
Journal of King Saud University – Computer and Information Sciences (2015) 27, 170–180
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Pattern-based model refactoring for

the introduction association relationship
* Corresponding author.

E-mail addresses: Boulbaba.Ben-Ammar@live.fr (B. Ben Ammar),

Tahar_Bhiri@yahoo.fr (M.T. Bhiri).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2014.06.012
1319-1578 ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Boulbaba Ben Ammar *, Mohamed Tahar Bhiri
Faculty of Sciences of Sfax, Sfax University, Tunisia
Received 9 October 2013; revised 12 March 2014; accepted 5 June 2014

Available online 16 April 2015
KEYWORDS

Model refactoring;

UML;

B;

CSP;

Association relationship
Abstract Refactoring is an important software development process involving the restructuring of

a model to improve its internal qualities without changing its external behavior. In this paper, we

propose a new approach of model refactoring based on the combined use of UML, B and CSP.

UML models are described by class diagrams, OCL constraints, and state machine diagrams.

We detail a refactoring pattern that allows for the introduction of an association relationship

between two existing classes. We illustrate our proposal by giving a case study involving the

SAAT (Software Architecture Analysis Tool) system.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Refactoring is a reorganization activity that aims to improve
the internal structure of an existing body of code while main-
taining its external behavior. This activity enhances the quality

characteristics of a software system, including extensibility
(during evolutionary maintenance), reusability, and efficiency.
Various approaches have been proposed in the literature on

the code refactoring technique. Fowler (1999) has, for instance,
offered a catalog of refactoring rules applicable to the
static part of a Java program, including ‘‘RenameClass’’,
‘‘ExtractClass’’, ‘‘MoveOperation’’, ‘‘MoveAttribute’’, and

‘‘RenameOperation’’.
More recently, the refactoring technique has also been

adopted by several Agile software development methods
(Shore and Warden, 2007) such as XP (Baumeister and

Weber, 2013) and Scrum (Schwaber and Sutherland, 2013).
In fact, they involve a Test-Driven Development (TDD) which
is quick cycle consisting of three phases: test, coding and

refactoring.
Refactoring tools are also available for most

object-oriented languages, including Java, Smalltalk, C++,

C#, Delphi and Eiffel, and for integrated development
environments, such as Eclipse, NetBeans, and Oracle
JDeveloper. These code refactoring rules have, however, often

been defined informally, with no relationship being established
between model quality and the rules. Several attempts have
recently been made to overcome this inadequacy, with special
focus on the application of the refactoring technique on

standard models, including UML (Mens et al., 2007).
In this paper, we provide a new approach of model refac-

toring based on the combined use of UML, B (Abrial, 1996),

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.06.012&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Boulbaba.Ben-Ammar@live.fr
mailto:Tahar_Bhiri@yahoo.fr
http://dx.doi.org/10.1016/j.jksuci.2014.06.012
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.06.012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pattern-based model refactoring for the introduction association relationship 171
and CSP (Hoare, 2004). UML models are described by class
diagrams, OCL constraints, and state machine diagrams.
Specifically, we propose a catalog of refactoring patterns that

are described in the same framework and formalized into B
and CSP. These refactoring patterns cover the basic concepts
of the object-oriented approach: conceptual relationships

between classes (association and generalization/specialization),
polymorphism, redefinition, abstract and generic class, and
delegation.

The preservation of behavior after the application of refac-
toring is assigned to the tools associated to B (the prover of the
Atelier B (Engineering, 2009)) and CSP (the model-checker
FDR2 (Goldsmith, 2005)). In fact, several researchers have

defined systematic rules for the translation of UML into both
B (Idani et al., 2009) and CSP (Rasch and Wehrheim, 2003)
languages. Several studies have previously reported on the suc-

cessful application of the B method in the development of vari-
ous complex real-life applications, including the first driverless
metro in the city of Paris, METEOR project (Behm et al.,

1999). This method represents one of the few formal methods
that has robust commercially available support tools for the
entire development lifecycle, from specification down to code

generation. Although this method is highly recommended for
the verification of static properties such as safety, it is not used
for checking dynamic properties such as liveness. For this rea-
son, we have opted for the use of the CSP language.

The remaining parts of the paper will be structured as fol-
lows. Section 2 will provide an overview of related works on
the topic under investigation. Section 3 will define our pro-

posed approach. In Section 4, we will give a general description
of the refactoring pattern. In Section 5, we will detail the pat-
tern of association relationship introduction. Section 6 will be

devoted to illustrating our proposal through the use of the
SAAT system. Finally, the conclusion will summarize the
major findings and provide new perspectives on model refac-

toring research.

2. Related works

Table 1 summarizes the major features characterizing the
refactoring approaches so far proposed for the UML model
Table 1 Summary of related works on the refactoring approaches

Approach of Markovic (2008) Mens (2006)

and Mens and

Gorp (2005)

van

Kem

et al

Consideration of class

diagram

Yes Partial No

Consideration of state

machine diagram

No No Yes

Consideration of OCL

constraints

Yes Yes No

Behavior preservation Transformation of

model formalized

into QVT

Meta-modeling UM

CSP

proc

Tool Supporting QVT OCL query engine Supp

CSP

Detection of

refactoring

No Design smells No
using a set of evaluation criteria that are commonly cited in
the literature. According to the MDE approach, refactoring
can be considered a transaction processing system (Mens and

Gorp, 2005) that introduces changes (without adding details)
to the structure of a model. Unlike refinement, which is consid-
ered as a vertical model transformation, refactoring is a hori-

zontal model transformation. In other words, the refactoring
process does not lead to a change in the level of abstraction:
the source model (before refactoring) and target model (after

refactoring) remain in the same level of abstraction.
In software-driven engineering models, refactoring tech-

niques are very limited (Allem and Mens, 2007). Several
researchers (Gorp et al., 2003, Mens, 2006, Mens et al.,

2007, Mens and Tourwe, 2004) indicate that taking the whole
model refactoring process into consideration remains one of
the challenging tasks. This process involves six major

activities:

1. Identify which parts of the model should be refactored.

2. Decide on which refactoring rules to be applied to which
areas.

3. Ensure that once applied refactoring would preserve model
behavior and consistency.

4. Automate the application of refactoring.

5. Assess the impact of refactoring on software quality criteria
(complexity, legibility, adaptability) or process (productiv-
ity, cost, effort).

6. Synchronize the refactored model and other artifacts, such
as source code, documentation, specifications and tests.

The work described in Markovic (2008) offers a catalog of
refactoring operations inspired by the list of operations pre-

viously described by Fowler (1999). The proposed operations
are applicable on class diagrams and expressed by a
QVT-based formalization of model transformation. The
impacts of a refactoring operation on OCL constraints and

object diagrams have also been described.
Other researchers (Gorp et al., 2003) proposed an extension

of the UML meta-model that allowed for a better specification

of two pre/postcontion operators in Refactoring: ‘‘Pull Up
Method’’ and ‘‘Extract Method’’. This extension also con-
ferred tools with other abilities: check pre/post-conditions,
for the UML model.

pen

. (2005)

Mens et al.

(2007)

Marković

and Baar

(2008)

Sunyé

et al.

(2001)

Correa

and

Werner

(2007)

Yes Yes Yes No

Yes No Yes No

No Yes No Yes

L to

ess

UML to graphs Graph

grammars

Rewriting Rewriting

orting Fujaba for the

graph

transformation

Formalism

based on graph

grammars

No No

Best suited

refactoring

No No OCL

smells



172 B. Ben Ammar, M.T. Bhiri
compose sequences of refactoring operations, and use the OCL
query engine to detect ‘‘design smells’’ (design flaws). In fact,
The general idea is to provide basic rules of atomic transform-

ing or refactoring. They can be treated as rewrite rules that
may provide a basis for consistent restructuring. The potential
occurrence of errors induced by refactoring activity would,

therefore, be greatly reduced.
Marković and Baar (2008) also proposed a set of refactor-

ing rules applicable to basic class diagrams considering OCL

constraints. Their rules were inspired by the ones previously
proposed in refactoring object-oriented languages (Mens and
Tourwe, 2004). The authors defined the refactoring model as
a set of transformation rules consisting of seven refactoring

rules with or without effects on the syntax of the OCL con-
straints attached to the refactored class diagrams. The authors
also used graph grammar formalism to check for behavior

preservation.
The work described in Sunyé et al. (2001) has two lists of

refactoring rules. The first list is applicable to the class diagram

and has five basic operations: ‘‘addition’’, ‘‘removal’’, ‘‘move’’,
‘‘generalization’’, and ‘‘Specialization’’ of an element. It is
worth noting here that an element can be a class, attribute,

operation, or association end. The second list of rules is applic-
able to the state chart diagram and contains seven basic opera-
tions: ‘‘Unfold Exit Action’’, ‘‘Group States’’, ‘‘Fold Outgoing
Transition’’, ‘‘Unfold Outgoing Transition’’, ‘‘Move into

Composite State’’, ‘‘Move out of Composite State’’ and
‘‘Same Label’’. The semantics of these operations was defined
in OCL.

In another study (Correa and Werner, 2007), the refactor-
ing technique was used to improve the understanding and
maintenance of OCL specifications. The authors identified

the instances of poor OCL use (OCL smells) and offer a collec-
tion of adequate refactoring operations to prevent their occur-
rence. Among the OCL smells identified (a dozen) by the

authors, we can quote: ‘‘Implies chain’’, ‘‘Redundancy’’,
‘‘Non-atomic rule,’’ ‘‘And Chain’’, ‘‘ForAll chain’’ and
‘‘Long Journey’’.

Reimann et al. (2010, 2012) proposes a novel approach

based on role models to specify generic refactorings, thus
resolving the limitations of previous works and defining speci-
fic refactorings as extensions to generic ones. The approach

was implemented based on the Eclipse Modeling Framework
(EMF) and evaluated using multiple modeling languages and
refactorings.

In Einarsson and Neukirchen (2012), the author has
proposed automated refactorings that are developed for
restructuring UML activity models together with their
diagrammatic representation using the QVT operational trans-

formation language for transforming UML models and dia-
grams created with the Papyrus UML editor.

The approaches mentioned above do not treat the UML

models described simultaneously by class diagrams, state
machine diagrams, and OCL constraints. This limitation does
not help us to verify, after refactoring, the preservation of two

essential properties, namely safety (class diagram and OCL
constraints) and liveness (state machine diagram). Another
problem of model refactoring is behavior preservation. By def-

inition, a model refactoring is supposed to preserve the observ-
able behavior of the model it transforms. In order to achieve
this objective, we propose to translate a model to formal lan-
guages such as B and CSP.
2.1. Overview of UML basic concepts

UML defines four types of relationships between classes:

Association relationship: It describes a set of links or

connections between classes. In Object Oriented
Languages, this conceptual relationship is known as customer
relationship.

Specialization/Generalization relationship: This is a concep-
tual relationship that allows a class, called subclass, to inherit
the characteristics of its parent class, called superclass. In
Object Oriented Languages, the specialization/generalization

relationship is known as the inheritance relationship.
Realization relationship: It is a relationship in which an

interface defines the contract guaranteed by an implementation

class.
Dependency relationship: It does not necessarily require a

link between the classes and shows that an element, or set of

elements, requires other model elements for their specification
or implementation. The dependency relationship is indicated
by a dotted line pointing from the dependent (or client) to

the independent (or supplier) elements.
In fact, UML defines several other concepts. We describe

below some concepts that are of interest to our work.
Delegation: A class may delegate part of its activity to

another class. In UML, the operation delegation mechanism
is led by a relationship of composition or aggregation that con-
nects the two classes.

Generic class: A class can have formal generic parameters
representing types or variables. In UML, generic classes are
called classes ‘‘template’’. We cannot use a template directly,

we initially need the instancier. The instanciation implies via
the dependence ‘‘bind’’ the binding of those formal generic
parameters of the template to the real generic parameters,
which gives a concrete class that can be used exactly like any

ordinary class. Contrary to other programing languages such
as Eiffel (Meyer, 2000), UML does not support the forced
generics requiring the introduction of the heritage: the formal

generic parameters representing types must go down from the
ascending types.

Polymorphism: In the Object Oriented development pro-

cess, a variable entity or an element of data structure can take
several forms which, during execution, become attached with
objects of the different types under the control of a static

declaration.

2.2. Overview of the B method

Inspired by the works of Dijkstra (1975) andHoare (2004), the

B method was formulated and formally defined in the B Book
(Abrial, 1996) of Jean-Raymond Abrial. It covers all the stages
of software development, from specification to imple-

mentation, through the concept of refinement which allows
for the rigorous expression of the properties required by spec-
ifications. The B method aims to produce a safe and accurate

software construction. In fact, the B language is considered as
an evolution of the Z language, aiming to develop a suitable
approach for the whole development cycle as well as for prac-

tical industrial application. The B method distinguishes
between two types of proofs: the conservation of the invariants
and the correctness of refinement. The proofs of invariant con-
servation check model consistency and invariant properties,



Table 2 Name assignment conventions.

SM The state machine diagram

s Simple or composed state

Cs All direct successors of s

T s The set of all couples ðe; tÞ of successors t of s achieved

Pattern-based model refactoring for the introduction association relationship 173
which must be preserved at the initialization of and before/
after the execution of the operations. The proofs of refinement
correctness ensure the conformity of the concrete model as

compared to its abstract counterpart. These proof obligations
are automatically generated using the tools associated with the
B method.
by means of a transition triggered by e

M A sub-machine of SM
Mtop The state machine of high-level

IM The set of initial states ofM
uUML!CSP Translation function of state machine diagrams to

CSP processes

SKIP End of the CSP process

STOP deadlock

jjj A parallel composition

; A sequential composition
2.3. Overview of the CSP language

CSP processes are defined in terms of events considered as rele-
vant for an object description. All the names of those events

are called an alphabet. The simplest behavior of the process
is to do nothing, a process which is denoted by STOP. To
describe more elaborate behavior, CSP provides operators

such as: prefix, recursion operators, deterministic and
non-deterministic choice, hidden events, parallel composition,
inputs/outputs, interleaving, and quantification. The three
semantic domains (Roscoe, 1994) of CPS are stable traces, fail-

ures, and failures-divergences. A stable trace of a process
behavior refers to a finite sequence of events that this process
has been engaged in up to a given moment in time. The full set

of all possible traces of a process P is denoted by traces(P).
The model then considers the stable failures associated with
each process P which involves the couples (t, E), where t refers

to a finite set of traces accepted by P and E to the set of events
that the process cannot run after running the events of t. All
of those couples are denoted failures(P). The CSP model
uUML!CSPðsÞ �

Ps ¼ SKIP;with s is a final state;

Ps ¼�ðe;tÞ2T s
e!Pt;with s is a simple state and Cs ¼ ;;

Ps ¼ut2CsPt; with s is a simple state and Cs–;or s is an initial state;

Ps ¼ ðjjjni¼1PMi
Þ; ððut2CsPtÞ¥Cs–;� STOPÞ; with s is a composed state of sub-state machineMi; with 16 i6 n:

8>>>><
>>>>:
also allows to characterize the deadlocks of P. In fact, if E is
equal to the set of the executable events of P, then P is blocked.

Finally, the model considers the set of failures-divergences
associated with each process P which involves the set of all
its potential failures and divergences. A process P is in a diver-

gent state only if it is in a state where the only possible events
are internal. The set of divergences of P denoted as
divergences(P) is the set of traces t such that the process

finds itself in a divergent state after running t. If the process is
deterministic, then divergences(P) is empty.
2.4. Translation of the structural aspects of UML into B

Several approaches have been proposed for the translation of
UML diagrams into B (Idani et al., 2009). Some studies
(Ledang, 2001; Meyer and Souquières, 1999) suggested the

development of an exhaustive approach for the simultaneous
consideration of several UML diagrams. Other works
(Laleau, 2002) focused on the area of databases to produce

a safe SQL code. Still, other studies (Lano et al., 2004;
Snook and Butler, 2004) proposed a B profile for UML
utilization.
2.5. Translation of the behavioral aspects of UML into CSP

In this section, we describe the main aims of the work pro-
posed by Rasch and Wehrheim (2003) for the translation of
the state machine diagrams to CSP processes. Table 2 presents

the name assignment conventions used in the remaining sec-
tions of the paper.

The translation function uUML!CSP of a state s is defined in

CSP as follows:
The translation function uUML!CSP of a sub-machineM is
defined in CSP as follows:

uUML!CSPðMÞ � PM ¼ ut2IMPt

After calculating uUML!CSP ðsÞ for any s and uUML!CSP ðMÞ
for any sub-machineM of SM, the CSP process, correspond-
ing to the state machine diagram SM, can be calculated by

combining the two obtained functionsuUML!CSP and eval-
uating the state machineMtop as follows:

PROCSM ¼Mtop
3. Proposed approach

Our approach consists in the development of a catalog of

refactoring patterns that allow for the reorganization of the
internal structure of UML/OCL class diagrams. These pat-
terns can also transform the state machine diagrams while tak-
ing the modifications introduced to the class diagrams into

account. Such patterns can be compared with the refactoring
rules. The proposed refactoring patterns support the improve-
ment of the software qualities, including extensibility, reusabil-

ity, and efficiency, and allow model designers to introduce



174 B. Ben Ammar, M.T. Bhiri
concepts such as inheritance relationship, polymorphism,
abstract and generic class, redefinition, association, and del-
egation. These patterns are characterized by a precise frame-

work composed of four steps: identification of parameters,
verification of applicability, evolution of specification, and cor-
rectness of pattern. These steps show the fundamental aspects

of a refactoring pattern. Moreover, the proposed refactoring
patterns are formalized in B, using systematic rules for trans-
forming a class diagram and its OCL constraints into B

(Ledang, 2001; Marcano and Levy, 2002; Meyer and
Souquières, 1999) and the translation function uUML!CSP

of a state machine diagram into the CSP process (Rasch and
Wehrheim, 2003). This helps us to identify precisely the differ-

ent conditions of application, the evolution of a UML class
diagram, the OCL constraints and state machine diagram,
and the correctness of the pattern. The various checks are

entrusted to the AtelierB for B specifications and FDR2 for
the CSP process. These proposals can serve as milestones for
the eventual automation of refactoring patterns.

The main idea of our work is the proposal of a catalog of
refactoring patterns allowing the addition of the various rela-
tions and concepts described above, with the aim of improving

the quality factors of an existing UML specification. Certain
patterns enhance the addition of new relationships between
non-dependent classes, which expresses the need for introduc-
ing concepts into a given class. The refactoring patterns

associated with inheritance, association, redefinition, and poly-
morphism are parameterized by the following:

� the two involved classes,
� OCL constraints attached to each class,
� state machine diagrams corresponding to the dynamic

properties of each class instance.

While refactoring patterns are associated with the delegation

Ben Ammar et al. (2008), the generic and abstract classes are
set by the following:

� the relevant class,

� OCL constraints attached to the relevant class,
� the state machine diagram corresponding to the relevant class.
1 A ‘‘stable moment’’ corresponds to the moment which follows the

execution of a method of the class. During, the execution of a method,

the invariant of class can be temporarily violated.
4. Description of a refactoring pattern

The application of a refactoring pattern involves four steps.

We first identify its parameters. We then ensure that these
parameters satisfy a set of conditions. After that, we show
the different updates provided by the selected pattern. We

finally check the results produced. The definition of a refactor-
ing pattern is, therefore, composed of four steps that can be
summarized as follows:

1. Parameter identification
2. Applicability verification
3. Specification evolution

4. Pattern correctness

4.1. Parameter identification

It presents the pattern parameters that take the form of one or
two triplet(s) containing the relevant class, the OCL
constraints attached to the relevant class, and the state
machine diagram associated to the relevant class: Class,
OCL_Class, STD_Class. with:

� Class represents the involved class.It is characterized by a
set of static properties, called l attr Class, and a set of

dynamic properties, called l meth Class.
� OCL Class represents the OCL constraints. These con-
straints, attached to Class, consist of the following elements:
– I Class: the invariant of Class, a condition that must
be checked for all the objects of the class in every stable
moment,1 is formalized in OCL by:

Context Class

invI Class : condition

– for each method meth Class of l meth Class:
*P meth Class: the precondition of the operation
meth Class, a condition which must be checked before
the execution of meth Class,
*Q meth Class: the postcondition of the operation
meth Class, a condition which must be checked after
the execution of meth Class, formalized in OCL by:

Context Class :: meth ClassðÞ
pre P meth Class : condition

post Q meth Class : condition

� STD_Class constitutes the state machine diagram which

models the behavior of Class instances.
4.2. Applicability verification

A refactoring pattern is applied with the identified parameters.
It is advisable to ensure that these parameters satisfy the two
following conditions:

1. Coherence between the various parameters of the pattern
which concerns, respectively:

� Class and OCL_Class by checking the adequacy of
the OCL constraints for the properties of the class.

� Class and STD_Class by the possibility of carrying
out the methods called upon in sequence according to

STD_Class.

2. Consistency of the concept introduced by the pattern

(inheritance, association, delegation,etc.).

The enumerated conditions can be classified into two types:

� those pertaining to static properties,
� those related to dynamic properties.

To check the conditions related to the static properties (safety
properties), we transform the classes and their properties and
OCL constraints into a B specification using the following sys-

tematic translation rules:

� from UML into B as proposed inLedang (2001) and Meyer

and Souquières (1999),
� from OCL into B as proposed in Ledang and Souquières
(2002) and Marcano and Levy (2002).



Pattern-based model refactoring for the introduction association relationship 175
The tool associated with B is Atelier B (Engineering, 2009).

To check the conditions pertaining to dynamic properties
(liveness properties), we transform the state machine diagrams
into CSP processes using the function uUML!CSP proposed by

Rasch and Wehrheim (2003). The tool for checking the CSP
processes is FDR2 (Goldsmith, 2005).

The recourses to the translation into B and CSP are justified
by the non-availability of tools for directly checking UML/

OCL specifications. In this respect, several proposals involving
the translation of UML/OCL specifications towards formal
languages and allowing for the use of the associated tools

are available in the literature.
The process of verifying parameter coherence is as follows:

� translate Class into a B machine, called B_Class,
� translate OCL_Class into an invariant expression in the
corresponding machine,
� add control annotations, proposed by Ifill (Ifill et al., 2007),

in the ASSERTIONS clause of the B machine. For each
method methi Class, an assertion contains two proof obli-
gations in the following form:
Figure 1 Parameters before refactoring.
I Class^Pmethi Class)½Qmethi Class�ðP methj ClassÞ
I Class^Pmethi Class)½Qmethi Class�ðP methk ClassÞa

amethj Class andmethK Class can be called after the execution ofmethi Class

The coherence of the B machine obtained proves the coher-

ence between Class and its constraints OCL Class.
The validation of the assertions proves the coherence

between Class and its state machine diagram STD Class.

The verification process of the consistency of the concept
introduced by the pattern will be described for each pattern
as the analysis unfolds.

4.3. Specification evolution

It presents the various updates automatically realized for the

UML/OCL specifications.

4.4. Pattern correctness

It concerns:

1. The safeguarding of the properties of the restructured
classes.

2. The preservation of the behaviors of the restructured
classes.

We describe below only the definition of the refactoring
pattern: Introduction of the concept of association.
Figure 2 Parameters before refactoring.
5. Definition of pattern

The association relationship is a semantic connection between
two or more classes. It can be binary or n-ary. An association
is characterized by the following:

� its multiplicity is used to specify the minimum and maxi-
mum number of instances of each class in the relation

between two or more classes,
� its navigability shows how to access from one class into

another. If the relationship is between Class1 and Class2
and only Class2 is navigable, then you could access to
Class2 from Class1 but not inversely. This means that while

navigability is, by default, bidirectional, association is
mono-directional.

In UML, a class can use one or more static (attributes) and

dynamic (methods) properties of one or more other classes.
Accordingly, the class must have an association relationship
with the classes consulted, with a navigability towards those

classes.
In this section, we limit ourselves to the introduction of a

binary mono-directional association at the time involving the

call of one or more methods.

5.1. Parameter identification

The refactoring pattern of the introduction of the association

concept is parameterized by:

hClass1;OCL Class1;STD Class1i
hClass2;OCL Class2;STD Class2i

Hypothesis: The associations between classes indicate

method invocations, i.e., if Class1 has an association with
Class3, then Class1 calls at least a method of Class3 (see
Fig. 2).



176 B. Ben Ammar, M.T. Bhiri
5.2. Applicability verification

In order to concretize our pattern, we suppose that the behav-
ior of Class2 is partly carried out by Class1. Thus, we sup-
pose that Class2 delegates its work to the connected classes

in the following way: Class3 executes operation3, then
Class4 executes operation4, and finally Class5 executes
operation5. Similarly, Class1 delegates its work to the
connected classes in the following way: Class3 executes

operation3, and then Class4 executes operation4.
The behavior of a class instances is modeled by a state

machine diagram, and the detection of the invoked methods

is verified by CSP processes.
The behaviors of Class1 and Class2 are defined by the

processes PSM_Class1 and PSM_Class2, respectively.

PSM Class1 ¼ Class3!operation3! Class3 r?x!

Class4!operation4! Class4 r?x! STOP

PSM Class2 ¼ Class3!operation3! Class3 r?x!

Class4!operation4! Class4 r?x

! Class5!operation5! Class5 r?x! SKIP

Accordingly, to check the existence of a method call, we

must find a textual substitution for the described CSP
processes.

5.3. Specification evolution

The evolution of the specification consists of:

� the introduction of an association between Class1 and
Class2, with a navigability from Class2 to Class1.

� suppression of associations between Class2 and Class3,
and between Class2 and Class4.

Fig. 3 presents the state of specification after refactoring.
Figure 3 Parameters after refactoring.
5.4. Pattern correctness

The changes made by the application of the proposed refactor-
ing pattern preserve the properties of the two classes, particu-
larly that the static and dynamic aspects of Class1 and

Class2 have not been changed. In fact, the direct relationship
between Class2 and Class3 is replaced by the two relations
between Class2 and Class1 followed by Class1 and
Class3. The verification of the B specification of the chained

decomposition of an association is described in Ben Ammar
(2012).

Changes to state machine diagrams STD_Class1 and

STD_Class2 require the verification of whether the behav-
ior of those two diagrams in relation to their correspondent
abstract levels is preserved.

Accordingly, it suffices to show that:

assertPSM Class1 rvsPSM Class1

assertPSM Class2 rvsPSM Class2

with vs referring to the CSP refinement based on the model of
the traces.

6. Case study

To illustrate our proposal, we take the class diagram of SAAT

(Software Structures Analysis Tool) system (van Kempen
et al., 2005) as an example. The SAAT is an analytical tool
used to calculate the parameters in a UML model, which

can then be used to analyze the potential model or the defects
of anti-patterns.

Classes: The class diagram (see Fig. 4), corresponding to

the SAAT system, consists of the following classes:
Saat; DB; Stat; DBCreate; Parser; DBFill; DBCheck; Analyse;
StatCalc, and StatFilter. The associations between those

classes indicate the invocations of methods, i.e. if a class A
has an association with the class B, then class A calls a method
of the class B.

Fig. 4 presents the initial class diagram corresponding to

the SAAT system. The class Saat delegates its work to
the associated classes in a sequential way: the database is
created ðDBCreate:createðÞÞ, an input file is analyzed

ðParser:parseðÞÞ, and the data are inserted in the database
ðDBFill:fillðÞÞ. After the insertion of the data, the filled data-
base is checked ðDBCheck:checkðÞÞ.

After that, the data will be analyzed ðAnalyse:analyseðÞÞ,
and the statistics are calculated ðStatCalc:calculateðÞÞ and
filtered
ðStatFilter:filterðÞÞ according to the criteria defined by the

user.
OCL constraints: There are no important OCL constraints

attached to the various classes.
Figure 4 Class diagram before refactoring.



Figure 6 State machine diagram of Statistics.

(a) DBCreate (b) Parser

(c) DBFill (d) DBCheck

(e) Analyse (f) StatCalc

(g) StatFilter

Figure 5 State machine diagrams of: DBCreate, Parser, DBFill,

DBCheck, Analyse, StatCalc & StatFilter.

Figure 7 State machine diagram of DB before refactoring.

Pattern-based model refactoring for the introduction association relationship 177
State machine Diagrams: The behaviors corresponding to
the various class instances are presented in Figs. 5–8.

The diagrams presented in Figs. 4–8 show a situation where
one can apply the refactoring pattern: introduction of the
association relationship between Saat and DB.

6.1. Parameter identification

The parameters of the pattern are:

hSaat;OCL Saat;STD Saati
hDB;OCL DB;STD DBi

6.2. Applicability verification

In the following, we describe the CSP processes corresponding
to the systematic transformations of the state machine dia-
grams from all the classes of the SAAT system.
PSM_DBCreate = DBCreate?x ! create() !
DBCreate_r!create ! PSM_DBCreate

PSM_Parser = Parser?x ! parse() !
Parser_r!parse ! PSM_Parser

PSM_DBFill = DBFill?x ! fill() !
DBFill_r!fill ! PSM_DBFill

PSM_DBCheck = DBCheck?x ! check() !
DBCheck_r!check ! PSM_DBCheck

PSM_Analyse = Analyse?x ! analyse() !
Analyse_r!analyse ! PSM_Analyse

PSM_StatCalc = StatCalc?x ! calculate() !
StatCalc_r!calculate ! PSM_StatCalc

PSM_StatFilter = StatFilter?x ! filter() !
StatFilter_r!filter ! PSM_StatFilter

PSM_Saat = (DBCreate!create ! DBCreate_r?x !
Parser!parse ! Parser_r?x ! DBFill!fill !
DBFill_r?x ! DBCheck!check ! DBCheck_r?x) !
Analyse!analyse ! Analyse_r?x ! Stat!execute !
Stat_r?x ! SKIP

PSM_DB = (DBCreate!create ! DBCreate_r?x !
Parser!parse ! Parser_r?x ! DBFill!fill !
DBFill_r?x!DBCheck!check! DBCheck_r?x)! STOP

PSM_Stat = Stat?x ! StatCalc!calculate !
StatCalc_r?x ! StatFilter!filter !
StatFilter_r?x ! Stat

From these CSP processes, we deduce that the PSM_Saat
process requires the execution of the method calling sequence
of the process PSM_DB. Hence, an association relationship

between these two classes proves to be necessary.

6.3. Specification evolution

The application of the refactoring pattern on the class diagram
presented in Fig. 4 generates the class diagram proposed in
Fig. 9.

The refactoring pattern proposed in this work was noted to

improve the architecture of the SAAT application. In fact, the
class diagram was noted to display less links after refactoring
(9 association relationships) than before refactoring (12).

This would facilitate extensibility of the SAAT application.



Figure 9 Class diagram after refactoring.

Figure 10 State machine diagram of Saat after refactoring.

Figure 11 State machine diagram of DB after refactoring.

Figure 8 State machine diagram of Saat before refactoring.

Figure 12 Verification with FDR2.

178 B. Ben Ammar, M.T. Bhiri
Furthermore, the modifications on the level of state
machine diagrams of Saat and DB are presented in Figs. 10

and 11.
Moreover, the state machine diagram of Saat generated

after refactoring was noted to be less bulky than the one dis-

played prior to refactoring. This promote would enhance the
comprehension of the behavioral aspects of the SAAT
Application. The state machine diagrams corresponding to
the other classes remain unchanged.
6.4. Pattern correctness

After refactoring, we have to check the behavior preservation
of the SAAT system. Accordingly, we observe the verification

rules described in the previous section.

PSM_Saat_r = DB!execute ! DB_r?x !
Analyse!analyse

! Analyse_r?x ! Stat!execute ! Stat_r?x ! SKIP

PSM_DB_r = DB?x! DBCreate!create! DBCreate_r?x!
Parser!parse ! Parser_r?x ! DBFill!fill !
DBFill_r?x

! DBCheck!check! DBCheck_r?x! DB_r!execute! DB



n relationship 179
Using FDR22, we easily prove the consistency of the

association relationship to be added between Saat and DB,
expressed by the two following assertions:

assert PSM_DB_r vs PSM_DB
assert PSM_Saat_r vs PSM_Saat
These assertions are checked by FDR2 (see Fig. 12).

7. Conclusion

Refactoring is a well-known technique for the enhancement of
software quality, particularly in terms of extensibility, reuti-

lisability, and effeciency. It is frequently applied to the code.
The central problem of the refactoring technique lies in behav-
ior preservation following the execution of the reorganization

process. This paper pleads in favor of applying the refactoring
technique at an advanced stage of software development. The
refactoring pattern for introducing the association relationship

proposed in this paper is applied to class diagrams, OCL con-
straints, and state machine diagrams to obtain high quality
UML models, i.e. correct, extensible, reusable and effective

UML models. In this respect, the authors (Ben Ammar,
2012), have previously proposed other refactoring patterns
that allow:

1. Introduction of the concept of inheritance.
2. Introduction of the concept of redefinition.
3. Introduction of the concept of abstract class.

4. Introduction of the concept of polymorphism.
5. Introduction of the concept of delegation (Ben Ammar

et al., 2008).

6. Introduction of the concept of generic class.

The list of refactoring patterns mentioned above is elementary.

It covers the introduction of the concepts of inheritance,
association, polymorphism, delegation, abstract class, and
generic class. Further studies, some of which are currently
underway in our laboratory, are needed to further extend, elu-

cidate and elaborate on our proposed list of refactoring pat-
terns. Additional work is also needed to investigate the
relationship between refactoring and the analysis or design

patterns, particularly those involved in GoF (Gamma et al.,
1995). In fact, an existing UML model can be improved by
the operation of refactoring, which introduces a design or

analysis pattern. This objective could be accomplished by the
composition of existing refactoring patterns. (see Fig. 1)

Acknowledgments

The authors would like to express their sincere gratitude to
Mr. Anouar Smaoui from the English Language Unit at the

Faculty of Science of Sfax, Tunisia for his valuable language
editing and polishing services.

References

Abrial, J.R., 1996. The B Book – Assigning Programs to Meanings.

Cambridge University Press.

Allem, K., Mens, T., 2007. Refactoring des modèles: concepts et défis.

In: Proc. IDM 2007. Hermes Science Publications, Lavoisier.

Pattern-based model refactoring for the introduction associatio
2 We slightly modified our specification CSP so that it is accepted by

FDR2.
Baumeister, H., Weber, B., 2013. Agile Processes in Software

Engineering and Extreme Programming. In: Proceedings of 14th

International Conference, XP 2013. Springer Publishing Company,

Vienna, Austria, Incorporated, 2013.

Behm, P., Benoit, P., Meynadier, J.M., 1999. METEOR: a successful

application of B in a large project. In: Integrated Formal Methods,

IFM99. LNCS, vol. 1708. Springer Verlag, pp. 369–387.

Ben Ammar, B., 2012. Raffinement et Refactoring de spécifications

UML: Contribution à l’ingénierie des systmes (PhD thesis).

Editions Universitaires Européennes EUE.

Ben Ammar, B., Bhiri, M.T., Benhamadou, A. Pattern de raffinement:

Introduction d’une classe intermédiaire ClassHelper. In:

Conférence en IngénieriE du Logiciel (Rennes France, 2012).

Ben Ammar, B., Bhiri, M.T., Souquières, J. Schéma de refactoring de

diagrammes de classes basé sur la notion de délégation. In: 7ème

atelier sur l’Evolution, Réutilisation et Traçabilité des Systèmes

d’Information, ERTSI, couplé avec le XXVIème congrès

INFORSID (Fontainebleau France, 2008).

Correa, A., Werner, C., 2007. Refactoring object constraint language

specifications. Software Syst. Model. 6 (2), 113–138.

Dijkstra, E.W., 1975. Guarded commands, nondeterminacy and

formal derivation of programs. Commun. ACM 18 (8),

453–457.

Einarsson, H., Neukirchen, H., 2012. An approach and tool for

synchronous refactoring of uml diagrams and models using model-

to-model transformations. In: Proceedings of the Fifth Workshop

on Refactoring Tools, WRT ’12. ACM, New York, NY, USA, pp.

16–23.

Engineering, C.S., 2009. Atelier B 4 – User Manual, Version 4.0.

Fowler, M., 1999. Refactoring: Improving the Design of Existing

Code. Addison-Wesley, Boston, MA, USA.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design

Patterns. Addison-Wesley, Boston, MA.

Goldsmith, M., 2005. FDR2 User’s Manual version 2.82.

Gorp, P., Stenten, H., Mens, T., Demeyer, S., 2003. Towards

automating source-consistent UML refactorings. In: Stevens, P.,

Whittle, J., Booch, G. (Eds.), UML 2003 – The Unified Modeling

Language, Lecture Notes in Computer Science, vol. 2863. Springer-

Verlag, pp. 144–158.

Hoare, C.A.R., 2004. Communicating sequential processes. Electronic

edition edited by Jim Davies.

Idani, A., Ledru, Y., Labiadh, M.-A. Ingénierie dirige par les modèles

pour une intgration efficace de uml et b. In: INFORSID 2009

(Toulouse, May 2009).

Ifill, W., Schneider, S.A., Treharne, H., 2007. Augmenting B

with control annotations. In: Julliand, J., Kouchnarenko, O.

(Eds.), B, Lecture Notes in Computer Science, vol. 4355.

Springer, pp. 34–48.

Laleau, R. Conception et développement formels d’applications bases

de données (PhD thesis). CEDRIC (CNAM), University of Evry,

2002. Habilitation à diriger des recherches.

Lano, K., Clark, D., Androutsopoulos, K., 2004. Uml to b: Formal

verification of object-oriented models. In: IFM, pp. 187–206.

Ledang, H., 2001. Automatic translation from UML specifications to

B. In: ASE ’01: Proceedings of the 16th IEEE International

Conference on Automated Software Engineering. IEEE Computer

Society, p. 436.

Ledang, H., Souquières, J., 2002. Integration of uml and B specifica-

tion techniques: systematic transformation from ocl expressions

into b. In: APSEC ’02: Proceedings of the Ninth Asia-Pacific

Software Engineering Conference. IEEE Computer Society,

Washington, DC, USA, p. 495.

Marcano, R., Levy, N., 2002. Using B formal specifications for

analysis and verification of UML/OCL models. In: Kuzniarz, L.,

Reggio, G., Sourrouille, J.L., Huzar, Z. (Eds.), Blekinge Institute of

Technology, Research Report 2002:06. UML 2002, Model

Engineering, Concepts and Tools. Workshop on Consistency

Problems in UML-based Software Development. Workshop

http://refhub.elsevier.com/S1319-1578(15)00020-8/h0005
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0005
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0010
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0010
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0015
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0015
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0015
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0015
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0020
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0020
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0020
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0040
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0040
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0045
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0045
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0045
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0060
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0060
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0065
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0065
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0075
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0075
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0075
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0075
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0075
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0090
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0090
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0090
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0090
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0105
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0105
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0105
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0105
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0110
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0110
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0110
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0110
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0110
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0115
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0115
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0115
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0115
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0115
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0115


180 B. Ben Ammar, M.T. Bhiri
Materials. Department of Software Engineering and Computer

Science, Blekinge Institute of Technology, pp. 91–105.

Markovic, S., 2008. Model refactoring using transformations (PhD

thesis). Lausanne.

Marković, S., Baar, T., 2008. Refactoring ocl annotated uml class

diagrams. Softw. Syst. Model. 7 (1), 25–47.

Mens, T., 2006. On the use of graph transformations for model

refactoring. In: Joost (Ed.), Generative and Transformational

Techniques in Software Engineering, Lecture Notes in Computer

Science, vol. 4143. Springer, pp. 215–254.

Mens, T., Gorp, P.V., 2005. A taxonomy of model transformation. In:

Proc. International Workshop on Graph and Model

Transformation (GraMoT), vol. 152. Elsevier.

Mens, T., Tourwe, T., 2004. A survey of software refactoring. IEEE

Trans. Softw. Eng. 30 (2), 126–139.

Mens, T., Taentzer, G., Müller, D., 2007. Challenges in model

refactoring. In: Proc. 1st Workshop on Refactoring Tools.

University of Berlin.

Mens, T., Taentzer, G., Runge, O., 2007. Analysing refactoring

dependencies using graph transformation. Softw. Syst. Model.,

269–285.

Meyer, B., 2000. Conception et programmation orientées objet.

Eyrolles.

Meyer, E., Souquières, J., 1999. A Systematic Approach to Transform

OMT Diagrams to a B Specification. In: FM ’99: Proceedings of

the World Congress on Formal Methods in the Development of

Computing Systems, vol. I. Springer-Verlag, pp. 875–895.

Rasch, H., Wehrheim, H., 2003. Checking Consistency in UML

Diagrams: Classes and State Machines. In: Najm, E., Nestmann,
U., Stevens, P. (Eds.), Formal Methods for Open Object-based

Distributed Systems, LNCS, vol. 2884. Springer, pp. 229–243.

Reimann, J., Seifert, M., Amann, U., 2010. Role-based generic model

refactoring. In: Petriu, D., Rouquette, N., Haugen, A. (Eds.),

Model Driven Engineering Languages and Systems, Lecture Notes

in Computer Science, vol. 6395. Springer, Berlin Heidelberg, pp.

78–92.

Reimann, J., Wilke, C., Demuth, B., Muck, M., Amann, U., 2012.

Tool supported ocl refactoring catalogue. In: Proceedings of the

12th Workshop on OCL and Textual Modelling, OCL ’12. ACM,

New York, NY, USA, pp. 7–12.

Roscoe, A.W., 1994. Model-checking CSP. Prentice Hall International

(UK) Ltd., Hertfordshire, UK, UK.

Schwaber, K., Sutherland, J., 2013. The scrum guide.

Shore, J., Warden, S., 2007, The Art of Agile Development, first ed.

O’Reilly.

Snook,C.,Butler,M., 2004.U2b–a tool for translatinguml-bmodels into

b. In: UML-B Specification for Proven Embedded Systems Design.

Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M., 2001. Refactoring

UML models. In: Proceedings of UML 2001. LNCS, vol. 2185.

Springer Verlag, pp. 134–148.

van Kempen, M., Chaudron, M., Kourie, D., Boake, A., Boake, A.,

2005. Towards proving preservation of behaviour of refactoring of

uml models. In: SAICSIT ’05: Proceedings of the 2005 annual

research conference of the South African institute of computer

scientists and information technologists on IT research in develop-

ing countries (Republic of South Africa), South African Institute for

Computer Scientists and Information Technologists, pp. 252–259.

http://refhub.elsevier.com/S1319-1578(15)00020-8/h0115
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0115
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0125
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0125
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0130
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0130
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0130
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0130
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0135
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0135
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0135
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0140
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0140
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0145
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0145
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0145
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0150
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0150
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0150
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0160
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0160
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0160
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0160
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0165
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0165
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0165
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0165
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0175
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0175
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0175
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0175
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0200
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0200
http://refhub.elsevier.com/S1319-1578(15)00020-8/h0200

	Pattern-based model refactoring for the introduction association relationship
	1 Introduction
	2 Related works
	2.1 Overview of UML basic concepts
	2.2 Overview of the B method
	2.3 Overview of the CSP language
	2.4 Translation of the structural aspects of UML into B
	2.5 Translation of the behavioral aspects of UML into CSP

	3 Proposed approach
	4 Description of a refactoring pattern
	4.1 Parameter identification
	4.2 Applicability verification
	4.3 Specification evolution
	4.4 Pattern correctness

	5 Definition of pattern
	5.1 Parameter identification
	5.2 Applicability verification
	5.3 Specification evolution
	5.4 Pattern correctness

	6 Case study
	6.1 Parameter identification
	6.2 Applicability verification
	6.3 Specification evolution
	6.4 Pattern correctness

	7 Conclusion
	Acknowledgments
	References


