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Abstract One of the major drawbacks of data mining methods is that they generate a notably large

number of rules that are often obvious or useless or, occasionally, out of the user’s interest. To

address such drawbacks, we propose in this paper an approach that detects a set of unexpected rules

in a discovered association rule set. Generally speaking, the proposed approach investigates the dis-

covered association rules using the user’s domain knowledge, which is represented by a fuzzy

domain ontology. Next, we rank the discovered rules according to the conceptual distances of

the rules.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Knowledge discovery in data mining has been defined in
Fayyad et al. (1996) as the non-trivial process of identifying

valid, novel, potentially useful, and ultimately understandable
patterns from data. Association rule algorithms (Agrawal
et al., 1993) are rule-discovery methods that discover patterns

in the form of IF-THEN rules. It has been noticed that most of
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the algorithms that perform data mining generate a large num-
ber of rules that are valid but obvious or not interesting to the
user (Liu and Hsu, 1996; Piatetsky-Shapiro, 1996; Piatetsky-

Shapiro and Matheus, 1991; Silberschatz and Tuzhilin,
1996). To address this issue, most of the approaches to knowl-
edge discovery use objective measures of interestingness for the

evaluation of the discovered rules, such as confidence and sup-
port measures (Agrawal et al., 1993). These approaches cap-
ture the statistical strength of a pattern. The interestingness
of a rule is essentially subjective (Liu and Hsu, 1996;

Piatetsky-Shapiro and Matheus, 1991; Silberschatz and
Tuzhilin, 1996; Klemettinen et al., 1994). Subjective measures
of interestingness, such as unexpectedness (Zimmermann,

2001; Asa and Mangano, 1995; Uthurusamy et al., 1991), as-
sume that the interestingness of a pattern depends on the deci-
sion-maker and does not solely depend on the statistical

strength of the pattern. Although objective measures are
ing Saud University.
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useful, they are insufficient in the determination of the interest-
ingness of the rules. One way to address this problem is by
focusing on discovering unexpected patterns (Liu and Hsu,

1996; Silberschatz and Tuzhilin, 1996; Liu et al., 1997;
Padmanabhan and Tuzhilin, 1998; Padmanabhan and
Tuzhilin, 1999; Silberschatz and Tuzhilin, 1995), where the

unexpectedness of the discovered patterns is usually defined
relative to a system of prior expectations.

Moreover, ontology represents knowledge. Ontology is or-

ganized as a DAG (Directed Acyclic Graph) hierarchy.
Ontologies allow domain knowledge to be represented explic-
itly and formally in such a way that it can be shared among
human and computer systems. Unfortunately, knowledge

about a system can contain ambiguity and vagueness. For
this reason, fuzzy ontologies have been used to address such
fuzzy knowledge (xxx, 1291), where the concepts are related

to each other in the ontology with a degree of membership
l (0 6 l 6 1). In this paper, we propose a new approach that
adds intelligence and autonomy for ranking rules according

to their conceptual distance (the distance between the ante-
cedent and the consequent of the rule) relative to the hierar-
chy. In other words, highly related concepts are grouped

together in the hierarchy. The more distant the concepts
are, the less they are related to each other. For concepts that
are part of the definition of a rule, the less the concepts are
related to each other, the more the rule is surprising and

therefore interesting. With such a ranking method, a user
can check fewer rules on the top of the list to extract the
most pertinent ones.
1.1. Association Rules

Association rule mining finds interesting associations and/or
correlation relationships among a large set of data items. Asso-
ciation rules show attribute value conditions that occur fre-

quently together in a given dataset. A typical and widely
used example of association rule mining is Market Basket
Analysis (http://www.resample.com/xl). In market basket
analysis, customers’ buying habits are analyzed to find associ-

ations between different items that customers place in their
shopping cart. Two different items, ‘a’ and ‘b’, in an item set
are assumed to have a relation if they are purchased together

in the same transaction. The more those two items are pur-
chased together in the same transaction, the more they have
a stronger relation. The discovery of such associations can help

retailers develop marketing strategies by gaining an insight
into which items are frequently purchased together by custom-
ers. Association rules provide information of this type in the
form of ‘‘if-then’’ statements. These rules are computed from

the data and, unlike the if-then rules of logic, the association
rules are probabilistic in nature (http://www.resample.com/
xl). Objective measures such as support and confidence are of-

ten used to evaluate the interestingness of the association rules.
The support is simply the number of transactions that in-

clude all of the items in the antecedent and consequent parts

of the rule. The support is sometimes expressed as a percentage
of the total number of records in the database.

The confidence is the ratio of the number of transactions

that include all of the items in the consequent as well as the
antecedent (namely, the support) to the number of transac-
tions that include all of the items in the antecedent.
One way to think of support is that it is the probability that
a randomly selected transaction from the database will contain
all of the items in the antecedent and consequent, whereas the

confidence is the conditional probability that a randomly se-
lected transaction will include all of the items in the consequent
given that the transaction includes all of the items in the ante-

cedent (http://www.resample.com/xl).
Interestingness measures are called fitness functions in

Ykhlef (2011). The study in Ykhlef (2011) divides fitness func-

tions into two types, basic and complex. Support and confi-
dence are considered to be basic measures, whereas certain
other fitness functions are derived from information theory
and are considered to be complex fitness functions.

Many algorithms can be used to discover association rules
from data to extract useful patterns. The Apriori algorithm is
one of the most widely used and famous techniques for finding

association rules (Agrawal et al., 1993; Agrawal, 1994). The
Apriori algorithm requires two thresholds of minconfidence
(representing minimum confidence) and minsupport (repre-

senting minimum support). These two thresholds determine
the degree of association that must hold before a rule will be
mined. The algorithm operates in two phases. In the first

phase, all of the item sets with minimum support (frequent
item sets) are generated. The second phase of the algorithm
generates rules from the set of all frequent item sets.

1.2. Rule interestingness measures

Past research in data mining has shown that the interestingness
of a rule can be measured using objective measures and subjec-

tive measures. Objective measures involve analyzing the rule’s
structure, predictive performance, and statistical significance.
In association to rule mining, such measures include support

and confidence (Liu et al., 2000). However, it is noted in
Piatetsky-Shapiro and Matheus (1991) that such objective
measures are insufficient for determining the interestingness

of a discovered rule. Indeed, subjective measures are needed.
There are two main subjective interestingness measures,

namely unexpectedness (Liu and Hsu, 1996; Silberschatz and
Tuzhilin, 1996) and actionability (Piatetsky-Shapiro and

Matheus, 1991; Silberschatz and Tuzhilin, 1996).

� Unexpectedness: Rules are interesting if they are unknown

to the user or contradict the user’s existing knowledge (or
expectations).
� Actionability: Rules are interesting if the user can do some-

thing with them to his/her advantage.

In this research, we focus only on unexpectedness.

1.3. Ontology

The term ontology has been widely used in recent years in the
field of Artificial Intelligence and computer and information

science, especially in domains such as cooperative information
systems, intelligent information integration, information re-
trieval and extraction, knowledge representation, and database

management systems (Guarino, 1998). Although there is no
universal consensus on the definition of an ontology, it is gen-
erally accepted that ontology is a specification of conceptuali-

zation (Leacock and Chodorow, 1998). The prior knowledge
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of a domain or a process in the field of data mining can help to
select the appropriate information (preprocessing), decrease
the space of the hypotheses (processing), represent results in

a more comprehensible way and improve processing (or
post-processing) (Farzanyar et al., 2006). Ontologies express
the domain knowledge, which includes the semantic links be-

tween domain individuals that are described as relations of in-
ter-concepts or roles (Gruber, 1995). Ontologies are usually
constructed by domain experts, which results in a consensual

and shared knowledge and allows domain knowledge to be
captured in an explicit and formal way such that it can be
shared among human and computer systems. The study in
Corcho et al. (2003) distinguishes between lightweight ontolo-

gies, which include concepts, concept taxonomies, relation-
ships between concepts and properties that describe concepts,
from heavyweight ontologies, which add axioms and con-

straints to lightweight ontologies.
Ontologies are encoded in a formal language called an

ontology language. There are several languages that are used

for expressing ontologies, such as KIF, Loom, OCML, FLog-
ic, RDF, RDF (S), and OWL (Web Ontology Language).

1.4. Fuzzy ontology

Knowledge about a system contains ambiguity and vagueness.
Fuzzy sets were introduced by Zadeh in Zadeh, (1965) as a
mathematical tool to solve the problem of vagueness. It is con-

venient to represent knowledge using fuzzy sets and fuzzy rela-
tions. The fuzzy ontology has been introduced to represent
fuzzy concepts and relationships where concepts are related to

others in the ontology with a degree of membership l
(06 l 6 1) assigned to the relationship. The fuzzy ontology is
a hierarchical relationship between concepts within a domain,

which can be viewed as a graph. It is developed based on the
ontology graph and fuzzy logic. Fuzzy ontology captures richer
semantics than traditional domain knowledge representations

by allowing partial belonging of one item to another.
Fig. 1 shows a concept hierarchy of food items based on the

taxonomy presented in Chen et al. (2000), where ‘Tomato’ can
be regarded as being both ‘Fruit’ and ‘Vegetable’, but to differ-

ent degrees.
Our approach uses the fuzzy membership degree in ‘‘IS-A’’

relationships between concepts.
Figure 1 Fuzzy hie
1.5. Conceptual distance

Two main categories of algorithms for computing the semantic
distance between terms organized in a hierarchical structure
have been proposed in the literature (Jiang and Conrath.,

1997): distance-based approaches and information content-
based approaches. The general idea behind the distance-based
algorithms (Leacock and Chodorow, 1998; Rada et al., 1989;
Wu and Palmer, 1994) is to find the shortest path between

two concepts in terms of the number of edges. The shorter
the path from one node to the other, the more similar they
are. The problem with this approach is that it relies on the no-

tion that edges in a taxonomy represent uniform distances (i.e.,
it assumes that all conceptual links are of equal weight). Infor-
mation content-based approaches (Rada et al., 1989; Jiang and

Conrath., 1997) are inspired by the perception that pairs of
concepts that share many common contexts are semantically
related. The more information that two concepts share in com-

mon, the more similar they are.
The problem of the ontology distance is that it is highly

dependent on the construction of the ontology. The measure
is, therefore, highly dependent on oftentimes subjective ontol-

ogy engineering decisions. To address this problem, we are
associating a weight to any concept in the ontology that repre-
sents the degree of importance of this concept in the ontology

along with the strength of any relation between the concepts.
In an IS-A semantic network, the simplest form of determining
the distance between two concept nodes, A and B, is the short-

est path that links A and B, i.e., the minimum number of edges
that separate A and B (Rada et al., 1989) or the sum of the
weights of the arcs along the shortest path between A and B
(Richardson et al., 1995). In the hierarchy of Fig. 1, the edge

distances are:

Dist Apple; Kiwið Þ ¼ 2 Dist Carrots; Pepperð Þ ¼ 2

Dist Apple; Meatð Þ ¼ 4 Dist Fruit; Red Meatð Þ ¼ 4
2. Related studies

The unexpectedness of patterns has been studied in Liu and
Hsu (1996)Silberschatz and Tuzhilin, 1996(Liu et al.,
1997)Padmanabhan and A., 1998(Padmanabhan, 1999)
rarchy example.
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(Silberschatz and Tuzhilin, 1995 and defined in comparison
with user beliefs. A rule is considered to be interesting if it af-
fects the levels of conviction of the user. The unexpectedness is

defined in probabilistic terms in Silberschatz and Tuzhilin
(1996)Silberschatz and Tuzhilin, 1995, while in Liu and Hsu
(1996), it is defined as a distance, and it is based on a syntactic

comparison between a rule and a conviction. Similarity and
distance is defined syntactically based on the structure of the
rules and convictions. A rule and a conviction are distant if

the consequence of the rule and conviction is similar but the
antecedents are distant, or vice versa. In Padmanabhan and
Tuzhilin, 2006, the focus is on discovering minimal unexpected
patterns rather than using any of the post-processing ap-

proaches, such as filtering, to determine the minimal unex-
pected patterns from the set of all of the discovered patterns.
In Padmanabhan and **A.Tuzhilin, 1997, unexpectedness is

defined from the point of view of a logical contradiction of a
rule and conviction; the pattern that contradicts prior knowl-
edge is unexpected. This concept is based on the contradiction

of the consequence of the rule and the consequence of belief.
Given a rule A fi B and a belief X fi Y, if B AND Y is False
while A AND X is true for broad group of data, then the rule

is unexpected. In Liu et al., 1999, the subjective interestingness
(unexpectedness) of a discovered pattern is characterized by
asking the user to specify a set of patterns according to his/
her previous knowledge or intuitive feelings. This specified

set of patterns is then used by a fuzzy matching algorithm
to match and rank the discovered patterns. Reference
(Klemettinen et al., 1994) proposes a template-based approach

in which the user specifies interesting and uninteresting associ-
ation rules using templates. A template describes a set of rules
in terms of items that occurred in the conditional and the con-

sequent parts. The system then retrieves the matching rules
from the set of discovered rules. The studies in Srikant et al.
(1997)T Ng et al., 1998 propose an association rule mining

algorithm that can take item constraints specified by the user
in the rule mining process in such a way that only those rules
that satisfy the constraints are generated. References (Sahar,
1999)Sahar et al., 2001(Sahar’’, 2002) have taken a different

approach to the discovery of interesting patterns by eliminat-
ing non-interesting association rules. Rather than getting the
users to define their entire knowledge of a domain, they are

asked to identify several non-interesting rules that were gener-
ated by the Apriori algorithm. The study in Sahar, (2002) uses
a genetic algorithm to dynamically maintain and search popu-

lations of rule sets for the most interesting rules rather than act
as a post-processor. The rules identified by the genetic
algorithm compared favorably with the rules selected by the
domain expert (McGarry, 2005). To find subjectively interest-

ing rules, most existing approaches ask the user to explicitly
specify what types of rules are interesting and uninteresting,
then generate or retrieve those matching rules. This research

on the unexpectedness makes a syntactic or semantic compar-
ison between a rule and a belief.

3. Contributions

Past research in data mining has shown that the interestingness
of a rule can be measured using objective measures and subjec-

tive measures. Lightweight ontologies include concepts, con-
cept taxonomies, relationships between concepts and
properties that describe concepts. We define the conceptual
distance of a rule as the distance between its antecedent and
consequent relative to a hierarchy of concepts. By ranking

rules according to their conceptual distance, highly related
concepts are grouped together in the hierarchy. The farther
away the concepts are, the less related they are to each other.

For concepts that take part in the definition of a rule, the less
related the concepts are to each other, the more the rule is sur-
prising and, therefore, interesting. With such a ranking meth-

od, a user can check fewer rules on the top of the list to extract
the most pertinent ones

The basic idea of our technique comprises the generation of
association rules using any algorithm of rule generation (the

‘A-priori’ Algorithm, for example) and adjusting the objective
measures, such as support and confidence, to the user’s needs.
The output, i.e., the association rules that result from this pro-

cess becomes the input of our algorithm along with the domain
ontology. Our technique analyzes the discovered rules and
computes their conceptual distance. The higher the distance

is, the more this rule becomes interesting. Our definition of
unexpectedness is based on the structure of the background
knowledge (hierarchy) that underlies the terms (vocabulary)

of the rule, which is the conceptual distance between the head
and the body of the rule. We are taking a different approach
from all of the preceding work. The preceding work is a filter-
ing process where a belief is expressed as rules that the user

must enter, as for a query system. We are proposing a ranking
process, and the knowledge is not expressed as rules; instead,
the knowledge is expressed as a hierarchy of ontology con-

cepts. Our approach is giving intelligence and autonomy to
the computer to rank the more interesting rules on the top
of the list based on the background knowledge represented

by the domain ontology. Ontologies enable knowledge shar-
ing. Sharing vastly increases the potential for knowledge reuse
and therefore allows our approach to obtain free knowledge

solely from using domain ontologies that are already available,
such as ‘‘ONTODerm’’ for dermatology, ‘‘BIO-ONT’’ for bio-
medicine, and ‘‘AGROVOC’’ for food.

4. Method presentation

Data mining is the process of discovering patterns in data.
Data mining methods have a drawback in that they generate

a very large number of rules that are not of interest to the user.
The use of objective measures of interestingness, such as con-
fidence and support, is a step toward interestingness. Objective

measures of interestingness are data driven; they measure the
statistical strength of the rule and do not exploit the domain
knowledge and intuition of the decision maker. In addition

to objective measures, our approach exploits domain knowl-
edge that is represented by Fuzzy ontology organized as a
DAG hierarchy. The nodes of the hierarchy represent the rules
of the vocabulary. For a rule such as (x AND y fi z), x, y and

z are nodes in the hierarchy. The conceptual distance between
the antecedent (x AND y) and the consequent (z) of a rule is a
measure of interestingness. The larger the distance is, the more

the rule is unexpected and, therefore, interesting. Based on this
measure, a ranking algorithm helps to select those rules that
are of interest to the user.

The basic idea of our technique comprises the generation of
association rules using any algorithm for rule generation (the
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‘A-priori’ Algorithm, for example) and adjusting the objective
measures, such as support and confidence, to the user’s needs.
The output, i.e., the association rules that result from this pro-

cess becomes the input of our algorithm along with the domain
ontology. Our technique analyzes the discovered rules and
computes their conceptual distance. The larger the distance

is, the more this rule is interesting. A concept in the rule that
has no equivalent in the domain ontology (unknown concepts)
can be either a noisy concept or a new concept. In such a case,

the user can update the ontology based on new concepts, to
produce ontology evolution (Fig. 2).

4.1. Concept semantic distance

In our approach, we are making a distinction between the
weight that is associated with a concept (in Fig. 1, the weight
is 1 for all of the concepts) and the strength of the relation be-

tween a concept child and its parent (the membership degree l
of the concept’s child to its parent). In Fig. 1, l = 1 for all of
the concepts except for ‘Tomato’.

The semantic distance between the two concepts A and B is
the sum of the weights of the arcs along the shortest path be-
tween A and B (Richardson et al., 1995). To calculate the

weight for fuzzy relations, an extension to the weighting func-
tion is required.

The weighting function for the crisp hierarchy relations is f
(l, x): {0, 1} xIR fi IR where:

f xð Þ ¼
x l ¼ 1 if A;B Connectedð Þ
0 l ¼ 0 if A;B Disconnectedð Þ

�
ð1Þ
Figure 2 Ontology-driven rule ranking system.
l e {0,1} is the membership degree of a concept to its parent,

and x is the weight associated with this concept in the
hierarchy.

The function based on the Boolean variable (l e {0, 1}) in

(1) is extended to a weighting function based on a continuous
variable l e (Fayyad et al., 1996) in (2), according to the weight
x associated with the child concept and its degree of member-
ship l.

f l;xð Þ : ½0; 1� � IR! IR f l;xð Þ ¼
xþ 1� lð Þ � x l–0

0 l ¼ 0

�
ð2Þ

where l (0 6 l 6 1) is the membership degree.

For a degree membership l = 1, our extended weighting
function is equal to the Boolean weighting function.

The weight of a concept (x) is based on the density of the
hierarchy for this concept and its depth in the hierarchy, to ad-

dress the widely recognized problem of ‘‘edge-counting’’ (uni-
formity in the link distances of the taxonomy).

To compute the shortest path between two nodes, we use

Dijkstra’s algorithm (Dijkstra’, 0000).
4.2. Rule conceptual distance

To compute the distance between groups of concepts, for a gi-
ven rule R: X fi Y, where X = X1�. . .�Xk, Y= Y1�. . .�Ym,

we use the Hausdorff distance.

Distance x; yð Þ ¼ max h x; yð Þ;max y; xð Þð Þ where h A;Bð Þ
¼ max

a2A
min
b2B

a� bk k ð3Þ

The function h(X,Y) is called the directed Hausdorff ‘dis-
tance’ from X to Y (this function is not symmetric and thus

is not a true distance). This function identifies the point
XiX that is farthest from any point of Y and measures the dis-
tance from Xi to its nearest neighbor in Y. The Hausdorff dis-

tance, H(X,Y), measures the degree of mismatch between two
sets because it reflects the distance of the point of X that is
farthest from any point of Y, and vice versa (Huttenlocher

et al., 1993).
This expression measures the conceptual distance

between groups X= X1�. . .�Xk and Y= Y1�. . .�Ym of the

concepts that contain the k Xi and m atomic Yj concepts,
respectively.
4.3. Rule ranking algorithm

In this section, we introduce an algorithm to rank the rules
according to their conceptual distance based on a fuzzy ontol-
ogy that represents the background knowledge. The rules that

we consider are in the form of ‘‘body fi head’’, where ‘‘body’’
and ‘‘head’’ are conjunctions of concepts in the vocabulary of
the ontology. We assume that other techniques carry out the

task of pattern discovery and eliminate the patterns that do
not satisfy the objective criteria.

With such a ranking, a user can check only the patterns that
are on the top of the list to confirm the rules that are the most

pertinent. The algorithm will use the procedure to compute the
weight of the edge based on the membership degree, and it will
apply the proposed weighting function.
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4.3.1. Summary of the Algorithm

Input

Rule set

Ontology

Processing

Build inter-concept semantic distance matrix.
For each rule, compute the rule conceptual distance

Sort the rule set

Output

Ranked rule set.

4.3.2. Pseudo code

Procedure weight (Shortest Path (Xi, Xj))

/* this procedure (which is called by the algorithm) calcu-
lates the weight of each edge in the path based on the member-

ship degree and the original weight of the child node and sums
up the weights of the path going from Xi to Xj. */

begin

for Xk = Xi to Xj step 2

begin

//Compute the weight of the edge.

w(Xk,Xk+1) = (xXk + xXk* (1�l));
//sum up the weight

Total_Weight = Total_Weight + w(Xk,Xk+1);

end

return (Total_Weight);

end
Algorithm

ND: Number of nodes

R: Set of rules R = {Ri/Ri = body fi head} where i e [1,N]

N: number of rules

D: Maximum depth of the hierarchy

Xi, Yj: Atomic Concepts; i e [1,k]; j e [1,m]

Body = X1�. . .�Xk

Head = Y1�. . .�Ym

//for all of the nodes in the graph, calculate the conceptual distance

for i= 1 to ND

for j= 1 to ND

begin

// ShortestPath(Xi,Xj) shortest path between Xi and Xj

//Make a call to the weight(ShortestPath(Xi,Xj) above.

Distance(Xi,Xj)= weight(ShortestPath(Xi,Xj));

end

//rule conceptual distance computation

for i= 1 to N

Distance(Ri) = (Distance(X1�. . .�Xk; Y1�. . .�Ym));

Sort Distance(Ri) descending;
Figure 3 Concepts’ index table.
5. Example

For a set of association rules R = {(a) Apple fi Kiwi; (b)
Apple fi Carrots; (c) Pepper, Carrots fi Turkey, Chicken;

(d) Kiwi fi Tomato; (e) Tomato fi Pepper; (f) Tomato,
Pepper fi Turkey, Chicken}, we apply our method to the
hierarchy of Fig. 1. Fig. 3 represents the indexed table of con-
cepts. In Fig. 4, every cell in the semantic distance inter-con-
cepts of the ontology represents the distance between the

concept in the row and the corresponding concept in the col-
umn. The results are shown in Fig. 5.

Inter-concept semantic distance Computation

The number of nodes in (Fig. 1) is ND = 16. For x = 1,
the weighting function

f l;xð Þ : 0; 1½ � � IR! I f l; 1ð Þ ¼
1þ 1� lð Þ l–0

0 l ¼ 0

�
ð4Þ

Let w (i, j) be the weight between node i and node j; then,

w tomato; fruitð Þ ¼ 1þ 1� l tomato; fruitð Þð Þ ¼ 1þ 1–0:3ð Þ
¼ 1:7:

w tomato;Vegetableð Þ ¼ 1þ 1� l tomato;Vegetableð Þð Þ
¼ 1þ 1–0:7ð Þ ¼ 1:3

The shortest path between any two concepts is the conceptual
distance between two of them.

Let Dist (i, j) be the semantic distance between concept i

and concept j; then,

Dist Apple;Kiwið Þ ¼ w Apple;Fruitð Þ þ w Fruit;Kiwið Þ ¼ 2:

Dist Apple;Tomatoð Þ ¼ w Apple;Fruitð Þ þ w Fruit;Tomatoð Þ
¼ 2:7
Rule conceptual distance computation

For the set of rules R = {(a), (b), (c), (e), and (f)} where:

(a) Apple fi Kiwi;

(b) Apple fi Carrots;
(c) Pepper, Carrots fi Turkey, Chicken;
(d) Kiwi fi Tomato;

(e) Tomato fi Pepper;
(f) Tomato, Pepper fi Turkey, Chicken

By applying the Hausdorff distance, the rule distances are:

(a) Dist (Apple, Kiwi) = 2
(b) Dist (Apple, Carrots) = 4

(c) Dist (Pepper � Carrots, Turkey � Chicken) = 6



Figure 4 Inter-concepts’ semantic distance.

Figure 5 Example rules ranking results.
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(d) Dist (Kiwi, Tomato) = 2.7
(e) Dist (Tomato, Pepper) = 2.3
(f) Dist (Tomato � Pepper, Turkey � Chicken) = 6.3

The order of rules would be (f), (c), (b), (d), (e), (a) based on
taking the conceptual distance in a descending order, as shown in

Fig. 5. From the perspective of the decision system, the rules (f)
and (c) belong to a higher level (food) than the rules (b) and (d),
which belong to a lower level (vegetable-dishes). The rules (e) and

(a) belong to a lower level (vegetable) and (fruit), respectively.
The more that we move up in the hierarchy, the more the deci-
sion is important, and the vision of the decision maker is broader
and therefore the discovered rule is more interesting. Rules (f)

and (c) are the crossing result of the domains (vegetables-dishes,
meat), which are farther than the domains (vegetables, fruits) of
the rule (b) and (d). The rules (e) and (a) concern only the do-

main (vegetable) and (fruit), respectively. Therefore, they are less
interesting. Note that rule (d) is more surprising than rule (e),
even though tomato is a fruit and vegetable with different de-

grees. Because a tomato is closer to a vegetable than a fruit, rule
(d) is more interesting than rule (e).

6. Experiments

The experiments were performed using a census income
database (in, 0000) and an implementation of our algo-
rithm. To generate the association rules, we used the imple-

mentation of the ‘Apriori’ algorithm (Christian, 0000) with
a minimum support value equal to 0.2 and a minimum con-
fidence value equal to 0.2. The number of generated rule

sets is 2225. To perform the experiments, we created a
taxonomy of 81 weighted concepts (Fig. 6) based on the
data set that we are studying, and we defined two fuzzy
concepts, ‘Low_Level’ and ‘High_Level’, for education as

fuzzy sets.
The membership functions to the fuzzy sets are:

lHight(Level_Rank) = Level_Rank/15
lLow(Level_Rank) = 1 � lHight(Level_Rank) = Level_-
Rank/15, where Level_Rank is a sequential number that

ranges from 0 to 15, where 0 represents ‘Preschool’ and
15 represents ‘Doctorate’.
Level_Rank = {(Preschool = 0), (1st-4th = 1),
(5th-6th = 2), (7th-8th = 3),
(9th = 4), (10th = 5),
(11th = 6), (12th = 7),
(HS-grad = 8), (Some-college = 9),

(Assoc-acdm= 10), (Assoc-voc = 11),
(Bachelors = 12), (Prof-school = 13),
(Masters = 14), (Doctorate = 15)}

Formally, High_Level and Low_Level fuzzy sets can be de-
fined as:



Figure 6 Census-income ontology.
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High_Level = {Preschool/0.00, 1st-4th/0.07,

5th-6th/0.13, 7th-8th/0.20,
9th/0.27, 10th/0.33,
11th/0.40, 12th/0.4
HS-grad /0.53, Some-college/0.60,

Assoc-acdm /0.67, Assoc-voc /0.73,
Bachelors /0.80, Prof-school /0.87,
Masters /0.93, Doctorate/1.00}



Figure 7 Rules ranking results for the first experiment.

Figure 8 Rules ranking results for the second experiment.
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Low_Level = {Preschool/1.00, 1st-4th/0.93,

5th-6th/0.87, 7th-8th/0.80,
9th/0.73,10th/0.67, 11th/0.60,
12th/0.53, HS-grad /0.47,

Some-college/0.40, Assoc-acdm /0.33,
Assoc-voc /0.27, Bachelors /0.20,
Prof-school /0.13, Masters /0.07,
Doctorate/0.00}

We have conducted two experiments on our dataset. The

first experiment was conducted with a weight equal to 7, for
all of the atomic concepts related to education, and the second

experiment was conducted with a weight equal to 1, for all
atomic concepts.

6.1. First experiment

In this experiment, a test was conducted with a weight equal to
7 for all of the atomic concepts that were related to education
and with different weights for the remaining concepts (Fig. 6).

The user in this case is placing more emphasis on educational
concepts by setting their weights to a high value or because
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they are truly important in the domain of study. The ranking
rules algorithm chooses those with higher weights. The results
are presented in Fig. 7.

6.2. Second experiment

In this experiment, the weight is set to 1 for all of the atomic

concepts. All of the concepts are equally important for the
user. The results are shown in Fig. 8.

6.3. Discussion

The first experiment was conducted with a weight that was set
to 7 for all of the atomic concepts related to education. The

user in this case is placing more emphasis on these concepts
by setting their weights to a high value.

Subsume the concepts of ‘HS-grade’ and ‘craft-repair’ of
rule (1) in Fig. 7 as ‘census-income’ (see Fig. 6). These concepts

are less related to each other based on the ontology. The same
reasoning applies to rule (2) in Fig. 7.

Subsume the concept of ‘some-college’ and ‘Never-Married’

of rule (3) in Fig. 7 as ‘census-income’ also; however, the mem-
bership degree of ‘some-college’ is 0.60 (Fig. 6). Note that the
weight for both concepts, ‘craft-repair’ and ‘Never-Married’,

is 2.
‘HS-grade’ has a membership degree of 0.53 and is less than

the membership degree of the concept ‘some-college’, which is
0.60 (rule (3)); this value makes this degree relatively far from

the expected and therefore more interesting.
The common subsumption for the last 2 rules of Fig. 7 is

the concept ‘Personal’ (Fig. 6). These rules express the relation

between the concepts ‘sex’ and ‘age’, and they are close to each
other based on the ontology.

The second experiment was conducted with a weight

that was set to 1 for all of the atomic concepts. The user
in this case is considering all of the concepts to be equally
important.

Subsume the concepts ‘Adm-Clirical’ and ‘Female’ of rule
(1) in Fig. 8 as ‘census-income’ (Fig. 6). ‘Adm-Clirical’ is a
child of the ‘work’ concept, whereas ‘sex’ is a parent of the
concept ‘Female’. These concepts are less related to each other

based on the ontology. ‘Adm-Clirical’ has a membership de-
gree of 1 and is the same as the ‘Female’ concept. The same
reasoning is applied to the rules (2), (3) and (4) in Fig. 8.

Subsume the concepts ‘Craft-repair’ and ‘HS-grade’ of rule
(5) as ‘census-income’ as well, but ‘HS-Grade’ has a member-
ship degree of 0.53, which is less than the membership degree

of the concepts within rules (1), (2), (3) and (4).
The common subsumption for the last 2 rules of Fig. 8 is

the concept ‘Education’ (Fig. 6). These rules express the rela-

tion between the concepts ‘EducationNum’ and ‘Education-
Level’, which are close to each other based on the ontology.

A rule such as (1) or (2) in Fig. 7 is more interesting because
it is giving us information between the ‘Education’ and ‘Occu-

pation’ information and it involves a higher decision maker
(strategic) than the last two rules, which concern ‘sex’ and
‘age’. The same reasoning applies for Fig. 8. The more that

we move up in the hierarchy, the more the decision is impor-
tant and the vision of the decision maker is broader, strategic
and important; therefore, the discovered rule is more

interesting.
7. Conclusions and future work

In this paper, we proposed a new approach for ranking asso-
ciation rules according to their conceptual distance, which

was defined on the basis of the ontological distance. The pro-
posed ranking algorithm helps the user to identify interesting
association rules, particularly expected and unexpected rules.

This algorithm uses a fuzzy lightweight ontology to calculate
the distance between the antecedent and the consequent of
the rules on which the ranking is based. The larger the concep-
tual distance is, the more the rule represents a high degree of

interest. We proposed an extension to the mapping weighting
function based on the membership degree to compute the
weight of the relations in the fuzzy ontology. In the future,

we plan to integrate the concept proprieties in the conceptual
distance computing and exploit other relation types of the
ontology. We are planning to integrate a personal ontology

that represents a user’s views and interests into a domain
ontology to develop ranking rules that are based on the inte-
grated output.
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