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Abstract To alleviate the limitations of statistical based methods of forecasting of exchange rates,

soft and evolutionary computing based techniques have been introduced in the literature. To further

the research in this direction this paper proposes a simple but promising hybrid prediction model by

suitably combining an adaptive autoregressive moving average (ARMA) architecture and differen-

tial evolution (DE) based training of its feed-forward and feed-back parameters. Simple statistical

features are extracted for each exchange rate using a sliding window of past data and are employed

as input to the prediction model for training its internal coefficients using DE optimization strategy.

The prediction efficiency is validated using past exchange rates not used for training purpose. Sim-

ulation results using real life data are presented for three different exchange rates for one–fifteen

months’ ahead predictions. The results of the developed model are compared with other four com-

petitive methods such as ARMA-particle swarm optimization (PSO), ARMA-cat swarm optimiza-

tion (CSO), ARMA-bacterial foraging optimization (BFO) and ARMA-forward backward least

mean square (FBLMS). The derivative based ARMA-FBLMS forecasting model exhibits worst

prediction performance of the exchange rates. Comparisons of different performance measures

including the training time of the all three evolutionary computing based models demonstrate that

the proposed ARMA-DE exchange rate prediction model possesses superior short and long range

prediction potentiality compared to others.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
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1. Introduction

Accurate prediction of different exchange rates is important as
substantial amount of trading takes place through the currency

exchange market. The prediction is affected by economic and
political factors and also involves uncertainty and nonlinear-
ity. Thus accurate prediction of exchange rates is a complex

task. In the literature many interesting publications on ex-
change rate prediction have been reported as detailed here.
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Under such conditions the data/features driven forecasting ap-
proach has proven to be effective for different financial time
series. In a recent paper (Yu et al., 2005) the authors have pro-

posed an improved ensemble forecasting model for foreign ex-
change rates by integrating generalized linear autoregression
and artificial neural network. In another communication

(Zhang and Wan, 2007) the authors have developed a novel
granular soft computing based forecasting approach to cur-
rency exchange rates. The experimental results demonstrate

that the fuzzy interval neural network can provide more reli-
able prediction performance. Using a single layer low complex-
ity nonlinear adaptive model (Majhi et al., 2009b) the authors
have proposed an efficient scheme for the prediction of ex-

change rates between US Dollar and British Pound, Indian
Rupees and Japanese Yen. They have also proposed another
efficient prediction model by cascading two stages of single

layer nonlinear networks. In another study, both parametric
and nonparametric self organizing modeling methods have
been applied for daily prediction of the American Dollar and

the Deutche Mark against the British Pound (Anastasakis
and Mort, 2009). They have reported that the combined ap-
proach is found to produce promising results. An hybrid mod-

el using the rough set theory (RST) and directed acyclic graph
support vector machines (DAGSVM) have been suitably com-
bined to analyze the exchange rates (Pai et al., 2010). They
have found that the proposed method is a promising alterna-

tive for analyzing the exchange rates. Other structures which
have been used for forecasting purpose are discussed in sequel.

The Box–Jenkins method using autoregressive moving

average (ARMA) (Box and Jenkins, 1976) linear models have
extensively been used in many areas of time series forecasting.
A typical ARMA model consists of three steps: identification,

parameter estimation and forecasting. Among these three
steps, the identification step, which involves order determina-
tion of the AR and MA parts of ARMA model is important.

This step requires statistical information such as the autocorre-
lation and partial autocorrelation (Box and Jenkins, 1976).
The problem of estimating the order and the parameters of
an ARMA model is still an active area of research (Rojasa

et al., 2008).
In the past, statistical ARMA models have been developed

and utilized successfully for analysis and simulation of strong

earthquake ground motions (Popescu and Demetriu, 1990),
time series forecasting (Chib and Greenberg, 1994; Lees and
Matheson, 2007; Stoica, 1984; Poskitt, 2003), forecasting of

work piece roundness error in turning operation (Fung
and Chung, 1999), river flow (Mohammadi et al., 2006;
Koutroumanidis et al., 2009; Kisi, 2010), Electricity load
(Nowicka-Zagrajek and Weron, 2000; Pappas et al., 2008),

electricity consumption (Taylor, 2006), tourism demand
(Andrawis et al., 2011; Chu, 2008; Chu, 2009), hourly electric-
ity price (Cuaresma et al., 2004), wind speed (Erdem and Shi,

2011), weather prediction and global radiation (Voyant et al.,
2012), machine health condition (Pham and Yang, 2010), ro-
tate speed signal of one type of aero-engine (Liu et al., 2011).

Variations of ARMA model such as the vector ARMA for
forecasting of treasury bill rates and changes in money supply
(Aksu, 1991) and seasonal fractionally differenced ARMA

model for long range forecasting of revenue of IBM (Ray,
1993) have been reported in the literature. Multivariate
ARMA model has been applied to model Canadian money, in-
come and interest rate forecasting (Boudjellaba et al., 1994). In
addition clustering of time series data has been attempted
using the ARMA model (Xiong and Yeung, 2004).

Although the Box–Jenkins stochastic time series approach

can provide accurate forecast results, these models are all
based on fixed parameter design. Based on a set of historical
data, the model structure as well as its parameters is deter-

mined and estimated. The fitted model is then used to forecast
the future. In practical situations when new data are added, the
parameters require re-estimation and hence this approach pro-

vides a limited forecasting accuracy (Chen et al., 1995). One
major requirement of the ARMA model is that the time series
must be linear and stationary (Wu and Chan, 2011). But real
life time series data are nonlinear and non-stationary in nature.

In the literature different hybrid ARMA methods have been
proposed for forecasting purpose. Use of hybridization of
autoregressive with exogenous input (NARX) with ARMA

for machine state (Pham et al., 2010), ARMA and neural net-
work for sunspot numbers and trend (Chattopadhyay et al.,
2011), gray and ARMA for gyro drift (Zhou and Hu, 2008)

and ARMA and TDNN for solar radiation (Wu and Chan,
2011) forecasting have been suggested. Fuzzy logic, artificial
neural network (ANN) and ARMA models have been suitably

combined for time series forecasting (Rojasa et al., 2008). The
radial basis function neural network added with ARMA for
time series forecasting has been proposed in (da Silva, 2008).
Partially adaptive estimator of ARMA models has been devel-

oped (McDonald, 1989) including least absolute deviation and
least squares criteria. An adaptive ARMA model for short
range load forecasting has also been reported in (Chen et al.,

1995).When a sample of a time series depends on present input
as well as past outputs, the corresponding time series can be
better modeled by a pole-zero or ARMAmodel. Such time ser-

ies can also be modeled by conventional all zeros or finite im-
pulse response (FIR) or non-recursive models. But the order of
the corresponding model would be large and hence more com-

putational complexity would be involved in training and run-
ning the model. For dynamic and nonlinear data the fixed
ARMA model yields poor prediction performance as its previ-
ously estimated parameters do not perform well for the new

situations. Thus, adaptive ARMA in which the parameters
can be retrained is more suitable for such time series predic-
tion. In the literature various forms of adaptive ARMA mod-

els have been suggested.
The forward and backward least mean square (FBLMS)

algorithm and recursive least square (RLS) (Widrow and

Strearns, 1985) algorithm have been used for obtaining
ARMA model in an iterative manner. But these algorithms
are derivative based and hence its parameters have a tendency
to fall into the local minima solution (Widrow and Strearns,

1985). To avoid such situation adaptive ARMA models have
been proposed to be trained using derivative free learning algo-
rithms. In the recent past the Genetic algorithm (GA) has been

employed to estimate the structure and parameters of ARMA
model for time series forecasting (Flores et al., 2012) and the
PSO-ARMA model has been suggested for sales forecasting

(Majhi et al., 2009a). The use of GA in training of the param-
eters has certain deficiencies. The first one is the difficulty in
choosing proper crossover and mutation probability. The in-

crease in population size in a generation involves more compu-
tation. In binary GA, the conversion of chromosome values
from binary to decimal for fitness evaluation also requires
more time.
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Recently a number of evolutionary computing techniques
such as particle swarm optimization (PSO) (Kennedy et al.,
2001), Differential Evolution (DE) (Storn and Price, 1995),

Bacterial Foraging Optimization (BFO) (Passino, 2002) and
Cat Swarm Optimization (CSO) (Chu and Tsai, 2007) have
been successfully applied to many fields. Out of these algo-

rithms the DE is found to be a simple and useful alternative
to GA and has been observed to perform better for various
applications such as parameter identification (Ursem and

Vadstrup, 2003), image processing (Falco et al., 2006; Omran
et al., 2005), data clustering (Paterlini and Krink, 2005),
optimal designing (Babu and Munawar, 2007), scheduling
(Nearchou and Omirou, 2006) and stock market prediction

(Rout et al., 2011). In this paper an in depth investigation
has been made for forecasting various exchange rates using
adaptive ARMA as the basic architecture and DE as a

training tool for updating the model parameters. The DE
algorithm involves less computations compared to the GA,
CSO and BFO algorithms. Further, it requires the choice

of only two parameters which is relatively easier to set. Hence
updating of the weights of the ARMA model by DE is
advantageous compared to that performed by other bioin-

spired methods. For comparison purpose adaptive ARMA
models are also trained using FBLMS, PSO, BFO and
CSO algorithms under similar conditions. The paper has
developed a promising forecasting model for prediction of

exchange rates using DE based adaptive ARMA structure.
The new model has been demonstrated to exhibit a superior
exchange rate prediction performance compared to conven-

tional FBLMS as well as bioinspired tools such as PSO,
BFO and CSO based forecasting models.

The rest of the paper is organized as follows: Section 1 deals

with literature review, formulation of the research problem
and the motivation behind the proposed work. The adaptive
ARMA based forecasting model is developed in Section 2.

An introduction to differential evolution as a training algo-
rithm is dealt in Section 3. The DE based adaptive ARMA
forecasting model is designed in Section 4. The design of real
life input data of the model and the details of simulation study

are presented in Section 5. For assessing the potentiality of
new model, its performance is compared with that obtained
by FBLMS, BFO and CSO algorithms. Finally the conclusion

of the paper is drawn in Section 6.
2. Adaptive auto regressive-moving average (ARMA) based

forecasting model

The proposed adaptive ARMA model for prediction of a
financial time series particularly various exchange rate predic-

tions is shown in Fig. 1 in three stages. The first stage of devel-
opment is the training phase in which the model parameters of
ARMA are trained using Differential Evolution (DE) based
optimization algorithm. The details of the training strategy

have been depicted in Fig. 1(a). The ARMA prediction model
essentially consists of feed-forward and feed-back linear com-
biners. The feed-forward portion acts as moving average (MA)

or all-zero network whereas the feedback portion functions as
an autoregressive (AR) or all-pole network. Thus the ARMA
model contains both feed forward and feedback coefficients

which need to be properly trained using appropriate learning
algorithm. Conventionally in training an adaptive model, the
raw time series data are directly used as input to the model.
In many cases the raw data take more time to train the model
as there is redundancy present in the data. Secondly proper

training of the model is not achieved when the raw data are
used as input and hence prediction performance becomes poor.

To alleviate these problems features are extracted from the

financial time series and are used as input to the ARMA mod-
el. Further the future exchange rates not only depend on the
features of the past data but also on the past predicted values.

Hence a feed-forward and feed-back model like the ARMA
has been chosen as the required network which possesses such
feature. The amount of delays on the feed back side is suitably
selected so as to provide the best possible prediction perfor-

mance. The training sample is selected from the past time series
depending on the number of days ahead the exchange rate to
be predicted. The predicted exchange rate is compared with

the training sample to produce the error or mismatch value.
The feed forward and the feed back parameters are updated
by a suitable learning rule such that in few iterations the cost

function which is the mean square in this case progressively de-
creases and attains the least possible value.

Various learning rules have been reported in the literature.

These can be broadly classified into two types: derivative based
and derivative free. The derivative based class of learning algo-
rithm like the FBLMS (Widrow and Strearns, 1985; Majhi and
Panda, 2009) has the disadvantage of being trapped by local

minima solution. In the recent past many evolutionary com-
puting based learning algorithms such as the genetic algorithm
(GA), the differential evolution (DE) etc. have been reported

and extensively used for single and multi-objective optimiza-
tion purposes. Out of the class of evolutionary computing
algorithms, the DE is chosen because it is simple but powerful

as well as it is computationally faster than the GA. The
ARMA prediction model is considered as an adaptive opti-
mizer in which the feed-forward and feed-back coefficients

are suitably altered to minimize the squared error of the model.
Then the DE is used as an efficient optimizer to reduce the
mean square error to the least possible value.

After the training is complete the weights are frozen to their

final values and the DE based ARMA model is ready for fore-

casting future exchange rate values when the desired features
of present exchange rate are applied as input. But before it is

used as an exchange rate predictor, its performance is vali-
dated. Referring to Fig. 1(b), the features of remaining 20%
of old exchange rates are used as inputs and the model predicts

the future exchange rate. Since these are past data, the desired
exchange rates are known and hence the percentage of error is
obtained in case of each input. Finally to have a consistent
comparison of the prediction performance of various models

the conventional mean average percentage of error (MAPE)
is computed. The MAPE of the prediction model is computed
according to

MAPE¼ Sumofpercentageof errorsobtainedbyall test inputs

No: of test inputs

� �
� 100

The MAPE is a fair indicator of a predictor model. When the
designer is satisfied with the computed MAPE of the model
then the model is subjected to prediction of various exchange
rates. This situation is depicted in Fig. 1(c). The advantage

of the adaptive prediction model is its flexibility. With little
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effort the same model can be retrained to predict a different ex-
change rate as well as can be used for predicting exchange rate

values for different days in future. This can be achieved by pro-
viding suitable input or desired values to the model during the
training phase.

2.1. Actual ARMA model used for exchange rate prediction

In the previous subsection the basis of selection of the adaptive
model and the evolutionary learning rules are discussed. Fur-

ther it has dealt with the phases involved in achieving the final
prediction model. In this subsection the details of the actual
prediction model employed in this paper is dealt.

The block diagram of an adaptive ARMA based prediction
model is shown in Fig. 2. The model is an adaptive pole-zero
structure and is described by the recursive difference equation

given in (1).

yðnÞ ¼
XN�1
m¼1

amðnÞyðn�mÞ þ
XM�1
m¼0

bmðnÞxðn;mÞ ð1Þ

where x(n) and y(n) represent the nth input pattern and output
of the model respectively. The current estimated output y(n)
depends on the past estimated output samples y(n�m),
m= 1, 2, .......N�1 and the features x(n, m) of the current

financial input. The coefficients {am(n), bm(n)} are adjusted
using some learning rules until the appropriate model is devel-
oped. d(n) is the desired or target financial value. The pole and
zero parameters of the ARMA model are am and bm, respec-

tively. Referring to Fig. 2, the predicted output, y(n) is given by

yðnÞ ¼

XM�1
m¼0

bmðnÞxðn;mÞ

1� Aðn; zÞxðnÞ

0BBBB@
1CCCCA ð2Þ

where

Aðn; zÞ ¼
XN�1
m¼1

amðnÞz�m: ð3Þ

The output error is computed as e(n) = d(n)�y(n) and is gen-

erated by subtracting the model output in (1) from the true
value, d(n). The weights of the ARMA model are updated iter-
atively using some learning algorithm to minimize the squared
error value. The minimization process leads to optimum
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weights of the ARMA based prediction model. The feed for-

ward and backward weights of the ARMA model are usually
updated by the FBLMS algorithm given by (10). The aggre-
gate coefficient vector is given ascWðnÞ ¼ ½b̂0ðnÞ . . . . . . b̂M�1ðnÞ; â1ðnÞ; . . . . . . âN�1ðnÞ�T ð4Þ

The corresponding data vector is represented as

SðnÞ ¼ ½xðn; 0Þ; . . . . . . xðn;M� 1Þ; yðn� 1Þ; . . . yðn�N

þ 1Þ�T ð5Þ

The output of the ARMA model at the nth iteration is

yðnÞ ¼WTðnÞ � SðnÞ ð6Þ

The estimated gradient vector is given by

r̂ðnÞ ¼ �2ðdðnÞ � yðnÞÞ
� ½a1ðnÞ . . . . . . aN�1ðnÞb0ðnÞ . . . . . . bM�1ðnÞ� ð7Þ

where

amðnÞ ¼
@yðnÞ
@am

¼ xðn; mÞ þ
XN�1
m¼1

amðnÞamðn�mÞ ð8Þ

and

bmðnÞ ¼ yðn�mÞ þ
XM�1
m¼0

bmðnÞbmðn�mÞ ð9Þ

Finally the forward backward LMS (FBLMS) update algo-
rithm is given by

Wðnþ 1Þ ¼WðnÞ � l � r̂ðnÞ ð10Þ

This update algorithm very often leads to non-optimum solu-

tion of weights. Hence in this paper, population based DE is
employed to overcome this difficulty in proper training of
the ARMA model. To compare the prediction performance
of the proposed model particle swarm optimization (PSO),

bacterial foraging optimization (BFO) and cat swarm optimi-
zation (CSO) algorithms based training schemes have been em-
ployed and the corresponding results have been obtained

through simulation. In the next section a brief overview of
DE is presented.
3. Introduction to differential evolution

Differential evolution (DE) (Storn and Price, 1995) is a popu-
lation based stochastic meta-heuristic global optimization tool

in continuous domains. Due to its simplicity, effectiveness and
robustness, the DE has been successfully applied for solving
complex optimization problems arising in different practical

applications. A population in DE consists of P vectors repre-
sented as �xi;G; i ¼ 1; 2; . . .P, where G is the number of genera-
tions. To keep the population within some bounds it is

randomly initialized from a uniform distribution between the
lower and the upper bounds defined for respective variables.
These bounds are problem dependent. The possible solutions

known as target vectors are represented with D -dimensional
vectors as

�xi;G ¼ ðxi;1;G; xi;2;G; . . . ; xi;D;GÞ ð11Þ

The initial population is changed in each generation using sub-
processes such as mutation, crossover and selection operators.
In a simple DE algorithm mutant vector �v for every target vec-

tor �xi;G is computed as

�vi;G ¼ �xr1 ;G þ Fð�xr2 ;G � �xr3 ;GÞ; r1–r2–r3 ð12Þ

where F is a mutation control parameter with its value between
0 and 2 and r1, r2 and r3 are randomly chosen numbers within
the population size. After mutation, the crossover operator

generates a trial vector, �ui;G using (6)

ui;j;G ¼
vi;j;G; if randj 6 CRor j ¼ rnðjÞ

xi;j;G; otherwise

�
ð13Þ

where j, (dim ension number)=1, 2,........, D; randj a random
number between 0 and 1; rn(j) a randomly chosen index from
1, 2,......., D and CR the crossover constant between 0 and 1.

Differential evolution uses a greedy selection operator as

�xi;Gþ1 ¼
�ui;G; if fð�ui;GÞ < fð�xi;GÞ

�xi;G; otherwise

�
ð14Þ

where fð�ui;GÞ is the fitness value of the trial vector and fð�xi;GÞ=
fitness value of the target vector.

The number of generations is continued until the cost func-
tion almost remains constant and decreases further.
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4. Development of DE based ARMA forecasting model

This section deals with the designing of DE based ARMA
forecasting model. The ARMA model is constructed by con-

sidering it as a DE based optimization model in which the
mean square error is minimized. Since ARMA model has a
feedback path, it has a tendency to become unstable during

training by conventional method. However, the DE based
training overcomes this difficulty. The stepwise DE based
weight update rule proceeds as follows:

1. The target vectors of DE are assumed to be the weights of
the ARMA model. Let there be M target vectors each with
D dimensions. Each time one vector is used as the initial

value of the pole–zero parameters of the model.
2. The prediction model is fed with K input patterns succes-

sively. Each pattern has three independent values i.e. the

mean, variance and actual exchange rate value correspond-
ing to a month.

3. Each input component of input pattern is weighted with the

zero-parameters, bm(n) to provide the output of the feed
forward path. The output of the model, y(n) is delayed,
weighted with the pole parameters, am(n) and added with
the output of the feed forward path to give the final output

of the ARMA model.
4. Each output, y(n) is compared with the target value, d(n) to

give error value, e(n). In this way after the application of all

patterns K number of errors is obtained.
5. The fitness function which is the mean of squared error

(MSE) of the pole-zero prediction model (corresponding

to nth target vector) is calculated using (15)
XK

MSEðnÞ ¼ j¼1

e2j

K
ð15Þ
1. The steps 2–5 are repeated for all target vectors and M
numbers of MSE are generated. This completes one

experiment and the Mean of MSE (MMSE) is calculated
and used as the cost function to be optimized.

2. The elements of the target vector are then changed fol-

lowing mutation, crossover and selection processes as
described in the previous section.

3. At the end of each generation the mean of MSE (MMSE)
and the corresponding target vector are chosen. The rela-

tion between the number of generations and the MMSE
is plotted to show the training characteristics of the model.
Table 1 Value of different parameters of algorithms used in simula

DE PSO BFO

Population size = 30

F= 0.9

CR= 0.9

Max. Iterations = 500

Ensample average = 10

Population size = 30

c1 = 1.042

c2 = 1.042

Inertia weight,

(w) = linearly decreases

between 0.9 and 0.4

vmax = 1

Max. Iterations = 500

Ensample average = 10

Population size = 8–1

Probability of elimina

dispersion = 0.25

Run length unit = 0.0

Swimming length = 3

No. of chemotactic lo

No. of reproduction l

No. of elimination-dis

Max. Iterations = 500

Ensample average =
4. When the MMSE reaches the possible minimum value

the training process is stopped.
5. The pole-zero parameters attained after training represent

the coefficients of the ARMA based prediction model.

5. Simulation study

For simulation purpose real life data of three different ex-
change rates, Indian Rupees, British Pound and Japanese
Yen have been collected for the period of 1-1-1973–1-10-
2005, 1-1-1971–1-1-2005 and 1-1-1971–1-1-2005, respectively

from the website www.forecasts.org. The data show the aver-
age of daily figures (noon buying rates in New York City)
on the 1st day of each month. The numbers of data are 393,

418 and 418 for Rupees, Pound and Yen, respectively. Each
set of data is normalized to lie between 0 and 1 by dividing
each value of a set by the maximum value of the corresponding

set. An initial window of size 12 containing the present and
previous 11 data is used. The normalized value of 12th number
data, the mean and variance of each group of 12 data are cal-

culated and used as first input pattern of features. Subse-
quently the sliding window is shifted by one position to
extract the second input pattern. A window size of 12 is chosen
as it provides the best performance in the simulation experi-

ment. This process is then repeated until all features are ex-
tracted. In this way a total of 382 feature patterns for
Rupees and 407 patterns for each of Pound and Yen are ex-

tracted. Out of these patterns 80% are used for the training
purpose and the remaining are used for validation of the mod-
el. The ARMA prediction model shown in Fig. 2 is used for

simulation to assess its prediction performance.
The target vectors are initialized as the random numbers lie

between 0 and 1. Since each input pattern has three features
the number of weights of MA part is three. The number of

weights of AR part is also taken as three after various trials
as this combination provides the best possible prediction re-
sults. Each target vector of DE based ARMA has a total of

six dimensions and its population size is 30. The other simula-
tion parameters used for DE, PSO, BFO and CSO algorithms
are given in Table 1. The convergence coefficient used in the

FBLMS model is set at 0.05.
The training patterns are applied in sequence as input to the

ARMA model, the corresponding outputs are obtained from

the model and the resulting error values are recorded. The
weights of the model are updated using the DE rule described
in Section 4 until the minimum MMSE is reached. The MMSE
tion.
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Figure 3a Convergence characteristics of ARMA-LMS for

Rupees Exchange rate for 12 months ahead prediction.

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5

3

3.5
x 10

-3

No. of Experiments

M
ea

n 
sq

ua
re

 e
rr

or

Figure 3b Convergence characteristics of ARMA-LMS for

Pound Exchange rate for 12 months ahead prediction.
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Figure 4a Convergence characteristics of ARMA-DE for

Rupees Exchange rate for 12 months ahead prediction.
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Figure 4b Convergence characteristics of ARMA-DE for Pound

Exchange rate for 12 months ahead prediction.
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Figure 5a Comparison of actual and predicted values of Rupees

exchange rate for 12 months ahead prediction using ARMA-DE

during training.
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Figure 5b Comparison of actual and predicted values of Pound

exchange rate for 12 months ahead prediction using ARMA-DE

during training.
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Figure 5c Comparison of actual and predicted values of Yen

exchange rate for 12 months ahead prediction using ARMA-DE

during training.
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obtained from all the four evolutionary computing based mod-

els are given in Tables 4, 7 and 10 for rupees, pound and yen
exchange rates, respectively for 1, 3, 6, 9, 12 and 15 months
ahead prediction. Figs. 3a and 3b show the convergence char-

acteristics of ARMA-FBLMS forecasting models for rupees
and pound exchange rate prediction for 12 months’ ahead
respectively. The identical convergence characteristics for

ARMA-DE model are depicted in Figs. 4a and 4b. From these
plots it is observed that the FBLMS based training model
shows divergence of the mean square error. Thus such model
cannot be used for the purpose of exchange rate prediction.

On the other hand the proposed DE training based ARMA
prediction model exhibits excellent and fast convergence char-
acteristics even for 12 months ahead prediction. To assess the
Table 2 Comparison of MAPE value of different exchange rates b

Months ahead Dollar to rupees Dollar to

ARMA-FBLMS ARMA-DE ARMA-F

1 1.7624 0.7984 2.0403

3 4.6913 2.4515 4.8753

6 10.1602 4.5135 7.6012

9 13.4810 6.5204 11.0738

12 18.4978 6.6273 15.0995

15 28.8139 5.9148 25.2697

Table 3 Comparison of MAPE and RMSE for dollar to rupees ex

No. of months ahead prediction ARMA-PSO ARMA-D

MAPE (%) RMSE MAPE (

1 0.8576 0.4928 0.7984

3 3.8594 2.7789 2.4515

6 5.8828 4.6984 4.5135

9 9.5470 3.2752 6.5204

12 9.0676 3.8112 6.6273

15 8.7612 2.9599 5.9148
training behavior of the ARMA-DE model, the matching per-
formance is obtained during simulation and is plotted in
Figs. 5a–5c for rupees, pound and yen exchange rates, respec-

tively. Excellent agreement is observed in both cases even for
12 months’ ahead prediction. After the MMSE reached its pre-
fixed minimum value the training process is stopped and the

test patterns are then applied for the validation of the ARMA
prediction model. The performance of the model is evaluated
by calculating few performance measures such as the Mean

average percentage error (MAPE) and Root mean square error
(RMSE). These are defined as

MAPE ¼ 1

N

XN
n¼1
ðAn � PnÞ=An � 100

 !
ð16Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MSD
p

ð17Þ

where

MSD ¼ 1

N

XN
n¼1
ðAn � PnÞ2

 !
ð18Þ

where An = actual exchange rate, Pn = predicted exchange
rate and N= No. of patterns applied for validation.

Comparison of the MAPE value of ARMA-DE and
ARMA-LMS models for different exchange rates for various
months ahead predictions is given in Table 2. Comparison of

the MAPE and RMSE of different models using derivative free
algorithms for various months ahead predictions is given in
Tables 3, 6 and 9 for rupees, pound and yen respectively.
The comparison of computation times is also presented in Ta-

bles 5, 8 and 11 respectively. From these tables it is observed
that the proposed DE-ARMA model outperforms all other
models based on PSO, BFO and CSO algorithms.

Some critical observations on the simulation results are pre-
sented to assess the efficiency of DE-ARMA based exchange
rate predictor. Results obtained from four different models
etween ARMA-LMS and ARMA-DE.

pound Dollar to yen

BLMS ARMA-DE ARMA-FBLMS ARMA-DE

1.8197 1.8505 1.3973

2.7962 4.3914 3.1382

4.8292 6.5531 4.9493

4.3443 8.2282 4.9442

2.6389 9.9773 5.1621

2.0328 17.7972 7.3081

change rate using derivative free algorithms.

E ARMA-BFO ARMA-CSO

%) RMSE MAPE (%) RMSE MAPE (%) RMSE

0.5115 1.0942 0.8124 2.5747 2.0124

1.3903 3.5218 2.4895 3.5284 2.4433

2.3095 5.8095 3.7736 4.6657 2.5142

3.0937 6.5774 3.2013 6.5438 3.1186

3.2951 8.1749 3.7562 6.9796 3.3876

2.9364 8.6512 2.9329 8.4575 2.6407



Table 4 Comparison of MMSE obtained for dollar to rupees exchange rate.

No. of months ahead prediction ARMA-PSO ARMA-DE ARMA-BFO ARMA-CSO

1 7.0896 · 10�5 7.4027 · 10�5 6.5827 · 10�5 7.4407 · 10�5

3 2.6684 · 10�4 2.5384 · 10�4 2.5684 · 10�4 2.6932 · 10�4

6 6.3039 · 10�4 5.3490 · 10�4 5.9341 · 10�4 6.0978 · 10�4

9 0.0010 0.0007 0.0009 0.0009

12 0.0017 0.0014 0.0015 0.0015

15 0.0024 0.0020 0.0022 0.0022

Table 7 Comparison of MMSE obtained for dollar to pound exchange rate.

No. of months ahead prediction ARMA-PSO ARMA-DE ARMA-BFO ARMA-CSO

1 1.5225 · 10�4 1.5046 · 10�4 1.4567e-004 1.4537e-004

3 6.8946 · 10�4 6.7141 · 10�4 6.7786 · 10�4 6.7497 · 10�4

6 0.0015 0.0015 0.0015 0.0015

9 0.0022 0.0021 0.0022 0.0022

12 0.0030 0.0030 0.0030 0.0030

15 0.0039 0.0039 0.0039 0.0039

Table 6 Comparison of MAPE and RMSE for dollar to pound exchange rate using derivative free algorithms.

No. of months ahead prediction ARMA-PSO ARMA-DE ARMA-BFO ARMA-CSO

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE

1 1.7567 0.0372 1.8197 0.0384 1.8800 0.0392 1.8063 0.0385

3 3.9496 0.0879 2.7962 0.0653 3.2732 0.0764 3.2637 0.0748

6 5.5479 0.1152 4.8292 0.0940 5.4289 0.1143 5.4074 0.1134

9 6.1947 0.1383 4.3443 0.0892 6.0138 0.1370 5.3664 0.1157

12 4.2578 0.1078 2.6389 0.0666 3.5312 0.0974 3.0142 0.0971

15 3.9897 0.0818 2.0328 0.0383 2.9282 0.0654 2.5904 0.0651

Table 5 Comparison of computation time for dollar to rupees exchange rate.

No. of months ahead prediction ARMA-PSO ARMA-DE ARMA-BFO ARMA-CSO

1 1.1019 0.9888 4.1790 9.0299

3 1.1484 1.0806 4.3074 5.2927

6 1.1396 1.0910 4.2526 5.3096

9 1.1344 1.0863 4.2240 5.0855

12 1.1443 0.9945 4.2040 5.2688

15 1.1401 0.9945 4.1998 5.1570

Table 8 Comparison of computation time for dollar to pound exchange rate.

No. of months ahead prediction ARMA-PSO ARMA-DE ARMA-BFO ARMA-CSO

1 1.1445 1.0795 4.4931 5.8285

3 1.1253 1.1006 4.5282 5.7554

6 1.1331 1.0600 4.4559 5.7341

9 1.1294 1.0582 4.4699 5.7928

12 1.2095 1.0517 4.5214 5.7733

15 1.1539 1.1391 4.5076 5.7822
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for test data for rupee, pound and yen are shown in Figs. 6–8
indicate that the DE based predictors offer more accurate ex-

change rates compared to that of others. Further the proposed
model predicts better exchange rates of rupees and pound com-
pared to that of yen. Therefore to achieve improved perfor-
mance of yen exchange rate alternative features need to be

extracted from the time series and then applied to the model.
Analyzing Tables 3–11, it is observed that in terms of all three



Table 10 Comparison of MMSE obtained for dollar to yen exchange rate.

No. of months ahead prediction ARMA-PSO ARMA-DE ARMA-BFO ARMA-CSO

1 1.9201 · 10�4 1.9799 · 10�4 1.8856 · 10�4 1.9353 · 10�4

3 0.0008 0.0008 0.0008 0.0008

6 0.0019 0.0019 0.0019 0.0019

9 0.0029 0.0029 0.0029 0.0029

12 0.0040 0.0038 0.0039 0.0039

15 0.0050 0.0050 0.0050 0.0050

Table 9 Comparison of MAPE and RMSE for dollar to yen exchange rate using derivative free algorithms.

No. of months ahead prediction ARMA-PSO ARMA-DE ARMA-BFO ARMA-CSO

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE

1 1.4585 1.9890 1.3973 1.9496 1.5987 2.1198 1.8256 2.6370

3 3.6430 3.9984 3.1382 3.8193 3.6389 3.9757 3.5917 3.8789

6 5.6706 6.8207 4.9493 6.2901 5.4101 6.7825 5.3999 6.5413

9 5.8112 8.6761 4.9442 7.3673 5.7623 8.2542 5.6617 8.0092

12 6.8786 7.5996 5.1621 6.5777 6.0299 7.5533 5.1708 6.5935

15 8.2968 7.9965 7.3081 6.6578 8.2303 7.9876 7.6802 7.9706

Table 11 Comparison of computation time for dollar to yen exchange rate.

No. of months ahead prediction ARMA-PSO ARMA-DE ARMA-BFO ARMA-CSO

1 1.1448 1.0616 8.9155 5.8347

3 1.2225 1.0332 9.0179 5.8776

6 1.1710 1.1154 9.0930 5.8872

9 1.1196 1.0241 9.0663 5.8994

12 1.1918 1.1307 10.8738 5.8396

15 1.1076 1.1066 10.8010 5.9049
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Figure 6 Comparison of actual and predicted values for dollar

to rupees exchange rates for 3 months ahead prediction during

testing.
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to pound exchange rates for 9 months ahead prediction during

testing.
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measures the DE-ARMA shows a superior performance com-
pared to those achieved by other three models. Thus

considering all aspects the exchange rate prediction models
can be ranked in sequence as ARMA-DE, ARMA-CSO,
ARMA-BFO and ARMA-PSO. Another interesting observa-
tion marked is on the computational time required for the

training of various models. The results presented in Tables 5,
8 and 11 show that the proposed DE based ARMA takes the
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Figure 8 Comparison of actual and predicted values for dollar to yen exchange rates for 6 months ahead prediction during testing.
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least time for training followed by ARMA-PSO, ARMA-BFO
and finally ARMA-CSO. Thus through various simulation
studies it is demonstrated that the proposed ARMA-DE com-
bination based prediction model outperforms all other similar

hybrid models studied in this paper.

6. Conclusion

The paper has developed an efficient exchange rate prediction
scheme using an ARMA structure and DE based adaptive
parameter update strategy. The prediction performance of ru-

pees, yen and pound exchange rates with respect to US dollar
of the new model has been evaluated. It is shown that the pro-
posed model offers the best performance for predicting ex-

change rates compared to those offered by other three
similar models studied. The FBLMS based model is observed
to show worst prediction performance as the corresponding

weight update mechanism is unstable and results in divergent
learning characteristics. To further enhance the forecasting
performance, particularly for a long range prediction it is sug-
gested to use other additional hidden features of the financial

time series as input to the model as well as to explore the
use of other promising adaptive models. To enable satisfactory
prediction when abrupt fluctuations of exchange rate take

place due to political turmoil of a country, natural hazards
or such unforeseen reasons, more in-depth investigation is re-
quired in terms of selection of features, model and learning

algorithm. Our future study will focus on these critical issues
in developing the prediction models.
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