) of

linear array sets with an inter-element spacing of k=2.

Set no. Total number

of elements (2M)

SLL (dB) FNBW (degrees)

I 12 �13.06 19.10

II 16 �13.14 14.40

III 20 �13.19 11.52
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GA consists of a data structure of individuals called the
population. Individuals are also called chromosomes. Each
chromosome is evaluated by a function known as a fitness

function or a cost function, which is usually the fitness func-
tion or the objective function of the corresponding optimiza-
tion problem.

The working principle of a GA is explained briefly in Fig. 2
based on the problem addressed in this paper.

The important parameters of the GA are as follows:

� Selection – this is based on the fitness criterion to choose
which chromosome from a population will go onto
reproduce.

� Reproduction – the propagation of individuals from one
generation to the next.
� Crossover – this operator exchanges genetic material, which

are the features of the optimization problem. Single point
crossover is used here.
� Mutation – the modification of chromosomes in single indi-

viduals. Mutation does not permit the algorithm to get
stuck at a local minimum.

Stopping criteria – The iteration stops when the maximum
number of cycles is reached. The grand minimum CF and its
corresponding chromosome string or the desired solution are
finally obtained.

The desired pattern is generated by jointly optimizing the
amplitude distributions and the inter-element spacing with
the fixed first null beam width. In this paper, both the ampli-

tude and the inter-element spacing distributions are assumed
to be symmetric with respect to the center of the array. The
chromosomes correspond to the current excitation weights
and the inter-element spacing of the antenna elements. Because

of symmetry, each chromosome consists of M + 1 number of
genes, where M is the number of antenna elements on either
side of the array center. Here, the 1st to Mth genes represent

the current excitation weights of the antenna elements, and
the ðMþ 1Þth gene represents the inter-element spacing. For
example, chromosome one W1 can be represented by (5):

W1 ¼ ½W11;W12; . . .W1M;W1ðMþ1Þ� ð5Þ

where W11;W12; . . .W1M are the antenna element weights or
genes, and W1ðMþ1Þ is the inter-element spacing. Each of these
current excitation weights and the inter-element spacing has

upper and lower limits. The random set of chromosomes can
easily be constructed using the following relation represented
by (6):

Wn ¼ ðu1 � u2Þ � �rþ u2; u2 <Wn 6 u1 ð6Þ

where u1 and u2 are the maximum and minimum limit values of
the weights, respectively, and �r is a real random vector between
zero and one. All of the current excitation weights are re-

stricted to lie between 0 and 1, and the inter-element spacing
is restricted to lie between k=2 and k.

4. Numerical simulation results

Linear antenna arrays composed of 12, 16, and 20 isotropic
radiating elements, with an inter-element spacing of k/2, are
considered for reference. RGA is applied to obtain deeper
nulls and to reduce the SLLs. RGA was executed with 500 iter-
ations, and the population size was fixed at 120. For the RGA,

the mutation probability was set to 0.05, and uniform cross-
over was used. The RGA algorithm is initialized using random
values of the excitation (0 < In < 1) and the spacing between

the elements (k=2 6 d < k). The nulling performances are im-
proved for predefined nulls of the radiation pattern. Similarly,
nulls are imposed at predefined peak positions. The program
was written in Matlab and run in MATLAB version

7.8.0(R2009a) on a 3.00 GHz core (TM) 2 duo processor with
2 GB RAM.

The initial values of the maximum side lobe level (SLL) and

the FNBW for a uniform amplitude ðIn ¼ 1Þ and uniform
spacing (k=2 between adjacent elements) for all of the array
structures (linear arrays with 12, 16 and 20 elements) are given

in Table 1.
Figs. 3–5 show the generation of deeper nulls over the 3rd

null. For the 12, 16, and 20-element arrays, the nulls have im-

proved up to �79.54 dB, �80 dB, and �98.51 dB from the ini-
tial values of �51.90 dB, �50.60 dB, and �77.20 dB,
respectively. Table 2 shows the resulting amplitude excitation
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Figure 4 Best array pattern found by RGA for the 16-element array case with an improved null at the 3rd null; i.e., h = 68� and

h = 112�.
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Figure 5 Best array pattern found by RGA for the 20-element array case with an improved null at the 3rd null; i.e., h = 72.5� and

h = 107.5�.
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Figure 3 Best array pattern found by RGA for the 12-element array case with an improved null at the 3rd null; i.e., h = 60� and

h = 120�.
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distribution, optimal inter-element spacing, initial depth and
final null depth over the 3rd null position obtained by optimiz-

ing the cost function using RGA. In this case, the weightings of
the array elements I1; I2; . . . IM are normalized using max
ðIMÞ ¼ 1, and the inter-element spacings d are normalized by

k=2. Figs. 3–5 also depict the substantial reductions in the
maximum peak of the SLL with non-uniform current excita-
tion weights and optimal inter-element spacing, compared to

the uniform current excitation weights and uniform
inter-element spacing ðd ¼ k=2Þ. Table 2A shows the SLL
and FNBW of the optimized pattern for a null imposed at

the 3rd null position.
Figs. 6–8 show the generation of nulls at the 3rd peak for

12, 16 and 20 element structures, respectively. For 12, 16,

and 20 elements, the nulls have improved up to �123.5 dB,
�83.17 dB, and �92.00 dB from the initial peak values of
�19.56 dB, �20.10 dB, and �20.35 dB, respectively. Figs. 6–

8 also depict the substantial reductions in the maximum peak



Table 2 Current excitation weights and initial and final null depths for a non-uniformly excited linear array with optimal inter-

element spacing (d) for one null imposed in the 3rd null position.

No. of elements (I1; I2; . . . IM); d normalized with respect to k=2 Initial depth (dB)

(for In ¼ 1 and d ¼ k=2)
Final depth (dB)

(optimized In and d)

12 0.84511 0.6556 0.8444 0.71671 0.47139

0.40992; 1.1601

�51.90 �79.54

16 0.6013 0.5029 0.4866 0.4084 0.2438 0.1575 0.0173

0.0718; 1.1248

�50.60 �88.29

20 0.5478 0.7969 0.5051 0.5722 0.6221 0.6894 0.5206

0.4061 0.3769 0.1785; 1.2099

�77.20 �98.51

Table 2A SLL and FNBW for a non-uniformly excited linear

array with optimal inter-element spacing (d) for one null

imposed in the 3rd null position.

No. of elements SLL final (dB) FNBW final (degrees)

12 �16.76 19.10

16 �14.51 14.40

20 �15.50 11.52
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of the SLL with the non-uniform current excitation weights
and the optimal inter-element spacing compared to the uni-

form current excitation weights and a uniform inter-element
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Figure 6 Best array pattern found by RGA for the 12-element array

h = 125.50�.
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Figure 7 Best array pattern found by RGA for the 16-element arra

h = 115.6�.
spacing ðd ¼ k=2Þ. For example, in the optimized pattern,
the SLL is reduced by more than 3 dB from �13.06 dB to
�16.96 dB for the 12 element array. For the 16 element array

with the optimized pattern, the SLL is reduced by more than
4 dB from �13.14 dB to �17.46 dB. For the 20 element array
with the optimized pattern, the SLL is reduced by more than

1 dB from �13.19 dB to �14.22 dB. The improved values are
shown in Tables 3 and 3A.

Figs. 9–11 show the generation of nulls at the 2nd and 3rd

peaks for 12, 16 and 20 element structures, respectively. For
12, 16, and 20 elements, the pair of nulls has improved up to
(�62.97 dB, �85.10 dB), (�83.87 dB, �69.09 dB), and
(�71 dB, �78.92 dB) from the initial peak values of
100 120 140 160 180

val (degrees)

In=1 & d=lamda/2
GA Optimized pattern

case with a null introduced at the 3rd peak; i.e., h = 54.50� and

100 120 140 160 180

val (degrees)

In:1 & d:lamda/2
GA Optimized pattern

y case with a null introduced at the 3rd peak; i.e., h = 64.4� and
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Figure 8 Best array pattern found by RGA for the 20-element array case with a null introduced at the 3rd peak; i.e., h = 69.70� and

h = 110.30�.

Table 3 Current excitation weights and initial and final null depths for a non-uniformly excited linear array with optimal inter-

element spacing (d) for one null imposed in the 3rd peak position.

No. of elements (I1; I2; . . . IM); d normalized with respect to k=2 Initial depth (dB)

(for In ¼ 1 and d ¼ k=2)
Final depth (dB)

(optimized In and d)

12 0.60797 0.5196 0.40068 0.51144 0.3882

0.35568; 1.1273

�19.56 �123.5

16 0.5744 0.59995 0.45826 0.4777 0.39889 0.37541

0.14133 0.3515; 3.1903

�20.10 �89.17

20 0.8496 0.5783 0.8708 0.5555 0.5727 0.7696 0.6757

0.9098 0.3100 0.0361; 1.3892

�20.35 �92.00

Table 3A SLL and FNBW for a non-uniformly excited linear

array with optimal inter-element spacing (d) for one null

imposed in the 3rd peak position.

No. of elements SLL final (dB) FNBW final (degrees)

12 �16.96 19.08

16 �17.46 17.10

20 �14.22 10.00
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(�17.22 dB, �19.56 dB), (�17.49 dB, �20.10 dB), and
(�17.61 dB, �20.40 dB), respectively. Figs. 9–11 also depict

the substantial reductions in the maximum peak of the SLL
0 20 40 60 80
-80

-60

-40

-20

0

Angle of ari

Si
de

 lo
be

 le
ve

l (
dB

)

Figure 9 Best array pattern found by RGA for the 12-element array

(h ¼ 54:50�; 125:50�) peaks.
with the non-uniform current excitation weights and optimal
inter-element spacing compared to the uniform current

excitation weights and uniform inter-element spacing
ðd ¼ k=2Þ. For example, the SLL is reduced by more than
3 dB from �13.06 dB to �16.17 dB for the 12 element array.

For the 16 element array, the SLL is reduced by more than
6 dB from �13.14 dB to �20.00 dB. For the 20 element array,
the SLL is reduced by more than 2 dB from �13.19 dB to

�15.85 dB. The improved values are shown in Tables 4 and
4A.

Figs. 12–14 show the generation of nulls at the 2nd and 3rd
nulls for 12, 16 and 20 element structures, respectively. For 12,

16, 20 elements, the pair of nulls has improved up to
100 120 140 160 180

val (degrees)

In=1 & d=lamda/2
GA Optimized pattern

case with nulls introduced at the 2nd (h ¼ 65:7�; 114:3�) and 3rd
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Figure 11 Best array pattern found by RGA for the 20-element array case with nulls introduced at the 2nd (h ¼ 75:6�; 104:4�) and 3rd

(h ¼ 69:7�; 110:3�) peaks.
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Figure 10 Best array pattern found by RGA for the 16-element array case with nulls introduced at the 2nd (h ¼ 72�; 108�) and 3rd

(h ¼ 64:4�; 115:6�) peaks.

Table 4 Current excitation weights, initial peak depth and final null depth for a non-uniformly excited linear array with optimal inter-

element spacing (d) for nulls imposed in the 2nd and 3rd peak positions.

No. of elements (I1; I2; . . . IM); d normalized with respect to k=2 Initial depth (dB)

(for In ¼ 1 and d ¼ k=2)
(2nd; 3rd)

Final depth (dB)

(optimized In and d)

(2nd; 3rd)

12 0.6876 0.7969 0.7023 0.67534 0.2092 0.1201; 1.2525 �17.22; �19.56 �62.97; �85.10
16 0.6049 0.5893 0.5405 0.5850 0.3186 0.3795 0.4347

0.2377; 1.2011

�17.49; �20.10 �83.87; �69.09

20 0.6163 0.5076 0.7290 0.4194 0.7148 0.2845 0.8719

0.3889 0.2575 0.5260; 1.0442

�17.61; �20.40 �71.00; �78.92

Table 4A SLL and FNBW for a non-uniformly excited linear

array with optimal inter-element spacing (d) for nulls imposed

at the 2nd and 3rd peak positions.

No. of elements SLL final (dB) FNBW final (degrees)

12 �16.17 21.22

16 �20.00 14.40

20 �15.85 11.52

124 B. Goswami, D. Mandal
(�82.75 dB, �94.66 dB), (�122.30 dB, �123.00 dB), and
(�68.60 dB, �86.36 dB) from initial values of (�55.83 dB,
�53.93 dB), (�45.35 dB, -50.60 dB), and (�56.62 dB,
�77.2 dB), respectively. Figs. 12–14 also depict the substantial
reductions in the maximum peak of the SLL with the non-uni-

form current excitation weights and optimal inter-element
spacing compared to the uniform current excitation weights
and uniform inter-element spacing ðd ¼ k=2Þ. For example,

the SLL is reduced by more than 7 dB from �13.06 dB to
�20.53 dB for the 12 element array. For the 16 element array,
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Figure 13 Best array pattern found by RGA for the 16-element array case with improved nulls at the 2nd (h ¼ 75:6�; 104:4�) and 3rd

(h ¼ 68�; 112�) nulls.
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Figure 14 Best array pattern found by RGA for the 20-element array case with improved nulls at the 2nd (h ¼ 78:5�; 101:5�) and 3rd

(h ¼ 72:5�; 107:5�) nulls.

0 20 40 60 80 100 120 140 160 180
-80

-60

-40

-20

0

Angle of arival (degrees)

Si
de

 lo
be

 le
ve

l (
dB

)

In:1 & d:lamda/2
GA Optimization

Figure 12 Best array pattern found by RGA for the 12-element array case with improved nulls at the 2nd (h ¼ 70:6�; 109:4�) and 3rd

(h ¼ 60�; 120�) nulls.

Table 5 Current excitation weights and initial and final null depths for a non-uniformly excited linear array with optimal inter-

element spacing (d) for nulls imposed in the 2nd and 3rd null positions.

No. of elements (I1; I2; . . . IM); d normalized with respect to k=2 Initial depth (dB)

(for In ¼ 1 and d ¼ k=2)
(2nd; 3rd)

Final depth (dB)

(optimized In and d)

(2nd; 3rd)

12 0.5974 0.5762 0.5642 0.4591 0.2516 0.2240; 1.2422 �55.83; �53.93 �82.75; �94.66
16 0.6198 0.5511 0.3251 0.4087 0.1548 0.2899 0.0937 0.1639;

1.7686

�45.35; �50.60 �122.30; �123.00

20 0.6163 0.5076 0.7290 0.4194 0.7148 0.2845 0.8719 0.3889

0.2575 0.5260; 1.0442

�56.62; �77.20 �68.60; �86.36
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Table 5A SLL and FNBW for a non-uniformly excited linear

array with optimal inter-element spacing (d) for nulls imposed

at the 2nd and 3rd null positions.

No. of elements SLL final (dB) FNBW final (degrees)

12 �20.53 19.88

16 �15.05 14.40

20 �13.27 11.62
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the SLL is reduced by approximately 2 dB from �13.14 dB to
�15.05 dB. For the 20 element array, the SLL is reduced by
less than 1 dB from �13.19 dB to �13.27 dB. The improved

values are shown in Tables 5 and 5A.

5. Conclusions

This paper describes the design of a non-uniformly excited
symmetric linear antenna array with optimized non-uniform
spacings between the elements using the optimization tech-

niques of a RGA. The simulated results reveal that optimizing
the excitation values of the elements with the optimal inter-ele-
ment spacings of the array antennas can impose deeper nulls in

the interference direction and reduce the SLL for a given num-
ber of array elements with respect to the corresponding uni-
formly excited linear array with an inter-element spacing of

k=2. For instance, an optimized 16 element linear array anten-
na imposes nulls with values of �83.87 dB and �69.09 dB at
the second and third peaks, respectively, from initial peak val-
ues of �17.49 dB and �20.10 dB at second and third peaks,

respectively. The SLL was also reduced by 6.84 dB. The paper
makes three main contributions: (i) In almost all design config-
urations, the null depth improves by approximately �80 dB.

(ii) The maximum SLL is also reduced in all cases. (iii) The
FNBW of the initial and final radiation pattern remains
approximately the same. It is worth noting that although the

proposed algorithm is implemented to constrain the synthesis
of a linear array with isotropic elements, it is not limited to this
case. The proposed algorithm can easily be implemented in
non-isotropic element antenna arrays with different geometries

to design various array patterns.
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