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Abstract Radio Frequency Identification (RFID) technology is broadly deployed for improving

trade and transactions. An RFID tag can identify the region (position) where it resides; thus, a pop-

ular trend among researchers is to deploy RFID technology for mobile robot localization. Because

the intensities of signals at adjacent regions are similar to each other, it is a challenge to employ an

RFID system as a sensor. In this proposed system, tags are scattered throughout a mobile robot’s

environment in a constrained random pattern and are treated as landmarks. An RFID receiver is

mounted on a mobile robot that can navigate such an environment. The robot senses all landmarks

in the vicinity to acquire the IDs and received signal strength indicator (RSSI) measurements of the

scattered tags. The robot can locate itself depending on the classification result provided by a feed-

forward back-propagation artificial neural network (BPANN) supplied with a set of all RSSI mea-

surements read by this robot at a specific location. To be acceptable, this set should only have

one high RSSI measurement. The robot senses the location information from a high-valued RSSI

tag and adds it to a list of tag IDs along with the corresponding location information. The robot can

use this information to travel between any two identified locations. The experimental results dem-

onstrate the efficiency of this proposed system.
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1. Introduction

1.1. Overview

Learning is based on no prior knowledge, but on the perceived

states of an environment. The representation of objects within
an environment that a mobile robot uses is based on the inter-
action between the mobile robot and its environment (Brooks,
1991). To be autonomous, the robot must learn, and an
ing Saud University.
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autonomous robot can locate itself and navigate its environment,
specifically, it can determine a path to a specific target using
localization and orientation information. The mobile robot

may use one of several methods for data classification to divide
its environment into regions that may be called, by different
researchers, locations or partitions. To locate itself, the mobile

robot must be informed regarding the region in which it lies.
To avoid errors, redundant sensors are used, especially to

avoid the errors that emerge from computing the robot’s posi-

tion. Information is gathered by fusing the sensor observations
with prior knowledge about the environment (Pauly et al.,
1998).

Most work using RFID systems for localization purposes

in mobile robotic applications uses rewritable tags to store
the prior knowledge of location information in them (Pauly
et al., 1998). In this work, to enhance the autonomous mobile

robot navigation and to distribute tags randomly, we consider
storing distance information and the initial heading angle of
the mobile robot in the robot brain. This information has been

gathered as the robot explores the environment using its
sensors.

In this work, a supervised form of a feed-forward back-

propagation artificial neural network (BPANN) is used to clas-
sify the signals received from all the sensors for the purpose of
localizing the mobile robot.

This paper is organized as follows: the Problem Statement

is provided in Section 2. In Section 3, the related works are dis-
cussed. Section 4 is dedicated to the implementation details
and investigations. Section 5 presents concluding remarks.

1.2. Problem statement

The problem of mobile robot localization has been widely ad-

dressed in the literature in recent years. An accurate localiza-
tion technique will produce coordinates of the mobile robot’s
position so it can travel from one location to another. Tags,

which play the role of landmarks, emit signals to identify envi-
ronmental regions. To localize itself, the mobile robot should
learn how to classify these signals, which requires the use of
an RFID system to provide the received signal strength indica-

tor (RSSI) measurement throughout the navigation arena.
To perform autonomous navigation, the mobile robot ini-

tially gets its heading angle, then explores its environment to

find low-cost write-once tags, which provide their IDs. The ro-
bot measures their RSSI values by RFID sensor. As a result,
the mobile robot stores the location information of these tags

on the permanent storage of a server PC. Because the tags have
a constrained random distribution, the mobile robot motion
should be a systematic motion to ensure that the mobile robot
reaches all regions in its environment.

The regular classification process using a supervised form
of a feed-forward back-propagation artificial neural network,
which classifies the RSSI measurements into groups, results

in dilation because the RSSI measurement of each tag should
be read several times to be provided to the classifier algorithm
for error reduction. Therefore, an alternative classification

method for this purpose is applied, also using a supervised
BPANN. All environmental features contribute to the decision
making; namely, all the RSSI measurements are treated as one

input set and processed to produce one output result whose va-
lue is either approximately 1 or approximately 0 depending on
the input set. Regardless of the number of tags in the mobile
robot’s environment, whenever the RSSI measurement re-
ceived from any one of the tags reaches the detection-RSSI-

threshold value, the tag ID is added to the input set of the
BPANN. The detection-threshold-value is constantly updated
and depends on the difference between the maximum and min-

imum RSSI measurement received from tags in the mobile ro-
bot’s sensible environmental space. As the mobile robot moves
to explore its environment, just before leaving the immediate

vicinity of a tag, the tag’s RSSI measurement starts to drop.
If the RSSI measurements of two or more tags end up being
the maximum RSSI measurement and at the same time equal
to each other, the robot will continue the exploration and stop

considering any RSSI measurements until one of the maximum
values starts to reduce. Using this approach for signal classifi-
cation guarantees the unique association of the robot with a

single tag at any given time.
The constrained random distribution used to scatter the

tags ensures that the tags are ‘‘randomly’’ distributed with

an acceptable minimum distance between them. The mobile
robot is established to be localized at a specific location (or
node, in grid-based localization literature) marked by the posi-

tive output of the BPANN given an acceptable input-RSSI-set.
The acceptable input-RSSI-set is defined as a set containing all
RSSI measurement values greater than the detection-RSSI-
threshold.

The location information of any tag is determined by its
absolute x and y coordinates. The square 2D space on the floor
is considered to be the experiment arena. The south-west cor-

ner of the square space is the start point. The robot also has a
sonar-based localization capability, i.e., the two sonars return
the distance of the robot from the 0.5 m high walls along the

perimeter of the square space arena. The robot also has a com-
pass sensor to determine its direction (theta). With the coordi-
nates of two locations, the mobile robot can navigate from one

location to another by adjusting its heading using an angle
computed by a trigonometric function to face the first destina-
tion and computing the required traveling distance between
these locations.

2. Related works

Several approaches have been proposed for mobile robot local-

ization using environmental features called landmarks (Jang
et al., 2002; Saotti and Wasik, 2000; Loevsky and Shimshoni,
2010). Given the logical foundations of RSSI signal strength

behavior and the classical machine learning algorithm-based
classification, a combination of approaches can solve a typical
localization problem. In Tanaka et al. (2007), Tanaka et al.

considers short-range RFID sensors and uses a support vector
machine (SVM) binary classifier, which is trained using the fea-
tures of signals received at a selected location and of signals re-
ceived at each nearby location, to distinguish the selected

location from the rest. This problem is solved using Fuzzy Lo-
gic in Gueaieb and Miah (2009). Gueaieb and Miah propose
applying Fuzzy Logic to the phase difference of the two phase

angles of the signals received by two receiving RFID-reader
antennas. The mobile robot is supposed to turn to the left or
to the right if the target tag is on the left or on the right of

the receiving antennas, namely if the phase difference is
negative or positive, respectively (Gueaieb and Miah, 2009).



Figure 1 The robot hardware.
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Similarly, the authors of Hekimian-Williams (2010) propose
exploiting the phase difference to estimate the location of a
specific tag. A signal transmitted by a tag and received at the

antenna of a receiver is transformed to a baseband signal,
and the phase is calculated using the inphase and quadrature
components of this baseband signal. The phase depends on

the distance between a tag and a receiver. By considering
two phases, the phase difference between them can be defined
as the difference of the two distances separating the two signal

receivers from the tag (Hekimian-Williams, 2010).
Other currentwork considers offering the geographic coordi-

nates of the distributed tags as prior knowledge for the mobile
robot. Mehmood et al. (2008) propose distributing passive tags

at the vertices of equilateral triangles to ensure the optimal cov-
erage of the read-ranges of the tags, which form circular disks.
The triangular coordinates of each tag, namely the number of

vertices from the origin on both axes, are stored in its memory.
The partitions may be identified by more than one tag, and the
mobile robot locates itself using the mean location of the read-

ranges of these tags. To reach the destination, the mobile robot
moves in a straight line between adjacent partitions to bound the
mobile robot’s orientation angle measured with respect to the x

axis to face the destination (Mehmood et al., 2008). In Park and
Hashimoto (2008), Park andHashimoto propose a system using
a read-timemodel, which is defined by how long theRFID read-
er can recognize a specific tag when the mobile robot crosses its

circular region, to reduce the mobile robot localization error.
Unlike our proposed system, their system considers only a single
tag among the distributed tags in a grid pattern to be read at a

time. Based on the tag’s absolute coordinates stored in a data-
base in the mobile robot’s memory, the orientation angle is cal-
culated in each circular region reached by the mobile robot

during the navigation process. Based on the previous position
of themobile robot, the proper read-time is chosen, and the devi-
ations in the heading angle, with reference to its actual direction

and the calculated one, are used to correct the mobile robot’s
direction toward the ultimate goal (Park andHashimoto, 2008).

Although the authors of Mehmood et al. (2008) consider the
optimality of covering passive tags and circular read ranges by

locating tags at the vertices of equilateral triangles, the passive
tags and their circular read ranges do not cover the whole area
of the environment. In Kutiyanawala and Kulyukin (2007),

Kutiyanawala andKulyukin consider the optimality of covering
the whole area of a surface embedded with passive tags without
consideration of a regular distribution of many passive tags. By

using a Cartesian robot, they consider the optimality of the mo-
bile robot localization process based on the number of straight
traveled paths, which cross the circular ranges of passive tags
that are initially distributed randomly, but whose positions are

randomly adjusted to enhance the localization probability.
The experiment conducted using the Cartesian robot shows that
the position and the orientation of a passive tag with respect to

the RFID reader are factors that affect the detection of the tag,
and its range is an imperfect circle but can be approximated as a
circle (Kutiyanawala and Kulyukin, 2007).

3. Proposed system

3.1. Experimental setup

The brain of our RFID receiver-mounted experimental robot

is a Parallax Basic Stamp 2px BS2PX microcontroller. As
mentioned in its description manual, the baud rate of the

BS2PX is 125,000 bps as a maximum serial communication
rate. The BS2PX establishes serial communication with the
PC through an available Bluetooth serial communication port

to control decisions and store data. During its exploration
phase, the robot employs three sensors. The RFID system is
a 433-MHz Wavetrend L-RX300 receiver, whose baud rate
equals 57,600 bps, and Wavetrend TG501 Personnel Tags,

each of which has its own battery and transmits its data every
1.5 s. A sonar sensor (for distance measurements by PING)
and a dual-axis compass sensor (for direction measurements

by Parallax Hitachi) are also used in this robot. Fig. 1 shows
the robot hardware.

The compass sensor points to the earth’s magnetic north

and therefore provides a specific angle in binary radians, which
is corrected to give the value of the geographical North Pole.
The true north represents the positive y axis, and thus the angle

of the deviation is measured from the positive y axis in the
clockwise direction when the compass sensor heading is ro-
tated. During its exploring phase, the mobile robot is aligned
to face the front partition of the testing environment. The re-

mote PC waits to be informed that the robot’s microcontroller
is ready to accept data sent to it. In the meantime, the micro-
controller instructs the motor controller to stop the driving

motors of the robot. After the remote PC receives acknowledg-
ment from the microcontroller onboard the mobile robot, the
PC requests RFID sensor readings, which are provided to the

proposed classifier in normalized form.
When the output of the BPANN crosses above a configura-

ble threshold, the robot is considered to be localized at the po-
sition represented by the tag with the maximum normalized

RSSI measurement among all of the available measurements
in the acceptable input-RSSI-set. Because the robot is consid-
ered to be at the location of this tag, the PC requests the cur-

rent perpendicular distances with respect to the front wall of
the lab testing partition and with respect to the right wall of
its environment to be stored in a lookup, along with the ID

of this considered tag for future calculation of coordinates.
The remote PC thus localizes the robot by looking up the
tag ID in S to achieve x and y coordinates for the robot’s cen-

troid. The previously stored tag IDs and coordinates are up-
dated whenever the proposed classifier results in a better
positive response. A pair of these coordinates from the lookup,
namely mcurrent and mgoal, are used to determine a new heading,



Figure 2 The architecture of the proposed BPANN.
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toward which the mobile robot should face, if we want the ro-
bot to move to mgoal from mcurrent. The distance the mobile ro-
bot should travel to navigate from mcurrent to mgoal is also

calculated at this stage using the distance formula.
By choosing any goal location from the available list, the

orientation to face the destination and the distance to reach

it are provided to the mobile robot’s microcontroller, which
in turn informs the PC when the robot reaches the goal.
Now, the PC updates the source location coordinates of the

current location to the goal location for future path genera-
tion. Eq. (3) calculates the new heading angle by which the mo-
bile robot should rotate for the new movement. This angle is
an absolute angle, and the onboard sensors are used to verify

this angle.

New heading ¼ tan�1
ygoal � ycurrent
xgoal � xcurrent

� �� �
Cartesian!Compass

ð3Þ
Figure 3 Flowchart of the navigation and localization

algorithm.
3.2. BPANN framework

In this work, we propose to use a supervised form of the

BPANN to learn how to classify the received signals at any
location using the RSSI measurements emitted by all tags.
As mentioned in Section 2, at a specific location, all the RSSI

measurements are provided to the classifier as one input
RSSI set. An acceptable input RSSI set, in which one of
the RSSI measurements reaches the maximum value and the

remaining RSSI measurements reach the minimum value,
results in approximately 1 as an output value; otherwise the
output is approximately 0 based on a chosen error value.

The proposed BPANN consists of neurons organized into
an input, a hidden and an output layer that are connected
by weighted links. Because the proposed BPANN is a super-
vised form of an ANN, the desired output of each possible in-

put pattern is provided to calculate the error at each output
neuron. Using the errors at the output neurons, the BPANN
starts learning by calculating the error gradient for each neu-

ron in the output layer. The corresponding weights at the out-
put layer are updated with a threshold level, and the error
gradients are then back-propagated to the preceding layer,

where the neuron error gradients are also calculated. This pro-
cess is reiterated to produce the appropriate outputs. In other
words, BPANN learns by adjusting the weights and the thresh-
old levels till the Root Mean Squared Error RMSE at the out-

put layer reaches an acceptable value.
The mobile robot explores its environment systematically

while ensuring that all RFID tags are visited, to measure the

tag RSSI measurements using its RFID receiver and form
the acceptable input-RSSI-set for each tag location. The ad-
justed weights and threshold levels are used to classify the

set of normalized RSSI measurements provided by the normal-
ized RSSI measurements of all available tags n. The set is de-
fined as follows:

RSSItagijRSSItagi � ½0; 1�; i is an interger; andi �½1; n�
� �

ð1Þ

The proposed BPANN classifier results in a positive response
when it receives a set of the normalized RSSI measurements

defined as follows:

RSSItagijRSSItagi � ½0; 1�; i is an interger i �½1; n�;
�
and 9! RSSItagi � 1

�
ð2Þ
For the purpose of learning, both the acceptable input-
RSSI-sets and the corresponding outputs are provided to the
proposed BPANN. The randomly initialized weights and
threshold levels are repeatedly adjusted based on an ideal out-

put corresponding to each probable input pattern till an
acceptable RMSE is reached. Fig. 2 illustrates the architecture
of the BPANN proposed in this work.

It may be highlighted here that the input layer corresponds
to the minimum number of tags required for the localization,
i.e., three in our case. An acceptable input-RSSI-set (always

containing three members) with any value for any member
must result in a 1 output at the output layer if only one mem-
ber has the highest value. Otherwise, the output must be a 0. A



Figure 4 The testing environment.
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typical acceptable input-RSSI-set will contain the highest avail-
able RSSI values. Only one hidden layer was chosen to clas-
sify, as our experiment dealt with a very small acceptable

input-RSSI-set. It is expected that with increasing membership
in the acceptable input-RSSI-set, the classification accuracy
will degrade. Fig. 3 illustrate the navigation and localization

algorithm used for the real time control and navigating of
the Robot.

4. Implementation and results

Indoor laboratory testing was carried out successfully to vali-
date the proposed method. The methodology of the lab work is

explained in the next section.

4.1. Observations

The physical characteristics of a specific type of wave deter-
mine the purpose for which these are used. There also exists
an accuracy cap for each type of wave regarding distance cal-
culation and signal strength calculation. Although radio

waves, which can be used to identify regions, can penetrate ob-
jects, the penetrating waves have low accuracy, whereas ultra-
sonic waves are blocked by objects but tend to have higher

accuracy. Thus, ultrasonic waves are better suited for distance
measurements. Table 1 represents the characteristics of these
types of waves.

In an indoor environment, it is well known that an RFID
system offers superior performance over a Global Positioning
System (GPS). Because GPS signals do not greatly penetrate
concrete structures, an RFID system has better accuracy and

less signal error than a GPS in an indoor/semi-indoor environ-
ment. Because the compass sensor, which measures the
strength of a magnetic field, is highly sensitive to magnetic

waves emitted by nearby electrical devices, our test results were
more or less affected by appliance clutter throughout the
building in which the arena was erected. The proposed method

partially addresses this problem by ignoring sudden large devi-
ations in the compass readings and requesting fresh readings as
required.

4.2. Experimental results

The RF waves are electromagnetic waves that propagate
spherically and obey the inverse-square law. As the sphere’s ra-

dius expands, the RSSI falls to indicate the approach to the re-
gion’s boundary.

For accurate results, we tied the suspended distributed tags

with a ribbon to measure the degree to which the robot can
track the actual path. The distances were measured in centime-
ters, and the deviation angles were measured in degrees. An
Table 1 Deployed wave characteristics.

Ultrasonic wave

Blocked by obstacles.

Travels in a cone transmission direction.

Measurement principle based on

measuring the time of flight between the

transmission and reception of a directed

short pulse.
ideal distance was measured between two projections of two
tags. A tag was considered to be the center of the region iden-
tified by this tag. While the mobile robot was exploring its

environment, the center of the mobile robot on the floor loca-
tion was calculated whenever the proposed BPANN classifier
resulted in a positive response. Consequently, the desired trav-
eled distance and the actual traveled distance between any two

allocated points were measured. The desired steering angle and
the actual steering angle were calculated between the ideal and
the actual traveled paths. Fig. 4 shows the testing environment.

Tables 2 and 3 give the results and their RMSEs, which repre-
sent the deviation of the mobile robot from the regions’ cen-
ters. The RMSE (between the ideal and actual path)

acceptable range for training the BPANN was set between –
0.1 and 0.1. The calculated distance and theta in Tables 2
and 3 are different from the ideal because of the localization

error induced by the inherent errors in RFID strength read-
ings, sonar readings, wheel slippage and real time delay in
the execution of the control algorithms. In this work, this error
did not influence the accuracy of the navigation of the robot

substantially because it is small compared to the actual steering
angle. Fig. 5 shows the desired travel path and the actual travel
path (distances in cm). This graph demonstrates good experi-

mental results for the work proposed in this paper.
For obstacle avoidance, the two front ultrasonic sensors

were used for obstacle avoidance with a minimum fixed dis-

tance from the obstacle (50 cm) to avoid a collision with the
obstacle. A separate controller was used to decide whether to
turn left or right when approaching an obstacle. The turn
direction (left or right) depended upon the distance of the

obstacle from the right and left sonar sensors. By comparing
the distance measurement from the two front ultrasonic
RF wave

Can penetrate objects.

Extends in all directions.

Measurement principle based on

querying RFID of a tag by an RFID

receiver while inside the interrogation

zone of the RFID tag.



Table 3 The RMSE for the angle measurements.

Trial # Ideal

angle (�)
Calculated

angle (�)
Difference error

considering ideal and

calculated angles

1 150 145 0.97 – 1 = 0.03

2 138 122 �0.12
3 88 76 �0.14
4 180 187 0.04

5 90 70 �0.22
6 135 145 0.07

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðactualiÞ�ðidealiÞ
2

n

r
0.12

Figure 5 The robot movement conducted in the lab.

Figure 6 The robot heading angle experiments conducted in the

lab.

Table 2 The RMSEs for the distance measurement.

Trial # Ideal distance (cm) Calculated

distance (cm)

Actual distance

moved (cm)

Difference error

considering ideal

and actual distances

moved

Difference error

considering calculated

and actual distances moved

1 142 132 131 0.92 – 1 = 0.08 0.99 – 1 = 0.01

2 99 86 97 �0.02 0.13

3 96 91 88 �0.08 �0.03
4 96 91 90 �0.06 �0.01
5 99 86 90 �0.09 0.05

6 142 132 139 �0.03 0.05

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðactualiÞ�ðidealiÞ
2

n

r
0.07 0.06
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sensors, a steering angle away from the nearest obstacle was
calculated. Fig. 6 shows the robot heading angle experiments

conducted in the lab and the deviation of the heading angle
from the calculated value.

4.3. Discussion

To compromise between using redundant sensors and depend-
ing on prior knowledge, the individual advantages of both so-

nar localization and RFID localization were considered.
Consequently, the system does not depend completely on the
RFID sensor. Moreover, we highly recommend using our
BPANN RFID-based localization in conjunction with the sen-

sor fusion framework. Such a multi-sensor approach can be
very useful in patches of the map where conventional GPS,
stereo, sonar or LADAR-based sensing fails. In Mehmood
et al. (2008) and Park and Hashimoto (2008), the passive tags
are distributed uniformly in the environment, and the corre-
sponding location information of each tag is stored within

the tag or in a database stored on the mobile robot memory
as prior knowledge. In our system, the constrained random
distribution of the active or passive tags tends to reduce the

chances of two equal RSSI signal strengths occurring within
the same acceptable input-RSSI-set. We installed two RFID
sensors at the extreme geometric ends of the robot to acquire

the location information of a tag whenever the mobile robot
was considered to be in a specific tag’s region. This approach
gave us a relatively unique signal strength, as the signal
strength now had an added differentiation parameter for each

tag, i.e., the difference in RFID sensor 1 and sensor 2 readings
for two equidistant but opposite-direction RFID tags from the
robot centroid. The drawback of this approach is the increased

power consumption. We attempted to minimize the power
drain for the mobile robot (green energy considerations), but
no remarkable reduction was achieved.

In Yamano et al. (2004) and Dayekh et al. (2011), artificial
neural networks (ANNs) are used to classify the sensor signa-
ture of one location from another. Such classification tech-

niques grow in complexity and in error as the map size and
resolution increases. Moreover, the resultant ANNs are huge
in size, and learning requires huge datasets. Our approach is
a radical escape from signature based classification. Our aim



Autonomous mobile robot localization based on RSSI measurements using an RFID sensor and neural network BPANN 143
is to home any of the RFID tags within the environment with-
out regard for its location. The location is read once via sonar
sensors and is stored for subsequent reference along with the

tag ID. This approach gives us a clean classification approach
and reduces the unnecessary classification load from the ANN.

5. Conclusions

There are several machine learning techniques that can be con-
sidered to be learning approaches for autonomousmobile robot

localization. Using anRFID systemwith a partially random tag
distribution, each region in the environment is uniquely identi-
fied, and themobile robot can localize itself successfully without

the need of a prior location knowledge base for the tags.
In this work, a solution for the mobile robot localization

problem has been achieved to allow the mobile robot to travel

from one location to another. A supervised form of BPANN
for classifying the tag signals based on their RSSIs was imple-
mented successfully. The proposed classifier accepts an input
set formed by all available RSSI measurements, and the mobile

robot is considered to be localized in the close vicinity of the
tag with the normalized RSSI value that uniquely approaches
themaximum limit. The laboratory-conducted experiment dem-

onstrates the efficiency of this proposed system. Using the pro-
posed BPANN along with a partially random distribution of
tags guarantees failure-free autonomous mobile robot

localization.
This work is a part of an ongoing research effort for auton-

omous robot navigation. Future work will involve adding a
neural-fuzzy controller for robot path generation. A vision

sensor will also be added to achieve a more robust (though
redundant) environment mapping, thus leading to improved
autonomous navigation.
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