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Abstract Software reuse is the process of building software applications that make use of formerly

developed software components. In this paper, we explain the benefits that can be obtained from

using statistical procedures for prescribing medicines, especially in rural areas, which have limited

resources available on hand. It should be noted that although the expert systems were successful in

research, they never dominated the market when actual patient treatment was considered. The pro-

posed methodology is compared with the categorical clustering technique. The Fenton and Melton

Coupling Metric is considered for the evaluation of the statistic model. The reliability of this meth-

odology is also considered.
ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
2. Discussion of expert systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
3. Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

4. The Pearson family of probability distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
5. Categorical clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
6. Coupling metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2013.12.003&domain=pdf
mailto:sridharbhanu@gmail.com
mailto:ysrinivasit@rediffmail.com
mailto:krishnaprasad.mhm@gmail.com
mailto:krishnaprasad.mhm@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2013.12.003
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2013.12.003


348 M. Bhanu Sridhar et al.
7. Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

8. Results and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
1. Introduction

Software reuse has long been identified as a key methodology
for the improvement of software features. This process saves
time, money and energy and also improves the quality of the

new software. The success of the reuse process depends on
many criteria, such as, the reusability of the existing software
(Godin et al., 1995), the availability of efficient algorithms to

obtain the maximum reusability, and so on. Software reuse
has long been attracting researchers who recognize its worth
in reducing the cost and time for building a new project. Soft-
ware reuse has long been successful in the research field but not

in industry. Furthermore, reuse in the medical field has not re-
ceived the required attention due to the early introduction of
expert systems. In this paper, expert systems and their ap-

proach to utilize medical data are explained and compared
with the idea of utilizing statistical methodologies. Further-
more, the pros and cons of both angles are discussed to vindi-

cate faith in the long-proven statistical methods. Throughout
this paper, some of the statistical methods and their applica-
tions in the medical field are discussed and compared with ex-

pert systems. The article culminates with a conclusion that
opens the doors for a new idea and its application, especially
in rural areas, to save the precious lives of any ailing patients.

2. Discussion of expert systems

Expert systems (ESs) are a type of applied artificial intelligence
(AI), which is a term that was coined in 1960s. The basic idea

of these systems is expertise, which is the collection of task-spe-
cific knowledge, is transferred from a human to a computer
(Liao, 2004). This knowledge is then stored in the system

and becomes convenient for users to apply in specific cases.
ESs are broadly divided into different categories, such as
rule-based systems, knowledge-based systems, neural net-

works, fuzzy ESs, case-based reasoning (CBR), intelligent
agent (IA) systems, modeling, and ontologies. Together with
their applications, certain ESs for medical data are available

in the literature, such as MYCIN, DENDRAL, INTERNIST,
and CASNET.

ESs are used for specific purposes, such as investigating the
side effects of a specific drug or predicting the disease of a pa-

tient from the answers to some queries that are posed. How-
ever, these methodologies have never thrown light upon the
data that are available online in specific situations in which a

patient from a remote area must be treated with an appropri-
ate life-saving drug in stages, such as heart stroke, paralysis
and other diseases, which result in either deformities or loss

of life. In such a case, questions are not answered; the results
from the tests conducted on the patient previously or presently
are considered. Some work of this type has been reported
(Bhanu Sridhar et al., 2012) where an attempt is made to inves-

tigate the reusability criteria on persons living in remote areas.
Further work is also continued by the authors (BhanuSridhar
et al., 2012), where they have highlighted the need for statisti-
cal models for clustering instead of the existing methodologies

such as K-means algorithm.
It can be carefully noted that ESs are used mainly for pre-

dicting the disease of a patient or the side-effects of medicines

but not for prescribing medicines for a patient. Additionally,
ESs have never been used with confidence in the medical field
(http://en.wikipedia.org/wiki/Expert_system, 2013). The
knowledge collection that we use for the purpose of expert sys-

tems is usually error-prone due to human errors. Additionally,
expert systems use computational engines incapable of reason-
ing and hence lead to incorrect conclusions. The logic that is

used can be based upon facts that will surely change after a
period of time, further degrading the level of the expert sys-
tems in the medical field.

Time is now appropriate to bring out new approaches by
using more proven and stable methodologies, to be more help-
ful to the patients. Proceeding from this perspective angle, the
ever-safe and sound statistical models fit easily into the re-

quired frame. They have been used for many decades and it
is time now to apply them in medical field applications to pre-
scribe medicines for the patients, with more confidence and

assurance. Solid models such as the Gaussian Mixture Model
and the Pearson Family of Equations come into the picture
immediately and the model to be applied in the current situa-

tion must be decided upon. The model that is the most viable
currently is to be discussed and decided upon.
3. Dataset

The dataset that is considered here is that of patients who have
the symptoms of paralysis. Paralysis is a loss of muscle func-

tion due to sudden damage caused to the spinal cord. A study
conducted by the Christopher and Reeve Foundation (2012)
suggests that �1 in 50 people have been diagnosed with paral-
ysis. There exists very large number of reasons for the occur-

rence of paralysis and perhaps many more reasons that are
yet to be discovered. Paralysis can result from diseases that
either involve changes in the makeup of nervous or muscular

tissue or are the result of metabolic disturbances that interfere
with the function of nerves or muscles (Medline Net, xxxx). In
this context, the application of Software Reuse is apparently

more likely to enable the current patients to be able to use
the substantial amount of result-oriented and promising med-
icine that depends on previous data, and thus, its reuse.

Paralysis occurs when something goes wrong with the way
that messages pass between the brain and muscles. Paralysis
can be complete or partial (Medline Plus, 2012). It can occur
on one or both sides of the body. It can also occur in only

one area, or it can be widespread. Paralysis of the lower half
of the body, including both legs, is called paraplegia. Paralysis
of the arms and legs is quadriplegia.

Usually, paralysis is due to strokes or injuries such as spinal
cord injury or a broken neck. Other causes of paralysis include
nerve diseases such as amyotrophic lateral sclerosis, autoim-

mune diseases such as Guillain–Barre syndrome and Bell’s
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palsy, which affect the muscles in the face. The general symp-
toms of the disease are alcoholism, altered smell, numbness,
weakness in the ocular muscles (eye), decreased reflexes, de-

creased sensations, balance problems, altered pulse rate, weak-
ness in tongue, confusion, disorganized thinking, disability and
high BP.

Software Reuse in the medical field is as continuously use-
ful as reusing the medicines themselves. The data collected for
a patient with a problem such as paralysis, which can be reused

in the context of other patients to deduce whether the con-
cerned patients are close to having a certain disease, are diag-
nosed with a disease or do not have the disease. Similarly, the
medicines used previously under similar conditions will be

very convenient when a patient with a similar condition is de-
tected. Reuse is counted to be vital in the medical field since
previous information is very convenient in deducing a patient’s

current health position and saving a precious life (Patil and
Kumaraswamy, 2009). The database of the paralysis patients
from the archives (Datasets from Machine Learn, 2012) is

considered to apply the stated methods and comparisons. This
circumstance can be more specific to situations in which a patient
from a remote area must be treated with an appropriate life-

saving drug in stages of urgency.

4. The Pearson family of probability distributions

In the medical realm, accuracy and efficiency are given utmost
importance because assumptions and non-realistic conclusions
could lead to disasters. It is better to classify the patients into
different clusters, in which each cluster forms a set of patients

who have similar symptoms and, hence, have the same pre-
scriptions for medicines. Traditional clustering algorithms
such as the Gaussian Mixture Model and K-means fail to clus-

ter the medical data accurately because these methods consider
all the attributes of the data during the process. In the case of
medical data, which contains very large amounts of data, cer-

tain attributes could be irrelevant and, therefore, need not be
considered during the clustering process. Consideration of
these irrelevant attributes could falsify the clustering results

(Paul, 2010). Moreover, another disadvantage of traditional
clustering algorithms is that they are very sensitive to outliers
(McLachlan and Peel, 2000). This disadvantage of outliers de-
grades the pattern recognition (Sun et al., 2010; Peel and

McLachlan, 2000).
To overcome these disadvantages, the Pearson family is

chosen because the robustness of the estimation of the Pearson

family is very high (Sun et al., 2010). In the literature, the stud-
ies reported in BhanuSridhar et al. (2012) have been confined
to the usage of the Pearson Type-I family. However, since

the medical data are to be processed effectively and efficiently,
the distributions that have heavy tails are much needed.

The main advantage of using the Type-VII distribution,
which has been used here, is that the data that fall on the out-

liers can also be considered by assigning non-zero probabilities
to the data that are away from the main cluster. The Pearson
Type-VII also has heavy tails which help to cluster the data

more accurately (Sun et al., 2010). The parameters of the dis-
tribution are updated by using the EM algorithm and the up-
dated equations are considered for the development of the

model. The dataset that is considered for the model has been
explained in section-3, and the proposed methodology is dis-
cussed in section-5, using the coupling metric of Fenton and
Melton. The dataset is translated to be in binary form, and
categorical clustering is also applied to the dataset; the results

derived for the model are presented in section-6. The compar-
ative conclusions that are drawn from both clustering tech-
niques are presented in the last section.

Karl Pearson proposed a family of distributions, which are
popularly known as Pearson’s distributions; they can be gener-
ated from the solution of the differential equation given below:

dfðxÞ
dx
¼ bþ x

a0 þ a1xþ a2x2

� �
fðxÞ ð1Þ

The random variable X denotes the gray level intensity of the
echocardiograph speckle and f(x) represents the probability

density function (pdf). The b, a0, a1, and a2 are parameters
of the distribution. These parameters are determined in terms
of the first four central moments (li for i= 1, 2,. . ., 4) of the
underlying empirical distribution. By using the method of mo-
ments, we have

b ¼ �a1 ¼
0:5l3ð3l2

2 þ l4Þ
9l3

2 � 5l2l4 þ 6l2
3

ð2Þ

a0 ¼
0:5l2ð4l2l4 � 3l2

3Þ
9l3

2 � 5l2l4 þ 6l2
3

ð3Þ

a2 ¼
0:5ð6l2

3 � 2l2l4 þ 3l2
3Þ

9l3
2 � 5l2l4 þ 6l2

3

ð4Þ

Pearson identified a selection parameter j that is expressible in
terms of the first four moments. Defining Skewness (Sk = l3/
l2

3/2) and Kurtosis (Ku = l4/l2
2), we find

j ¼ S2
kðKu þ 3Þ2

4ð4Ku � 3S2
kÞð2Ku � 3S2

k � 6Þ
ð5Þ

The three major types of Pearson densities, i.e. Type I, Type IV
and Type VI are defined for j < 0, 0 < j < 1 and j > 1,

respectively. We consider the pdf of the type-I distribution
(k< 0) which is given by

f1ðxÞ ¼ A0 1þ x�m0

c1

� �g1

1� x�m0

c2

� �g1

;

� c1 þm0 < x < c2 þm0 ð6Þ

where

A0 ¼
g
g1
1 g

g2
2 Cðg1 þ g2 þ 2Þ

ðc1 þ c2Þðg1 þ g2Þ
g1þg2Cðg1 þ 1ÞCðg2 þ 1Þ

ð7Þ

g2;1 ¼ 0:5h� 1� signðl3Þð0:5hðhþ 2ÞÞ

� Skffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
kðhþ 2Þ2 þ 16hþ 16

q ð8Þ

c1 ¼
g1
g2

� �
0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2fS2

kðhþ 2Þ2 þ 16hþ 16

q
g

1þ g1
g2

ð9Þ

c2 ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2fS2

kðhþ 2Þ2 þ 16hþ 16

q
g � c1 ð10Þ

h ¼ 6Ku � 6S2
k � 6

6þ 3S2
k � 2Ku

ð11Þ



350 M. Bhanu Sridhar et al.
m0 ¼ l1 � 0:5
l3ðhþ 2Þ
l2ðh� 2Þ ð12Þ

Here b1 = 0 and b0, b2 have the same signs. The probability
density function of Type – VII is given by

fðxÞ ¼ cð1þ x2

a2
Þ�m;�1 < x <1 ð13Þ

where m >
1

2

WithZ 1

�1
fðxÞdx ¼ 1 ð14Þ

and c

Z 1

�1
1þ x2

a2

� ��m
dx ¼ 1 ð15Þ

Let

z ¼ 1þ x2

a2

� ��1
ð16Þ

¼> x2 ¼ a2
ð1� zÞ

z

¼> x ¼ að1� zÞ
1
2z
�1
2 ð17Þ

From Eq. (16),

dz ¼ � 1þ x2

a2

� ��2
2x

a2

� �
dxÞ

¼> dx ¼ a

z
z
�3
2 ð1� zÞ

�1
2 dz ð18Þ

The final values of lI
1 and lI

2 are given below in Eqs. (19) and
(20). Note that the detailed derivation is also presented.

Consider using Eqs. (16) and (18) in Eq. (15) and from the

properties of definite integrals, we have

¼ c:

Z 1

0

a

2
zm:z

�3
2 ð1� zÞ

�1
2 dz ¼ 1 ð19Þ

¼ c:
a

2

Z 1

0

zm:z
�3
2 ð1� zÞ

�1
2 dz ¼ 1 ð20Þ

Rewriting Eq. (20) we have

a

2
:c

Z 1

0

ðzÞm�
1
2�1ð1� zÞ

1
2�1dz ¼ 1

¼> a

2
:c:b m� 1

2
;
1

2

� �
¼ 1 ð21Þ

¼> c ¼ 2

a:b m� 1
2
; 1
2

� � ð22Þ

where a > 0.
Using Eqs. (18) in (13) we have

fðxÞ ¼ 2

a:b m� 1
2
; 1
2

� � 1þ x2

a2

� ��m
;�1 < x <1 ð23Þ

The first two moments of the Pearson distribution are
l01 ¼
Z 1

�1
x:fðxÞdx ð24Þ

From Eq. (13)

¼ c

Z 1

�1
x 1þ x2

a2

� ��m
dx ð25Þ

¼ c

Z 1

0

zm
a2

2

� �
z�2dz

¼ a2

2
c

Z 1

0

zm�2dz ð26Þ

Put z ¼ 1þ x2

a2

� ��1

¼ a2

2
c

zm�1

m� 1

� �

¼ a2

2
c

1

m� 1

� �
ð27Þ

From Eq. (22) we get

¼ a2

2

2

a:b m� 1
2
; 1
2

� � : 1

m� 1
ð28Þ

l01 ¼
a

b m� 1
2
; 1
2

� � : 1

m� 1
ð29Þ

By the definition of moments,

l02 ¼
Z 1

�1
x2fðxÞdx

From Eq. (12)

l02 ¼
Z 1

�1
x2fðxÞdx

¼ c:a2
Z 1

�1
1þ x2

a2
� 1

� �
1þ x2

a2

� ��m
dx ð30Þ

¼ c:a2
Z 1

�1
1þ x2

a2

� ��mþ1
� c:a2

Z 1

�1
1þ x2

a2

� ��m
dx

Using Eq. (15)

¼ c:a2
Z 1

�1
1þ x2

a2

� ��mþ1
dx� a2 ð31Þ

Using Eq. (18) we have

¼ c:a2
Z 1

0

zm�1
a

2

	 

z
�3
2 ð1� zÞ

1
2�1dz� a2 ð32Þ

¼ c:
a3

2

Z 1

0

z m�3
2ð Þ�1ð1� zÞ

1
2�1dz� a2

¼ c:
a3

2
b m� 3

2
;
1

2

� �
� a2 ð33Þ

from the properties of b(m,n).Using Eq. (22)
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¼ a3

2

2

a:b m� 1
2
; 1
2

� �
" #

b m� 3

2
;
1

2

� �
� a2 ð34Þ

l02 ¼ a2
bðm� 3

2
; 1
2
Þ

bðm� 3
2
þ 1; 1

2
Þ
� a2

¼ a2
m� 3

2
þ 1

2
þ 1

� �
m� 3

2

� a2

¼ a2
2m

2m� 3

� �
� a2

¼> l02 ¼
3a2

2m� 3
ð35Þ

Using these values in equation-(6), the clustering process is
performed.

The main advantage of using Pearson’s Family of Distribu-

tions is its degree of freedom which controls the robustness.
Among the different types of distribution that are available
in this family of equations, Type-VII is much preferred due

to the specific advantage of possessing heavy tails that help
the user to cluster the data more accurately. These values are
utilized for the clustering of the dataset against the patients’
diseases and the results are tabulated in the tables that follow.

5. Categorical clustering

Cluster analysis plays an important role in the fields of data

mining, statistics and informatics. In this methodology, the ob-
jects are divided into clusters or groups, and each cluster con-
tains similar objects. Categorical data are concentrated on in

this study, which emphasizes its relatedness with medical field.
Usually, categorical data consists of categorical variables that
are used for experiential data whose value is one of a fixed
Table 1 Dataset.

Patient

ID (fl)
Alcoholism

(S1)

ALS

(S2)

Genetic

Problems

(S3)

Botulism

(S4)

Cauda

Equina

(S5)

Cerebral

Palsy

(S6)

P1 0 1 0 1 0 1

P2 0 0 0 1 1 1

P3 0 0 0 1 0 0

P4 0 0 0 0 0 0

P5 0 1 0 1 0 1

P6 0 0 1 1 1 1

P7 0 0 0 0 0 0

P8 0 0 0 1 1 1

P9 0 0 0 0 0 1

P10 0 0 1 0 1 0

P11 0 1 0 0 0 1

P12 0 0 1 0 0 0

P13 0 0 0 1 1 1

P14 0 1 0 0 1 1

P15 0 1 0 0 1 1

P16 0 1 0 1 0 1

P17 0 1 0 0 1 1

P18 0 0 0 1 0 0

P19 0 1 0 0 1 1

P20 0 1 0 1 0 1
number of assumed categories, i.e., grouped data (http://
en.wikipedia, 2013). In these cases, data are produced in
cross-tabulation or matrices.

Categorical variables are characterized by values that are
categories (Řezanková, 2009). The main types of these vari-
ables are dichotomous variables (binary) and multi-categorical

variables, which are further divided into nominal, ordinal and
quantitative. It should be noted that arithmetic operations can
be applied only for quantitative variables and can calculate the

distance between the objects to bring out a categorical cluster-
ing classification.

In the considered medical data about paralysis, binary data
are considered in which 11 symptoms of paralysis are quoted

for 50 patients. If a symptom is found, then it is represented
by a value of 1 in the matrix; otherwise, a 0 is used. Appar-
ently, objects are to be characterized by binary variables in

the process of creating the matrix, and subsequently a hierar-
chical cluster analysis is performed. The dataset is shown in
Table 1 below.

The 11 symptoms of paralysis that are considered here are
Alcoholism (S1), ALS (S2), Genetic Problems (S3), Botulism
(S4), Cauda Equina (S5), Cerebral Palsy (S6), Coxsackie Virus

(S7), Nerve Problems (S8), Guillian–Barre Syndrome (S9),
High Blood Potassium (S10) and Stroke (S11).

A two-way frequency table is used for the objects xi a xj as
shown below in Table 2:

For symmetric variables, where 1 and 0 hold equal priority,
Sokal and Michener’s simple matching coefficient is usually
used and, hence, is applied here. It is given by

SSM ¼
aþ d

aþ bþ cþ d

The coefficient is an algorithm that is considered to measure
the distances between the components for their classification

into clusters, by utilizing the k-Medoids methodology
(Nascimento et al., 2012). In this approach, instead of taking
Coxsackie

Virus (S7)

Nerve

Problems

(S8)

Guillian–Barre

Syndrome (S9)

High Blood

Potassium (S10)

Stroke

(S11)

1 0 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

1 1 1 1 1

0 0 0 1 0

1 0 0 0 0

0 0 0 1 0

1 0 1 0 1

1 1 1 0 1

0 0 1 1 0

1 0 0 0 0

1 1 0 0 0

0 0 0 0 1

1 0 0 0 0

0 0 0 0 1

1 1 1 1 0

0 0 0 0 1

1 0 0 0 0



Table 2 Frequency table.

Category of object xi Categories of object xj

1 0

1 a b

0 c d

In this notation, a – number of attributes with both i and j present;

b – number of attributes with only i present; c – number of attri-

butes with only j present; d – number of attributes with both i and j

absent.
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the mean for the values, as in K-Means, a representative com-
ponent is chosen to represent the whole cluster. Through a
Java program, the distance between each pair of components
is calculated by utilizing the matching coefficient cited above,

and the output is placed in an MS-Excel sheet, which can be
seen in Table 3. Observe that P1, P2. . .P20 are the patients,
and the distances can be seen in the Table 3.

The outcome of the program suggests five clusters with
numbers that match the types of Paralysis – Paraplegic, Para-
plegia, Quadraplegic, Quadraplegia and Cerebral Palsy. The

clusters are given below:

Cluster 1: P4, P7, P3, P9 (Number of symptoms

present = 1)
Cluster 2: P12, P18, P10, P6 (Number of symptoms
present = 5)
Cluster 3: P1, P8, P2, P5, P13, P16, P20 (Number of symp-

toms present = 4)
Cluster 4: P15, P17, P19 (Number of symptoms
present = 4)

Cluster 5: P14, P11 (Number of symptoms present = 5)

The bolded components that are selected are representative

components or K-Medoids and represent the cluster; the num-
ber of symptoms in the concerned component is also specified
in the parenthesis.

6. Coupling metric

The components of a dataset would be more error-free if its

work is evenly distributed among its own sub-components.
Coupling is the extent to which various sub-components inter-
act with one another (Gui and Scott, 2006; Khan et al., 2007).
Heavy coupling is never desirable because it makes the sub-

components highly interdependent, and any changes in one
of them would wreak havoc on the total component. Measure-
ments within couplings are important in the sense that they

determine the result of heavy or loose coupling, thus specifying
the reliability and efficiency of the classification of the con-
cerned work. At this juncture, it was determined that the Fen-

ton and Melton Software Metric (Alghamdi, 2008) can be used
for coupling measurement.

The metric is given by Cðx; yÞ ¼ iþ n

nþ 1

where n = number of interconnections between x and y, and i
= the level of the highest (worst) coupling type found between
x and y.



Table 4 Single symptom couplings.

Sl. no. Symptom Count Patient IDs

1 3 3 6,10,12

2 8 4 6,11,14,18

3 10 5 6,7,9,12,18

4 9 6 3,6,10,11,12,18

5 11 6 6,10,11,15,17,19

6 2 8 1,5,11,14,15,16,17,20

7 5 9 2,6,8,10,13,14,15,17,19

8 4 10 1,2,3,5,6,8,13,16,18,20

9 7 12 1,2,5,6,8,10,11,13,14,16,18,20

10 6 14 1,2,5,6,8,9,11,13,14,15,16,17,19,20

Table 5 Four symptoms coupling.

Sl. no. Count Patient IDs

1 1 6

2 2 10,12

3 3 4,7,9

4 4 1,5,16,20

5 5 2,3,8,13,18

6 5 11,14,15,17,19

Table 6 Total symptoms couplings.

Sl. no. Count Patient IDs

1 3 2,8,13

2 3 15,17,19

3 4 1,5,16,20

Table 8 Output of the coupling metric.

P5 P7 P14 P17 P18

P5 11 1.83 2.75 2.2 1.83

P7 1.83 11 1.57 1.83 2.2

P14 2.75 1.57 11 2.75 1.57

P17 2.2 1.83 2.75 11 1.1

P18 1.83 2.2 1.57 1.1 11
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Considering the total dataset that is specified in Table 1, the
following results are produced before the metric is applied.

Note that this coupling is based on the similarity of the symp-
toms between the patients.

1. Statistics of single symptom coupling are given in Table 4:
2. Statistics of the first four symptom coupling are given in

Table 5:

3. Statistics of all symptom coupling are given in Table 6:

Table 7, given below, specifies only the representative com-
ponents for each of the clusters. Between these components,

the Fenton–Melton Software Metric is applied to measure
the coupling.
Table 7 Representative components for the clusters.

Patient

ID (fl)
Alcoholism

(S1)

ALS

(S2)

Genetic

Problems

(S3)

Botulism

(S4)

Cauda

Equina

(S5)

Cerebra

Palsy

(S6)

P5 0 1 0 1 0 1

P7 0 0 0 0 0 0

P14 0 1 0 0 1 1

P17 0 1 0 0 1 1

P18 0 0 0 1 0 0
The results are shown below in Table 8:
Evidently, after this carefully planned process, the cluster

classification must be the significant output. From Table 8,

we can classify the medoids themselves into three clusters:
C1 (which consist of P5, P17); C2 (which consist of P14,
P18) and C3 (which consists of only P7). Note that the classi-

fication has been performed by considering the number of
symptoms that are in common. Expanding the medoids into
their base clusters, we obtain:

C1: P1, P8, P2, P5, P13, P16, P20, P15, P17, P19 (4
symptoms)
C2: P14, P11, P12, P18, P10, P6 (5 symptoms)

C3: P4, P7, P3, P9 (1 symptom)

Apparently, it can be concluded that the patients in C2 are

suffering with paralysis; the patients in C1 are more likely to
become disease-prone in the future, and the patients in C3
are in normal condition. If data on a new patient are offered

now, he/she can be easily classified into one of the concerned
clusters and can be provided the same medicines given to the
previous similar patients.

7. Reliability

The discussed methodology of clustering, coupling and placing

a new patient in one of the categories can be applied more con-
fidently if its reliability is also discussed and revealed. In this
short exposure, the values of T-wave alternans (TWA) (Wave
alternans, 2013) from an ECG are considered for the patients

who are shown to be disease-prone (C1). Table 9 consists of
the patients, their disease linkages (binary) and their T-wave
values.

In this case, Spearman’s Rank Correlation Coefficient

(2013) is considered and is given as q ¼ 1� 6
P

d2

nðn2�1Þ where d is

the distance and n is the number of elements.
In this case, n= 4 and the rank correlation can be calcu-

lated as 0.8 as per the formula. The resulting values are shown

in the table. Because the rank is within admissible limits, it can
l Coxsackie

Virus (S7)

Nerve

Problems

(S8)

Guillian–Barre

Syndrome (S9)

High Blood

Potassium

(S10)

Stroke

(S11)

1 0 0 0 0

0 0 0 1 0

1 1 0 0 0

0 0 0 0 1

1 1 1 1 0



Table 9 Clustered patients with rank correlation factors.

Patient ID Disease-Prone (A) T-Wave (B) A-B (d) d2

P6 1 1 0 0

P10 1 0 1 1

P11 1 1 0 0

P12 1 0 1 1

P14 1 1 0 0
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be stated that there exists a correlation between the observed
clustered categories and the ECG data (T-Wave). It is, hence,

concluded here that the proposed classification of patients and
medicines offered to the new patient who is nearer to a certain
cluster is reliable and can be applied.

8. Results and conclusions

The results obtained from the developed method help to cate-

gorize the patients into homogeneous groups and the results
obtained from the concerned groups are provided in Table 3.
To confirm the disease, each step/medicine that is given to a

patient will be of very crucial importance. Hence, the coupling
methods of Fenton and Melton (Alghamdi, 2008) have been
considered with utmost care for identifying the most relevant
patient with the specific symptom. The number of similar pa-

tients with similar symptoms is considered to allow them to
be sent to a specific specialist. Note here that before ratifying
the disease, the reports are also contemplated.

A novel methodology for software reuse of data from the
medical domain is presented in this work. The symptoms that
pertain to the disease of paralysis are considered in patients

from the remote village Chintapalli, where only a primary
health center with a technician and a doctor is available, with
no specialized aid for treating the local patients. The dataset is

generated from these patients, and the general symptoms that
pertain to the considered disease of paralysis are considered for
this study.

The clustering is performed based on the Pearson Type-VII

distribution and the patients are classified into categories. Cou-
pling metrics are used to bundle the patients who have similar
symptoms into groups. The Fenton and Melton metric is very

convenient for this purpose. The results are duly analyzed and
a final clustering is determined to fit all of the patients into the
final resulting clusters. The reliability of the medicines that are

suggested for a new patient where the same medicines were
used previously for patients in the same cluster, is also pre-
sented, to make the conclusions more robust.

With the suggestion of medicine that evidently has more of

a basis, the confidence of the concerned paramedics or the
users will surely be satisfactory when the approach suggested
here is used in medicine. Apparently, this work is aimed to

be used in remote areas with less availability of doctors, and
a developed app can surely be generated for the purpose of
saving precious lives of ailing patients at critical junctures.
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