
Journal of King Saud University – Computer and Information Sciences (2015) 27, 323–333
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Bootstrapping quality of Web Services
* Tel.: +965 24633223.

E-mail address: dr.zainab@ku.edu.kw.

URL: http://www.isc.ku.edu.kw/.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2014.12.003
1319-1578 ª 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Zainab Aljazzaf *
Department of Information Science, College of Computing Sciences and Engineering, Kuwait University, Kuwait
Received 18 June 2014; revised 13 November 2014; accepted 9 December 2014
Available online 29 June 2015
KEYWORDS

Services;

Web Services;

Quality of services;

Bootstrapping;

Service Oriented

Architecture
Abstract A distributed application may be composed of global services provided by different orga-

nizations and having different properties. To select a service from many similar services, it is impor-

tant to distinguish between them. Quality of services (QoS) has been used as a distinguishing factor

between similar services and plays an important role in service discovery, selection, and composi-

tion. Moreover, QoS is an important contributing factor to the evolution of distributed paradigms,

such as service-oriented computing and cloud computing. There are many research works that

assess services and justify the QoS at the finding, composition, or binding stages of services.

However, there is a need to justify the QoS once new services are registered and before any reques-

tors use them; this is called bootstrapping QoS. Bootstrapping QoS is the process of evaluating the

QoS of the newly registered services at the time of publishing the services. Thus, this paper proposes

a QoS bootstrapping solution for Web Services and builds a QoS bootstrapping framework. In

addition, Service Oriented Architecture (SOA) is extended and a prototype is built to support

QoS bootstrapping. Experiments are conducted and a case study is presented to test the proposed

QoS bootstrapping solution.
ª 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

To build a distributed application from Web Services, the
application developer, or service requestor, may need to select

Web Services from different service providers. Because there
are many Web Services with similar functionalities, service
requestors need to differentiate among them. The only
differentiating factor between similar Web Services may be
their non-functional properties, which can be considered as cri-
teria for service selection. Quality of services (QoS) has been

used as a non-functional property for selecting services
(Papazoglou et al., 2006; Maximilien and Singh, 2004;
Dragoni, 2009; Ying-Feng et al., 2006; Huhns and Singh,
2005; Zhang et al., 2012; Kalepu et al., 2003; Kim and Doh,

2007; Liu et al., 2004; Zheng et al., 2014; Rajeswari et al., 2014).
For example, one approach in service selection (Ran, 2003)

involves the case where the Web Service registry can capture

the QoS provided by the service provider and the QoS required
by the service requestor and accordingly match the two while
discovering the service, to select the best match from services

with similar functionality. In this scenario, a service requestor
may need a service that has a low response time, which is con-
sidered a QoS property of the service. Therefore, a service with

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.12.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dr.zainab@ku.edu.kw
http://www.isc.ku.edu.kw/
http://dx.doi.org/10.1016/j.jksuci.2014.12.003
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.12.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


324 Z. Aljazzaf
a lowest response time will be selected by the requestor from
many similar services with different response times.

Many studies have been conducted to examine QoS compli-

ance by monitoring Web Services or collecting quality ratings
from the users (Papazoglou et al., 2006; Kim and Doh, 2007;
Zhang et al., 2012; Liu et al., 2004; Huhns and Singh, 2005;

Kalepu et al., 2003; Zheng et al., 2014). Thus, considering
the issues related to the Web Services and distributed para-
digms, QoS is an important contributing factor to the evolu-

tion of distributed paradigms.
Service providers may register their Web Services claiming

the services’ QoS. However, the Web Service brokers need to
justify the conformance of the QoS to the published specifica-

tion. Many studies have been conducted to justify the QoS at
the time of selecting the services or at run time of services
(Maximilien and Singh, 2004; Dragoni, 2009; Zhang et al.,

2012; Kalepu et al., 2003; Kim and Doh, 2007; Liu et al.,
2004; Zheng et al., 2014). To the best of our knowledge,
few attempts were done to justify the QoS once new services

are registered and before any requestors use them. Therefore,
there is a need to ensure the QoS, especially for new services
(new comer) that no service consumer has tried using before,

and for which the justification of the QoS measurements is
not available a priori, so called Bootstrapping QoS.
Bootstrapping is the process of evaluating the QoS of the
newly registered services at the time of publishing the

services.
In this paper, a solution for bootstrapping QoS is intro-

duced that assesses the QoS attributes for the newly registered

Web Services. The main contribution lies in the automated
approach for QoS bootstrapping at the Publish time and
before any requestor requests the Web Service. As a result,

the justification of QoS for new Web Services will be available
at the time of publishing the Web Services, thus:

� there is no need to test the Web Services at the time of
Finding the service;
� the Finding operation will be faster;
� increases the opportunity for new Web Services to be

selected by requestors;
� increases the level of trust in such services.

Accordingly, this work proposes a QoS bootstrapping solution
for Web Services that includes a QoS model, QoS bootstrap-
ping framework, SOA extension to support bootstrapping

QoS, and prototype. Consequently, experiments are conducted
to evaluate the bootstrapping solution.

The rest of the paper is organized as follows. The back-
ground is presented in Section 2. Section 3 presents the related

work. The proposed QoS bootstrapping technique is included
in Section 4 and it covers QoS model and QoS bootstrapping
framework. Section 5 covers the SOA extension to support

bootstrapping QoS. The prototype is presented on Section 6.
The experiment, evaluation, and case study are demonstrated
in Section 7. Section 8 concludes the paper.
2. Background

This section provides the background about Web Services and

QoS and service-oriented computing paradigm, as given below.
2.1. Web Services and quality of service

The development of a distributed software system requires the
interaction of services and the use of resources from diverse
organizations throughout the Web. A service is ‘‘a discrete unit

of business functionality that is made available through a ser-
vice contract’’ (Rosen et al., 2008), which includes a service
interface, service documents, service policies, and QoS.
Services perform functions from simple requests to compli-

cated business processes.
Services can be implemented using Web Service technology.

Web Services are an emerging technology that enables applica-

tions running from different machines over the Web to inte-
grate and exchange data regardless of their platform,
hardware, operating system, and languages (Papazoglou,

2012).
A Web Service is defined by the World Wide Web

Consortium (W3C) as ‘‘a software application identified by a

URI, whose interface and binding are capable of being defined,
described and discovered by XML artefacts and supports
direct interactions with other software applications using
XML based messages via Internet-based protocols’’ (Ferris

et al., 2004). Similarly, IBM defines a Web Service as ‘‘self-
contained, self-described, dynamically discovered applications
with Internet-based interfaces’’ (Yuan and Long, 2002).

Accordingly, a Web Service is a new breed of Web applica-
tions, which is modular and can be published, located, and
invoked across the Web. Once a Web Service is deployed,

other applications can discover and invoke it. Web Services
are loosely coupled, platform-neutral, reusable, and dis-
tributed software components (Yuan and Long, 2002).

Web Services are based on common standards, such as

Extensible Markup Language (XML), and existing technolo-
gies, such as Hypertext Transfer Protocol (HTTP). The key
to Web Services’ success is the open standards that facilitate

the interoperability among different parties (Yuan and Long,
2002). Web Services technology’s main protocols include
Simple Object Access Protocol (SOAP), Web Services

Description Language (WSDL), and Universal Description,
Discovery, and Integration (UDDI) (Papazoglou, 2012).

SOAP is an XML-based standard messaging protocol,

using HTTP as a means of transport and for circumventing
the firewalls. WSDL is the service representation language
used to describe the interface of and access to Web Services.
This description includes the operations and parameters, loca-

tion, and invocation protocol of the Web Services. UDDI is a
cross-industry directory standard for the description, publica-
tion, and discovery of Web Services. This standard stores the

Web Service interfaces described by WSDL, categorizes Web
Service information, and allows searching the directory for
Web Services.

Regarding quality and QoS, the international quality stan-
dard ISO 8402 (part of the ISO 9000) describes quality as ‘‘the
totality of features and characteristics of a product or service
that bear on its ability to satisfy stated or implied needs’’.

Hoyle (2005) defines quality as ‘‘the degree to which a set of
inherent characteristics fulfills a need or expectation that is sta-
ted, general implied or obligatory’’. The author elaborates that

‘‘quality is thought of as conformance to specification regard-
less of whether the specification actually meets the needs of the
customer or society’’ Hoyle (2005). The W3C describes the



Bootstrapping quality of Web Services 325
QoS requirements for Web Services as the quality aspect of a
Web Service (Lee et al., 2003).

2.2. Service-Oriented Computing

Service Oriented Computing (SOC) is ‘‘a computing paradigm
that utilizes services as fundamental elements to support rapid,

low-cost development of distributed applications in heteroge-
neous environments’’ (Papazoglou and Georgakopoulos,
2008). To realize the potential of SOC, Service Oriented

Architecture (SOA) is developed to overcome many enterprise
challenges, including designing complex distributed services,
managing business processes, ensuring transaction QoS, com-

plying with agreements, and leveraging different computing
devices such as personal computers and cell phones
(Papazoglou and Georgakopoulos, 2008). SOA is ‘‘an architec-
tural style for building enterprise solutions based on services’’

(Rosen et al., 2008).
Because SOA is concerned with an enterprise scope beyond

a single application (Rosen et al., 2008), the design principles

of SOA are independent of any technology (Papazoglou and
Georgakopoulos, 2008). SOA can be implemented using many
distributed computing technologies such as Common Object

Request Broker Architecture (CORBA), Distributed
Component Object Model (DCOM), and Web Services. In
particular, Web Services have gained more popularity as a
technology for implementing SOA because of their important

features, especially their interoperability and self-description
interfaces, as well as the fact that they base their development
on existing ubiquitous infrastructures, such as HTTP and

XML (Papazoglou and Georgakopoulos, 2008).
There are three role interactions in SOA, as shown in

Fig. 1 (Papazoglou, 2012): Web Service provider, an organi-

zation or platform that owns, implements, and controls
access to the Web Service; Web Service requestor, an applica-
tion, Web Services, or the client who is looking for and

invoking a Web Service; and Web Service registry, a search-
able directory where the description of the Web Services is
published by Web Service providers and searched by Web
Service requestors.

The Web Service broker facilitates operations in SOA.
First, in the Publish phase, Web Service providers register
and publish their Web Services into the Web Service registry.

Next, in the Find or Discovery phase, Web Service requestors
query the registry for Web Services according to their
Figure 1 Web Services roles and operations in SOA Papazoglou

and Georgakopoulos, 2008.
functional properties. Finally in the Bind phase, the Web
Service requestors bind and invoke the selected Web Service
(Papazoglou, 2012). The brokerage handles the integration,

customization, and governance of the access to the Web
Services, all in an effort to reduce end-user complexity.

3. Related work

The research works in QoS encompass different research
domains, such as network, software engineering, and service-

oriented computing paradigms. Many research efforts are ded-
icated to the area of QoS; however, to the best of our knowl-
edge, most of the existing work leaves open the way for how

QoS parameters are bootstrapped or pre-evaluated for new
published services at Publish time of services.

Many researchers assess the QoS at the Find time of ser-

vices or at run time, or check the QoS compliance (Zou
et al., 2009; Kalepu et al., 2003; Zhengping et al., 2007;
Zhang et al., 2010; Sherchan et al., 2006; Zhang et al., 2012).
For example, Zou et al. (2009) present a service selection

and ranking framework. The QoS are not assessed a priori,
and the services are ranked based on the published QoS by
the service provider. Kalepu et al. (2003) calculate the compli-

ance values, which involve the difference between the projected
and achieved parameter values, for all of the services’ Service
Level Agreement (SLA) parameters. The local and global

rankings of the services and their providers are evaluated
based on the compliance levels of SLA parameters.
Zhengping et al. (2007) monitor the behavior of services at
run time, and Zhang et al. (2010) present a Web Service search

engine to find desired Web Services at Find time of services.
Specifically, the engine ranks Web Services by monitoring
the non-functional QoS characteristics of Web Services.

Sherchan et al. (2006) measure the compliance of QoS attri-
butes by comparing the projected values agreed-upon in the
SLA and the delivered values obtained from the performance

monitoring system after using the service. Zhang et al. (2012)
present a QoS based computational model for Web Service
selection through an improved normalization method. An

appropriate service would be recommended to the service
requestor by the QoS registry, which is responsible for collect-
ing the QoS. In those models, however, the QoS were not
assessed at Publish time of the services, and thus, they did

not consider bootstrapping the QoS.
In contrast to QoS bootstrapping, QoS prediction aims at

providing personalized QoS value prediction for service users,

by employing the historical QoS values. The research problem
of QoS prediction is how to accurately predict the missing QoS
values by employing the available previous collected QoS val-

ues from other users’ experience (Zheng et al., 2014). There are
many works in QoS prediction for new users (Wang et al.,
2013; Baraki et al., 2013; Ge et al., 2010; Yu, 2012). For exam-
ple, Wang et al. (2013) propose a model that integrates QoS

prediction and leads to a composition result that fulfills and
maintains the user requirement. Baraki et al. (2013) present
two algorithms to predict QoS and Quality of Experience

(QoE), where the predictions are based solely on previously
collected QoS and QoE data.Yu (2012) presents a strategy that
uses decision tree learning to bootstrap service recommenda-

tion systems. However, the above methods recommend ser-
vices to users based on previous collected QoS values from



326 Z. Aljazzaf
other users’ experiences and do not bootstrap QoS of new
services.

Zheng et al. (2014) mention that although QoS of Web

Services has been investigated intensively, but there is lack of
services’ pre-evaluation and real-world QoS data sets.
Accordingly, the availability of the comprehensive real-world

Web Service QoS data sets is important in validating various
QoS-based approaches. Thus, pre-evaluating services and pro-
viding the evaluated QoS in advance helps the service provi-

ders and consumers of such services. The authors conduct
several large-scale QoS evaluations of real-world Web
Services. However, the authors did not build a framework
and they focused on investigating three user-observed QoS

properties only, which are failure probability, response time,
and throughput.

Regarding the bootstrapping framework in the literature,

the only bootstrapping approach was proposed by
Rosenberg et al. (2006). The authors proposed an evaluation
approach for bootstrapping QoS attributes of Web Services

that provides a set of up-to-date QoS attributes for Web
Service selection. The authors mainly address performance
and dependability related QoS attributes, which are response

time, latency, and execution time, availability, and robustness.
Although the authors build a framework, but they did not
address service selection based on QoS or apply it to service
computing applications such as SOA.

Therefore, the work in this paper overcomes the limitations
in the literature and provides a full bootstrapping solution that
includes a QoS model, QoS bootstrapping framework, SOA

extension to support service selection based on the boot-
strapped QoS, and prototype.

4. QoS bootstrapping technique

This section describes the QoS Bootstrapping solution, which
starts by identifying the QoS model followed by the QoS boot-

strapping framework, as given below.

4.1. The QoS model

This section presents the QoS model used in this work. A QoS
model expresses QoS attributes for Web Services, as shown in
Table 1.
Table 1 The QoS model.

QoS

Latency Security

Execution time Transaction ACID

Response time Regulatory

Throughput Exception handling

Transaction time Interoperability

Availability Competence

Reliability Honesty

Scalability Usability

Integrity Testability

Capacity Stability

Robustness Supported standards

Accuracy Modifiability

Accessibility Execution price

Timeliness Other QoS
The following presents evaluation approaches for some of
the QoS (Lee et al., 2003; Mathijssen, 2005; Yu et al., 2007):

� Latency (QoSLatency):

Latency is ‘‘the round-trip delay (RTD) between sending a
request and receiving a response’’ Lee et al., 2003.

� Execution time (QoSExecution):
The execution time of a service is the time taken by the ser-
vice to execute and process its sequence of activities.
� Response time (QoSResponse):

The response time of a service is the time required to pro-
cess and complete a service request; the response time
includes the execution time and the latency. The following

is the formula to evaluate the response time:QoSResponse ¼
QoSExecution þ QoSLatencyFig. 2 shows a graphical representa-

tion of the three time frames, latency time, execution time,
and response time, and identifies the relations between

them. Moreover, the figure demonstrates the evaluation
technique for each QoS. In this work, the wrapping time
is not considered.
� Throughput (QoSThroughput):

The throughput of a service refers to the number of requests
a service can process per unit of time. Throughput depends
on the power of the service machines and it is measured by

sending many requests over a period of time and then
counting the number of responses. The following is the for-
mula to evaluate the throughput:

QoSThroughput ¼ Number of requests
time period

� Availability (QoSAvailability):

Services should be available for direct invocation. The
availability of a service is the probability that a service is
up, present, and accessible to use. The following is the for-

mula to evaluate the availability: QoSAvailability ¼ Uptime
Total time

� Reliability (QoSReliability):

The reliability or success rate of a service means the ability

of a service to perform its function under the stated condi-
tions correctly with either ‘‘no fail’’ or ‘‘response failure to
the user’’ for a specific interval of time, and is related to

availability (Lee et al., 2003). Reliability can be evaluated
as follows (Yu et al., 2007):QoSReliability ¼ 1� n

N�twhere t

denotes the total time a service is monitored for recording

the number of failures, n is the number of failures encoun-
tered during that period, and N is the total number of
Service
Requestor

Service

Request

Response

Latency �me Execu�on
�me

Response �me =
 2 x Latency �me + Execu�on �me

Figure 2 Latency, execution, and response time frames.



Bootstrapping quality of Web Services 327
events (number of successful events plus number of fail-

ures); thus, the reliability or the success rate in one day
can be derived.
� Accessibility (QoSAccessibility):

Accessibility refers to the service capability to serve the cli-

ent’s requests (Lee et al., 2003). Mathijssen (2005) denoted
accessibility as follows:

QoSAccessibility ¼ The number of user’s requests that succeeded
Total requests done by the user

Similarly, Yu et al. (2007) calculate accessibility as ‘‘a ratio

of the number of successful acknowledgements received to
the total number of requests sent’’, as shown below:

QoSAccessibility ¼ Number of acknowledgements received
Total number of requests sent

4.2. QoSBF: QoS bootstrapping framework

This section presents the QoS Bootstrapping Framework,
called QoSBF. Fig. 3 shows the proposed framework.

QoSBF consists of several components that perform different
functions. In the following, QoSBF components and their
functions will be explored more.

� Web Service preprocessing:
This component obtains the information about a Web
Service that is necessary for the invocation component.

The required Web Service information can include the ser-
vice operation, input and output parameters of the opera-
tion and their data types, and binding information.

� Web Service invocation:
The Web Service invocation component invokes services;
specifically, it requires services’ operations, input and out-

put parameters, data types, and binding information, which
is obtained by the previous component, the Web Service
preprocessing component.
� QoS evaluation:

This component is responsible for evaluating the QoS. In
this work, the monitoring approach is proposed as a
method for bootstrapping the QoS. In particular, a monitor

bootstraps QoS, such as response time. The collected infor-
mation is stored in the QoS registry and used by the match-
ing component.

� Matching:
The matching component supports service selection based
on the bootstrapped QoS and the requestors’ QoS prefer-

ences. In particular, it returns services that match reques-
tor’s preferences on a set of QoS by matching the
preferences with services’ bootstrapped QoS. As a result,
the service broker returns a number of services with a sim-

ilar functionality and different QoS. For example, a
Web Service
Preprocessing

QoS Evaluation

Web Service
Invocation

Matching

QoS
Registry

Figure 3 QoSBF: QoS Bootstrapping Framework.
requestor may require a weather service with a low

QoSResponse. The service broker may return many weather

services each with different QoSResponse. Consequently, the

requestor will select one with the lowest QoSResponse as

his/her preference.
� QoS registry:

The QoS registry stores the bootstrapped QoS that is eval-
uated by the QoS evaluation component. In addition, it can
provide the bootstrapped QoS to the matching component.

Consequently, it supports searching, matching, and select-
ing services based on the requestors’ QoS preferences.

Moreover, the QoS bootstrapping process is conducted period-
ically to update the bootstrapped QoS values and detect any
changes in their values.

The QoS bootstrapping process works as follows: Once the
Web Service is registered into a Web Service registry, the reg-
istry will obtain the necessary information about the Web
Service, such as Web Service interface and parameters. Then,

the Web Service invocation component will invoke the Web
Service. Consequently, the QoS evaluation component will
evaluate the QoS. Accordingly, the bootstrapped QoS will be

stored in the QoS registry for later use by the matching com-
ponent. Consequently, the QoS will be bootstrapped periodi-
cally before any requestor starts searching for services; i.e.,

before the Find operation of services.

5. SOA extension to support QoS bootstrapping

This section presents the SOA extension for supporting QoS
bootstrapping. Fig. 4 shows the proposed SOA extension;
the architecture adheres to that of the SOA model and has

the same SOA roles and operations with additional component
and link interaction.

The additional component is the QoS bootstrapping frame-
work, which is the QoSBF. QoSBF is added on the service bro-

ker side; accordingly, the broker is responsible for conducting
the QoS bootstrapping process at the Publish time of services.
The additional link interaction includes a QoS bootstrapping

link between the service broker and service provider to boot-
strap the QoS of registered services. In addition, the Find link
Fig. 4 SOA Extension for Supporting QoS Bootstrapping.



Service 
Requestor

Service 
Provider

QoS
Registry

QoSBF
Service

 Registry

1: PublishService() 2: BootstrapQoS() 3: SaveBQoS()

1: RequestService()

2: SearchService()

3: ReturnService()

4: SearchBQoS()

5: ReturnBQoS()6: ReturnBService()

(a) Publish 
a service

(b) Find 
a service

Figure 5 Publish and request operation of a service.

328 Z. Aljazzaf
support selecting services based on requestors’ QoS
preferences.

Fig. 5 shows the sequence diagram of the Publish and Find
operations of a service in the extended SOA. Service providers
need to publish their services in a service registry. In the

Publish operation (part a in the figure), the service provider
publish services in the service registry. Subsequently, QoSBF
starts the bootstrapping process and stores the bootstrapped

QoS in the QoS registry. In the Find operation (part b in the
figure), the service broker supports the selection of services
based on the services’ QoS properties based on a set of reques-

tors’ QoS preferences. In this operation, QoSBF obtains the
find request from the requestor and first discovers the service
registry for services that match the requestor’s functional pref-
erences, and then the QoS registry for services that match the

requestor’s QoS preferences. Consequently, the services that
satisfy the requestor’s preferences are returned to the
requestor.
6. QoS bootstrapping framework prototype

Analytical and empirical studies are the basis of any modeling

effort. Accordingly, the analytical QoSBF model discussed in
this work requires empirical analyses to evaluate the QoS
bootstrapping solution, show its practical uses, and obtain

the optimal outcome. This section presents the empirical stud-
ies that include a prototype of the QoSBF. Experimentation,
evaluation, and case study of the QoS bootstrapping solution
will be presented in Section 7.

Fig. 6 shows the QoSBF prototype based on the proposed
extension of SOA. The prototype presents the elements and
their relations as well as the software tools; it consists of ser-

vice providers, service requestors, and a service broker. The
service broker contains a service registry and the QoSBF,
which conducts the QoS bootstrapping process.

In the current implementation, services are deployed on
Windows machines (running Windows 8) with the following
software tools and technologies: Web Service technology to

implement services, WSDL to describe the Web Services,
SOAP as a messaging standard, Structured Query Language
(SQL) database, and SoapUI (SoapUITool, 2014) for testing
and monitoring Web Services. In addition, different ping tools
are used to test the network connections. The Web Services are

deployed into GlassFish Server 4.
SoapUI is a functional testing tool for testing and monitor-

ing Web Services. SoapUI parse the Web Service WSDL,

invoke Web Services, and monitor Web Services. A description
of bootstrapping QoS at SOAP level is studied by Rosenberg
et al. (2006). However, SoapUI tool is used in this work to

parse WSDL and invoke Web Services. XML, XPath,
Groovy, and Java Database Connectivity (JDBC) are used
within the SoapUI tool to write different scripts, including col-

lecting the QoS, monitoring Web Services, and connecting to
the database.

The QoS bootstrapping process works as follows (see
Fig. 6): When a service provider publishes a service, the frame-

work starts the QoS bootstrapping process by parsing the
WSDL (1). Next, the service will be invoked (2) and then mon-
itored (3) to evaluate the QoS. Then, the evaluated QoS will be

stored in the QoS registry (4).
When a service requestor requests a service (5), the match-

ing component returns services based on the services’ func-

tional properties, which is discovered from the service registry
(6), and QoS from the QoS registry (7) based on the reques-
tor’s QoS preferences. The matched services are returned to
the requestor for the selection of a specific service (8).
7. Experiment and evaluation

This section presents the experimental results of the proposed

QoS bootstrapping solution with respect to some QoS. A use
case and scenarios are presented. Accordingly, the experiments
are conducted and the results are analyzed to show the effec-

tiveness of the proposed approach.
The experimental methodology is as follows: A number of

online Web Services are discovered from online registries.

Some examples of Web Services are WeatherSoap Service,
stockQuote service, IP2Geo service, shop service, and article
service. Some Web Services have similar functional properties

and are provided by different service providers. Subsequently,
a list of QoS are selected for the experiment, which
are QoSResponse;QoSLatency;QoSExecution;QoSThroughput;QoSAvailability;



Figure 6 QoS Bootstrapping Framework Prototype.

Table 2 The monitored Web Services and their bootstrapped QoS.

WS QoS

QoSResponse QoSLatency QoSExecution QoSThroughput QoSAvailability QoSReliability QoSAccessibility

WS1 193.5* 182* 11.5* 1.428 94.62 99.995 99.156

WS2 311.82 260 51.82 1.455 94.97 99.990 97.487

WS3 379.4 208 171.4 1.094 98.24 99.990 98.006

WS4 1500 1100 400 0.8 87.48 99.988 87.195

WS5 586.18 207 379.18 1.712 97.57 99.98 96.564

WS6 475.4 207 268.4 1.526 87.77 99.982 96.363

WS7 663.78 331 332.78 1.528 93.54 99.994 98.187

WS8 241.07 214 27.07 1.422 97.13 99.993 98.659

WS9 975 860 115 0.9 91.35 99.992 93.359

WS10 345.3 288 57.3 1.352 57.53 99.994 98.323

WS11 392 179 213 1.176 100 99.987 97.777

WS12 350.34 316 34.34 1.518 96.94 99.995 98.431

WS13 777.45 317 460.45 1.692 96.81 99.994 98.263

WS14 300 246 54 1.1 72.3 99.867 67.424

WS15 205 174 31.05 1.372 100 99.993 98.901

WS16 897 453 444 1.77 97.79 99.994 97.402

WS: Web Services, * Times are in ms.

Bootstrapping quality of Web Services 329
QoSReliability and QoSAccessibility. Then, the QoS are bootstrapped

at Publish time by invoking and monitoring the Web Services

to evaluate their QoS.
Table 2 shows some of the monitored Web Services and

their bootstrapped QoS. In the table, the Web Services are

abbreviated and numbered for simplicity. Monitoring the

QoS is conducted several times for duration of hours through-

out days; and each time the average value is evaluated and the

final value in the QoS database is updated.
Fig. 7 shows the bootstrapped QoSResponse and

QoSThroughput for the monitored Web Services. The figure

shows variations on the value of QoS for services provided

by different providers, which can assist requestors in their
selection decision.

For example, a requestor may select a service with the high-

est QoSThroughput from a list of services with similar functional-

ities. In the following subsections, a case study and scenarios
are presented.



330 Z. Aljazzaf
7.1. A case study: city information

This section presents a case study where requestors search for
Web Services from a service registry to build an enterprise
application. The application is a ‘City Information’ applica-

tion that provides requestors with the information about cities.
Specifically, a requestor provides a city name and the applica-
tion returns information about the city, such as address,
weather, and zip code.

Fig. 8 presents the case study application, which is con-
structed as a composition of Web Services, including the fol-
lowing: find ‘Address’, ‘Calculate’ the coordinator, find the

‘Weather’, and finally ’Get’ more information about the city,
such as zip code. However, upon searching the registry, one
can find that there are many such Web Services that have

the same functionality, e.g., weather Web Service, provided
by different service providers. Thus, to build such enterprise
Figure 8 QoS bootstrapping in SO

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25

Figure 7 The bootstrapped Q
application, the developer needs to select Web Services that
match his/her QoS preferences.

Following the case study, an application developer wants

to select Web Services to build the City Information applica-

tion that is composed of four Web Services. The Web

Services are Address, Calculator, Weather, and Get Web

Services. Upon searching the service registry by the matching

component of the QoSBF, it will return three address Web

Services, four Calculator Web Services, four Weather Web

Services, and five Get Web Services, each from different ser-

vice providers, as shown in Table 3. Subsequently, the

matching component will search the QoS registry for the

QoS of such Web Services that were already bootstrapped.

Table 3 shows the bootstrapped QoS of the returned Web

Services.

The following are two scenarios that present the impor-
tance of the bootstrapped QoS in building applications.
A, City Information Case Study.

27 29 31 33 35 37 39 Web Services

Respnse �me

Througput

oSResponse and QoSThroughput.



0

200

400

600

800

1000

1200

1400

1600

WS1 WS2 WS3 Web Services 

'Address' Web Services. 

Response
Time (ms)

Figure 9 The QoSResponse for the Address Web Services.

Table 3 The returned Web Services and their bootstrapped QoS.

WS QoS

QoSResponse QoSLatency QoSExecution QoSThroughput QoSAvailability QoSReliability QoSAccessibility

Address1 282.6* 238* 44.6* 1.644 98.25 99.996 99.04

Address2 371.95 164 207.95 1.431 93.94 99.990 98.501

Address3 1500 1100 400 0.8 87.48 99.988 87.195

Calculator1 241.07 214 27.07 1.422 97.13 99.993 98.659

Calculator2 627 489 138 0.81 68.33 99.958 79.904

Calculator3 193.5 182 11.5 1.428 94.62 99.995 99.156

Calculator4 379.4 208 171.4 1.094 98.24 99.990 98.006

Weather1 311.82 260 51.82 1.455 94.97 99.990 97.487

Weather2 350.34 316 34.34 1.518 96.94 99.995 98.431

Weather3 300 246 54 1.1 72.3 99.867 67.424

Weather4 379.11 37 342.11 1.318 100 99.990 96.65

Get1 475.4 207 268.4 1.526 87.77 99.982 96.363

Get2 897 453 444 1.77 97.79 99.994 97.402

Get3 205.05 174 31.05 1.372 100 99.993 98.901

Get4 196.03 163 33.03 1.254 81.03 99.978 96.440

Get5 237.76 166 71.76 1.26 94.16 99.981 96.969

WS: Web Services, * Time in ms.

Bootstrapping quality of Web Services 331
7.1.1. Scenario 1: selecting non-bootstrapped Web Services

In this scenario, the developer wants to select the desired Web
Services to build the application. However, the Web Services’

QoS is not bootstrapped; thus, the QoS is not available priory.
Therefore, the developer will select Web Services randomly.

Accordingly, the developer may select the following Web

Services: Address3 Web Service with high response time
(QoSResponse ¼ 1500 ms); Calculator2 Web Service with low

availability (QoSAvailability ¼ 68:33); Weather3 Web Service with

low availability and accessibility (QoSAvailability ¼
72:3;QoSAccessibility ¼ 67:424); and Get2 Web Service with high

response time (QoSResponse ¼ 897 ms). Accordingly, the built

application will have a high response time and low availability
and accessibility, which result in low-performance application.

7.1.2. Scenario 2: selecting bootstrapped Web Services

In the following, a scenario is presented to show the impor-
tance of the availability of the bootstrapped QoS, and its ben-

efit in distinguishing between similar Web Services.
The developer wants to select Web Services. The boot-

strapped QoS is available; thus, the developer can select Web

Services based on QoS that best match his/her preferences.

For example, the developer wants to select Web Services with

the lowest response time as his/her preference. The matching

component will return Web Services and their corresponding

QoSResponse values. Figs. 9–12 show the QoSResponse values for

the returned Web Services.

Subsequently, the requestor can select a Web Service that
has the lowest QoSResponse value, which, for the given case,

are Address1 Web Service with QoSResponse ¼ 282:6 ms;

Calculator3 Web Service with QoSResponse ¼ 193:5 ms;

Weather3 Web Service with QoSResponse ¼ 300 ms; and Get4

Web Service with QoSResponse ¼ 196:03 ms. Thus, the result will

be a high-performance application with low response time.
Similarly, the requestor can select a Web Service that has

the highest QoSAvailability value, which are as follows (see

Table 3): Address1 Web Service with QoSAvailability ¼ 98:25;

Calculator4 Web Service with QoSAvailability ¼ 98:24; Weather4



0

100

200

300

400

500

600

700

WS1 WS2 WS3 WS4 Web Services 

'Calculator' Web Services. 

Response
Time (ms)

Figure 10 The QoSResponse for the Calculate Web Services.

300

310

320

330

340

350

360

370

380

390

400

WS1 WS2 WS3 WS4 Web Services 

'Weather' Web Services. 

Response
Time (ms)

Figure 11 The QoSResponse for the Weather Web Services.

0

100

200

300

400

500

600

700

800

900

1000

WS1 WS2 WS3 WS4 WS5 Web Services 

'Get' Web Services. 

Response
Time (ms)

Figure 12 The QoSResponse for the Get Web Services.

332 Z. Aljazzaf



Bootstrapping quality of Web Services 333
Web Service with QoSAvailability ¼ 100; and Get3 Web Service

with QoSAvailability ¼ 100.

8. Conclusion

QoS has been used as a distinguishing factor between similar
services and as a criterion for service selection.

Bootstrapping QoS justifies the QoS once new services are reg-
istered. This paper proposes a QoS bootstrapping solution that
includes QoS model, QoS bootstrapping framework, SOA
extension to support QoS bootstrapping, and prototype. The

experiments and evaluations show the importance of the boot-
strapping techniques in developing high-performance applica-
tions. Accordingly, bootstrapping QoS plays an important role

in the evolution of distributed paradigms. Further research is
needed in this area. Specifically, there is a need to extend the
work to bootstrap other QoS in the QoS model. Particularly,

future work will seek to build methodologies for bootstrapping
security.

Acknowledgement

This work was supported by Kuwait University, Research

Grant No. [QI04/13].
References

Baraki, H., Comes, D., Geihs, K., 2013. Context-aware prediction of

QoS and QoE properties for web services. In: Conference on

Networked Systems (NetSys), pp. 102–109.

Dragoni, N., 2009. Toward trustworthy web services – approaches,

weaknesses and trust-by-contract framework. In: IEEE/WIC/ACM

International Conference on Web Intelligence and Intelligent Agent

Technology, vol. 3, pp. 599–606.

Ferris, C., Barbir, A., Garg, S., Austin, D., 2004. Web services

architecture requirements. W3C note, W3C, <http://www.w3.org/

TR/2004/NOTE-wsa-reqs-20040211> last accessed April, 2014.

Ge, J., Chen, Z., Peng, J., Li, T., Zhang, L., 2010. Web service

recommendation based on QoS prediction method. In: 9th IEEE

International Conference on Cognitive Informatics (ICCI), pp.

109–112.

Hoyle, D., 2005. Automotive Quality Systems Handbook, second ed.

Elsevier Ltd.

Huhns, M.N., Singh, M.P., 2005. Service-oriented computing: key

concepts and principles. IEEE Internet Comput. 9, 75–81.

Kalepu, S., Krishnaswamy, S., Loke, S., 2003. Verity: a QoS metric for

selecting web services and providers. WISEW ’03: Proceedings

Fourth International Conference on Web Information Systems

Engineering Workshops, pp. 131–139.

Kim, Y., Doh, D., 2007. A trust type based model for managing QoS

in web services composition. In: International Conference on

Convergence Information Technology, pp. 438–443.

Lee, K., Jeon, J., Lee, W., Jeong, S., Park, S., 2003. QoS for web

services: requirements and possible approaches. Tech. rep., W3C,

Web Services Architecture Working Group. <http://www.w3c.or.

kr/kr-office/TR/2003/ws-qos/>.

Liu, Y., Ngu, A., Zeng, L., 2004. QoS computation and policing in

dynamic web service selection. In: Proceedings of the 13th

International World Wide Web conference on Alternate Track

Papers & Posters. ACM, New York, NY, USA, pp. 66–73.
Mathijssen, S., 2005. A fair model for quality of web services. 3rd

Twente Student Conference on IT, Enschede.

Maximilien, E., Singh, M., 2004. Toward autonomic web services trust

and selection. In: Aiello, M., Aoyama, M., Curbera, F.,

Papazoglou, M.P. (Eds.), Proceedings of Second International

Conference in Service-Oriented Computing, ICSOC ’04. ACM,

New York, NY, USA, pp. 212–221.

Papazoglou, M., 2012. Web Services and SOA: Principles and

Technology. Pearson Education, Essex, England; New York.

Papazoglou, M.P., Georgakopoulos, D. (Eds.), 2008. Service-Oriented

Computing. The MIT Press, Cambridge, MA.

Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krmer,

B.J., 2006. Service-oriented computing research roadmap. In:

Dagstuhl Seminar Proceedings, 05462, pp. 1–29.

Rajeswari, M., Sambasivam, G., Balaji, N., Saleem Basha, M.,

Vengattaraman, T., Dhavachelvan, P., 2014. Appraisal and

analysis on various web service composition approaches based

on qos factors. J. King Saud University – Comput. Inf. Sci.

c26, 143–152.

Ran, S., 2003. A model for web services discovery with QoS. ACM

SIGecom Exchanges 4 (1), 1–10.

Rosen, M., Lublinsky, B., Smith, K.T., Balcer, M.J., 2008. Applied

SOA: Service-Oriented Architecture and Design Strategies. Wiley

Publishing.

Rosenberg, F., Platzer, C., Dustdar, S., 2006. Bootstrapping perfor-

mance and dependability attributes of web services. IEEE

Computer Society, 205–212.

Sherchan, W., Loke, S.W., Krishnaswamy, S., 2006. A fuzzy model for

reasoning about reputation in web services. In: Haddad, H. (Ed.),

SAC ’06: Proceedings of the 2006 ACM symposium on Applied

computing. ACM, pp. 1886–1892.

SoapUITool, 2014. <http://www.soapui.org/>, last accessed

September 2014.

Wang, H., Sun, H., Yu, Q., 2013. Reliable service composition via

automatic QoS prediction. In: 2013 IEEE International Conference

on Services Computing (SCC), pp. 200–207.

Ying-Feng, Z., Pei-Ji, S., 2006. The model for consumer trust in C2C

online auction. In: ICMSE ’06: International Conference on

Management Science and Engineering, pp. 125–129.

Yu, Q., 2012. Decision tree learning from incomplete QoS to bootstrap

service recommendation. In: IEEE 19th International Conference

on Web Services (ICWS), pp. 194–201.

Yu, W.D., Radhakrishna, R.B., Pingali, S., Kolluri, V., 2007.

Modeling the measurements of QoS requirements in web service

systems. Simul. J. 83 (1), 75–91.

Yuan, M., Long, J., 2002. Securing wireless j2me. Tech. rep., IBM.

Zhang, J., Zhong, F., Yang, Z., Liu, H., 2012. A QoS-aware

computation model for dynamic web service selection. In: IEEE

12th International Conference on Computer and Information

Technology (CIT), pp. 230–235.

Zhang, Y., Zheng, Z., Lyu, M., 2010. Wsexpress: a qos-aware search

engine for web services. In: ICWS ’10: IEEE International

Conference on Web Services, pp. 91–98.

Zheng, Z., Zhang, Y., Lyu, M., 2014. Investigating QoS of real-world

web services. IEEE Trans. Serv. Comput. J. 7 (1), 32–39.

Zhengping, L., Xiaoli, L., Guoqing, W., Min, Y., Fan, Z., 2007. A

formal framework for trust management of service-oriented

systems. In: SOCA ’07: Proceedings of the IEEE International

Conference on Service-Oriented Computing and Applications.

IEEE Computer Society, Washington, DC, USA, pp. 241–248.

Zou, G., Xiang, Y., Gan, Y., Wang, D., Liu, Z., 2009. An agent-based

web service selection and ranking framework with QoS. In: ICCSIT

2009: 2nd IEEE International Conference on Computer Science

and Information Technology, pp. 37–42.

http://www.w3.org/TR/2004/NOTE-wsa-reqs-20040211
http://www.w3.org/TR/2004/NOTE-wsa-reqs-20040211
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0025
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0025
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0030
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0030
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0050
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0050
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0050
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0050
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0060
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0060
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0060
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0060
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0060
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0065
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0065
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0070
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0070
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0080
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0080
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0080
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0080
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0080
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0085
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0085
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0090
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0090
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0090
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0095
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0095
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0095
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0100
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0100
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0100
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0100
http://www.soapui.org/
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0125
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0125
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0125
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0145
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0145
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0150
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0150
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0150
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0150
http://refhub.elsevier.com/S1319-1578(15)00039-7/h0150

	Bootstrapping quality of Web Services
	1 Introduction
	2 Background
	2.1 Web Services and quality of service
	2.2 Service-Oriented Computing

	3 Related work
	4 QoS bootstrapping technique
	4.1 The QoS model
	4.2 QoSBF: QoS bootstrapping framework

	5 SOA extension to support QoS bootstrapping
	6 QoS bootstrapping framework prototype
	7 Experiment and evaluation
	7.1 A case study: city information
	7.1.1 Scenario 1: selecting non-bootstrapped Web Services
	7.1.2 Scenario 2: selecting bootstrapped Web Services


	8 Conclusion
	Acknowledgement
	References


