On the Variational Interpretation
of the Discrete KP Equation
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Abstract We study the variational structure of the discrete Kadomtsev-Petviashvili
(dKP) equation by means of its pluri-Lagrangian formulation. We consider the dKP
equation and its variational formulation on the cubic lattice Z" as well as on the root
lattice O (An). We prove that, on a lattice of dimension at least four, the corresponding
Euler-Lagrange equations are equivalent to the dKP equation.

1 Introduction

We developed the theory of pluri-Lagrangian problems (integrable systems of varia-
tional origin) in recent papers [2—6, 15, 16], influenced by the fundamental insight of
[11-13, 17]. In the present paper, we consider the pluri-Lagrangian formulation of the
discrete bilinear Kadomtsev-Petviashvili (IKP) equation on three-dimensional lat-
tices and its consistent extension to higher dimensional lattices. This equation belongs
to integrable octahedron-type equations which were classified in [1]. A Lagrangian
formulation of this equation was given in [13]. There, the authors consider a discrete
3-form on the lattice Z* together with the corresponding Euler-Lagrange equations
which are shown to be satisfied on solutions of the dKP equation. They also show
that this 3-form is closed on solutions of the dKP equation, namely, the so-called
4D closure relation is satisfied. The main goal of the present paper is to provide a
more precise understanding of the findings in that paper. More concretely:

e In the framework of the pluri-Lagrangian formulation, we construct the elementary
building blocks of Euler-Lagrange equations, which, in the present situation, are
the so-called 4D corner equations.
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e In the two-dimensional case, as noticed in [4], the corresponding 3D corner equa-
tions build a consistent system. Its solutions are more general then the solutions
of the underlying hyperbolic system of quad-equations. On the contrary, in the
present three-dimensional situation, the system of 4D corner equations is not con-
sistent in the usual sense (i.e., it does not allow to determine general solutions
with the maximal number of initial data). However, this system turns out to be
equivalent, in a sense which we are going to explain later, to the corresponding
hyperbolic system, namely the dKP equation.

e We provide a rigorous consideration of the branches of the logarithm functions
involved in the Euler-Lagrange equations. This leads to the following more precise
result: the system of 4D corner equations is equivalent, and thus provides a varia-
tional formulation, to two different hyperbolic equations, namely the dKP equation
itself and its version obtained under inversion x — x~! of all fields which will be
denoted by dKP™.

One can consider the dKP equation on the cubic lattice Z? and its higher dimen-
sional analogues ZN, but, as discussed in [1, 8, 9] another natural setting the dKP
equation (and related octahedron-type equations) is the three-dimensional root lattice

Q(A3) :={(n;,nj, ng,ng) :nj +nj +ng +ng =0}

Also in this setting, the dKP equation can be extended in a consistent way to the
higher dimensional lattices Q(Ay) with N > 3.

Both lattices have their advantages and disadvantages. The cubic lattice Z", on the
one hand, is more manageable and easier to visualize. Its cell structure is very simple:
for every dimension N, all N-dimensional elementary cells are N -dimensional cubes.
On the other hand, it is less natural to consider dKP on the lattice Z°>, because this
equation depends on the variables assigned to six out of eight vertices of a (three-
dimensional) cube.

The root lattice O (A ), in contrast, has a more complicated cell structure, because
the number of different N-dimensional elementary cells increases with the dimen-
sion N. For instance, for N = 3 there are two types of elementary cells octahedra
and tetrahedra. Moreover, especially in higher dimensions, a visualization of the ele-
mentary cells is difficult, if not impossible. However, this lattice is more natural for
the consideration of dKP from the combinatorial point of view, because this equation
depends on variables which can be assigned to the six vertices of an octahedron, one
of the elementary cells of the lattice. Furthermore, the four-dimensional elementary
cells are combinatorially smaller (they contain only 10 vertices, as compared with
16 vertices of a four-dimensional cube) and possess higher symmetry than the cubic
ones. Since they support the equations which serve as variational analogue of the
dKP equation, this leads to a simpler situation.

We will see that a four-dimensional cube is combinatorially equivalent to the sum
of four elementary cells of the root lattice Q(A4). Therefore, several results in the
cubic case can be seen as direct consequences of results of the more fundamental
Q(Ay)-case.
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Let us start with some concrete definitions valid for an arbitrary N-dimensional
lattice 2.

Definition 1.1 (Discrete 3-form) A discrete 3-form on £ is a real-valued function
Z of oriented 3-cells o depending on some field x : 2~ — R, such that . changes
the sign by changing the orientation of o

For instance, in Q(Ay), the 3-cells are tetrahedra and octahedra, and, in Z%, the
3-cells are 3D cubes.

Definition 1.2 (3-dimensional pluri-Lagrangian problem) Let £ be a discrete 3-
form on 2" depending on x : 2" — R.

e To an arbitrary 3-manifold ¥ C 2, i.e., a union of oriented 3-cells which forms
an oriented three-dimensional topological manifold, there corresponds the action
Sfunctional, which assigns to x|y (x), 1.e., to the fields in the set of the vertices V (X)
of X', the number

Sy =Y Z(0).

oeX

e We say that the field x : V(X') — R is a critical point of Sy, if at any interior
pointn € V(X), we have

0y
o = )

Equation (1) are called discrete Euler-Lagrange equations for the action Sy.

e We say that the field x : 2~ — R solves the pluri-Lagrangian problem for the
Lagrangian 3-form & if, for any 3-manifold ¥ C %, the restriction x|y (x) is a
critical point of the corresponding action Sy .

In the present paper, we focus on the variational formulation of the dKP equation on
Q(Ay) and Z" . Let us formulate the main results of the paper.

On the lattice Q(Ay), we consider discrete 3-forms vanishing on all tetrahe-
dra. One can show (see Corollary 2.5) that, for an arbitrary interior vertex of any
3-manifold in Q(Ay), the Euler-Lagrange equations follow from certain elemen-
tary building blocks. These so-called 4D corner equations are the Euler-Lagrange
equations for elementary 4-cells of Q(Ay) different from 4-simplices, so-called
4-ambo-simplices. Such a 4-ambo-simplex has ten vertices. Therefore, the crucial
issue is the study of the system consisting of the corresponding ten corner equations.
In our case, each corner equation depends on all ten fields at the vertices of the 4-
ambo-simplex. Therefore, one could call this system consistent if any two equations
are functionally dependent. It turns out that this is not the case. We will prove the
following statement:

Theorem 1.3 Every solution of the system of ten corner equations for a 4-ambo-
simplex in Q(Ay) satisfies either the system of five dKP equations or the system of
five dKP~ equations on the five octahedral facets of the 4-ambo-simplex.
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Thus, one can prescribe arbitrary initial values at seven vertices of a 4-ambo-simplex.
We will also prove the following theorem:

Theorem 1.4 The discrete 3-form £ is closed on any solution of the system of
corner equations.

In [4, 15], it was shown that in dimensions 1 and 2 the analogues of the property
formulated in Theorem 1.4 are related to more traditional integrability attributes.

For the case of the cubic lattice Z", the situation is similar: one can show (see
Corollary 4.2) that, for an arbitrary interior vertex of any 3-manifold in Z?3, the Euler-
Lagrange equations follow from certain elementary building blocks. These so-called
4D corner equations are the Euler-Lagrange equations for elementary 4D cubes in
7N . A 4D cube has sixteen vertices, but in our case the action on a 4D cube turns out
to be independent of the fields on two of the vertices. Therefore, the crucial issue is the
study of the system consisting of the corresponding fourteen corner equations. Six of
the fourteen corner equations depend each on thirteen of the fourteen fields. There do
not exist pairs of such equations which are independent of one and the same field. All
other equations depend each on ten of the fourteen fields. Therefore, one could call
this system consistent if it would have the minimal possible rank 2 (assign twelve
fields arbitrarily and use two of the six corner equations—depending on thirteen
fields—to determine the remaining two fields, then all twelve remaining equations
should be satisfied automatically). It turns out that the system of the fourteen corner
equations is not consistent in this sense. We will prove the following analogue of
Theorem 1.3:

Theorem 1.5 Every solution of the system of fourteen corner equations for a
4D cube in ZVN satisfies either the system of eight dKP equations or the system
of eight dKP~ equations on the eight cubic facets of the 4D cube.

Thus, one can prescribe arbitrary initial values at nine vertices of a 4D cube. Corre-
spondingly, we will also prove the following statement:

Theorem 1.6 The discrete 3-form £ is closed on any solution of the system of
corner equations.

The paper is organized as follows: we start with the root lattice Q(Ay), thus con-
sidering the combinatorial issues and some general properties of pluri-Lagrangian
systems. Then we introduce the dKP equation and its pluri-Lagrangian structure. In
the second part of the paper the present similar considerations for the cubic lattice Z" .

2 The Root Lattice Q(Ay)

‘We consider the root lattice

Q(Ay) :={n:=(ng,n1,...,ny) € Z¥* ng+nyi + ... +ny =0},
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where N > 3. The three-dimensional sub-lattices Q(A3) are given by
O(A3) :={(n;,nj,ng,ng) : n; +nj + ng + ng = const}.
We consider fields x : Q(Ay) — R, and use the shorthand notations
xp =x(n —e¢), x =x(n), and x; =x(n+e;),

where e; is the unit vector in the ith coordinate direction. Furthermore, the shift
functions 7; and T; are defined by

Tixy .= xi and Trxy := Xjq

for a multiindex «. For simplicity, we sometimes abuse notations by identifying
lattice points n with the corresponding fields x (n).

We now give a very brief introduction to the Delaunay cell structure of the n-
dimensional root lattice Q(Ay) [7, 14]. Here, we restrict ourselves to a very elemen-
tary description which is appropriate to our purposes and follow the considerations
in [1]. For each N there are N sorts of N-cells of Q(Ay) denoted by P (k, N) with
k=1,...,N:

e Two sorts of 2-cells:

P(1,2) : black triangles|ijk] := {x;, x;, xi };
P(2,2) : white triangles[ijkT := {x;;, Xix, Xjk };
e Three sorts of 3-cells:
P(1,3) : black tetrahedralijke] := {x;, X, X, X¢};
P(2,3) : octahedralijk€] := {x;j, Xix, Xie, Xjk, Xje, Xke )
P (3, 3) : white tetrahedra[ijk€] := {x;jk, Xije. Xixe, Xjke}
e Four sorts of 4-cells:
P(1,4) : black 4-simplices|ijkém | := {x;, xj, X, X¢, Xm };
P(2,4) : black 4-ambo-simplices|ijklm] = {xqp : o, B € {i, j, k, £, m}, o # B};
P(3,4) : white 4-ambo-simplices[ijkfm] := {xup), 1 o, B,y € {i, j, k, £, m},
a £ B Fy Fal;

P(4,4) : white 4-simplices[ijk€mT := {X;jke, Xijkm» Xijem» Xikem> X jkem}-

The facets of 3-cells and 4-cells can be found in Appendix 1.

In the present paper we will consider objects on oriented manifolds. We say that
a black triangle |ijk| and white triangle [ijk] are positively oriented if i < j <k
(see Fig. 1). Any permutation of two indices changes the orientation to the opposite
one.

When we use the bracket notation, we always write the letters in brackets in
increasing order, so, e.g., in writing |ijk] we assume thati < j < k and avoid the
notation | jik| or [ikj| for the negatively oriented triangle —|ijk].

There is a simple recipe to derive the orientation of facets of an N-cell: On every

[T 2]

index in the brackets we put alternately a “+” or a “—" starting with a “+” on the
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Fig. 1 Orientation of (a) x (b) Xix Xit
triangles: a the black triangle
lijk]; b the white triangle
[ijk]
X )Cj xU

last index. Then we get each of its facets by deleting one index and putting the
corresponding sign in front of the bracket. For instance, the black 4-ambo-simplex

+ -+ -+
lijktm]

has the five octahedral facets [ijk¢], —[ijkm], [ij€m], —[ik€m], and [ jklm].
The following two definitions are valid for arbitrary N-dimensional lattices 2.

Definition 2.1 (Adjacent N-cell) Given an N-cell o, another N-cell ¢ is called
adjacent to o if 0 and ¢ share a common (N — 1)-cell. The orientation of this
(N — 1)-cell in 0 must be opposite to its orientation in &.

The latter property guarantees that the orientations of the adjacent N-cells agree.

Definition 2.2 (Flower) A 3-manifold in .2~ with exactly one interior vertex x is
called a flower with center x. The flower at an interior vertex x of a given 3-manifold
is the flower with center x which lies completely in the 3-manifold.

As a consequence, in Q(Ay), in each flower every tetrahedron has exactly three
adjacent 3-cells and every octahedron has exactly four adjacent 3-cells.

Examples for open 3-manifolds in Q(Ay) are the three-dimensional sub-lattices
Q(Aj3). Here, the flower at an interior vertex consists of eight tetrahedra (four black
and four white ones) and six octahedra.

Examples of closed 3-manifolds in Q(Ay) are the set of facets of a 4-ambo-
simplex (consisting of five tetrahedra) and the set of facets of a 4-ambo-simplex
(consisting of five tetrahedra and five octahedra).

The elementary building blocks of 3-manifolds are so-called 4D corners:

Definition 2.3 (4D corner) A 4D corner with center x is a 3-manifold consisting
of all facets of a 4-cell adjacent to x.

In Q(Ay), there are two different types of 4D corners: a corner on a 4-simplex
(consisting of a four tetrahedra) and a corner on a 4-ambo-simplex (consisting of
two tetrahedra and three octahedra), see Appendix 2 for details.

The following combinatorial statement will be proven in Appendix 3:

Theorem 2.4 The flower at any interior vertex of any 3-manifold in Q(Ay) can be
represented as a sum of 4D corners in Q(Ay+2).
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Let .Z be a discrete 3-form on Q(Ay). The exterior derivative d.¥ is a discrete
4-form whose value at any 4-cell in Q(Ay) is the action functional of . on the 3-
manifold consisting of the facets of the 4-cell. For our purposes, we consider discrete
3-forms . vanishing on all tetrahedra. In particular, we have

dZ(lijkem]) =0 and d.Z([ijktm]) =0

since a 4-simplices only contain tetrahedra. The exterior derivative on a black 4-
ambo-simplex [ijk€m] is given by

SR — g (i jktm]) @
= L(ijke]) + L (~lijkm) + L (ijtm]) + L (liktm]) + L jkem)).

The exterior derivative on a white 4-ambo-simplex [ijkfm] is given by

Siiktm . — g4 L ([ijkem))
= L(Tulijke]) + L(—=Tilijkm)) + L(Tilijem]) + L (—T;likem])
+ L(Ti[jkem)).
3)

Accordingly, the Euler-Lagrange equations on black 4-ambo-simplices |ijk¢m |
are

aSiijm aSiijm aSiijm aSiijm aSiijm
— = 07 — = 09 — = Os — = 0’ — = 0’
8)C[j 0Xix 0X;¢ 0Xipm 8xjk
g §iikem 5 giktm 9 Sijktm 9. Siiktm dgikem
— =0, — =0, — =0, — =0, — =0.
E)xjg 8ij 8xk5 aka BXgm
“)
and the Euler-Lagrange equations on white 4-ambo-simplices [ijk¢m] are
9 5iiktm 5 5iiktm 9 Siikem 9 Siiktm 9 §ijktm
=0, =0, =0, =0, =0,
AX;jk 0xije i jm OXike 0Xikm
8S‘ijkfm 8S'ijk£m 8S'ijkém asvz'jkém aS'iijm
= 0’ = 0, = 0, - 09 - 0
0Xiem 0Xjke 0X jkm 0Xjom 0Xkem
4)

The last two systems are called corner equations.
The following statement is an immediate consequence of Theorem 2.4:

Theorem 2.5 For discrete every 3-form on Q(Ay) and every 3-manifold in Q(Ay)
all corresponding Euler-Lagrange equations can be written as a sum of corner
equations.
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3 The dKP Equation on Q(Ay)

We will now introduce the dKP equation on the root lattice Q(As). Every oriented
octahedron [ijkf] (i < j < k < £)in Q(A3) supports the equation

XijXke — XixXje + XjeXj = 0. (6)

We can extend this system in a consistent way (see [1]) to the four-dimensional
root lattice Q(A4) and higher-dimensional analogues, such that the five octahedral
facets [ijkL], [jk€m], —[ik€m], [ijm{], and —[ijkm] of the black 4-ambo-simplex
Lijk¢m ]| support the equations

XijXpe — XikXje + Xjexjr =0,

XjxXem — XjeXem + XjmXxe = 0,

XkeXim — XkmXie + XikXem = 0, (7
XemXij — XigXjm + XjeXim = 0,

XimXjk — XjmXik + XgmXij =0

and the five octahedral facets T,,[ijkt], T;[jkém], —T;[ikém], Ti[ijém], and
—Tylijkm] of the white 4-ambo-simplex [ijk€m] support the equations

XijmXkem — XikmX jem + XitmX jkm = 0,
XijkXiem — XijeXikm + XijmXike = 0,
XjkeXijm — XjkmXije + XijkXjem = 0, (3
XkemXijk — XikeX jem + X jkeXikm = 0,
XiemXjke — XjemXike + XxemXije = 0.
In both systems one can derive one equation from another by cyclic permutations of

indices (ijkfm).
We propose the following discrete 3-form .# defined on oriented octahedra [i jk£]:

1 ij kX 10X
2(ijke]) = ~ (A(EE) poA () A (EEEY) D (9
2 XikXje XigXjk XijXke

where

Az) == A(z) — A(é) and A(z) := —/Z logit =, (10)
0

X

The discrete 3-form (9) has its motivation in [13]. Indeed, in [ 13], the authors consider
a similar discrete 3-form on the cubic lattice Z" . One can also consider our 3-form
on the cubic lattice Z". Then one would assign to each 3D cube the 3-form at its
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inscribed octahedron. This 3-form differs from their one by an additive constant and
a slightly different definition of the function A(z): they use the function

Lis(z) := —/Z logd =») . (an
0

X

instead of A(z). Our choice of A(z) allows us for a more precise consideration of the
branches of the occurring logarithm.

Observe that the expression (9) only changes its sign under the cyclic permutation
of indices (ijk€m). This follows from A(z) = —A(z™'). As a consequence, the
exterior derivatives /¥ and §/%" defined in (2) and (3), respectively, are invariant
under the cyclic permutation of indices (i jk¢m). Therefore, one can obtain all corner
equations in (4) and (5) by (iterated) cyclic permutation (i jk€m) from

8Sijklm 8Sijklm aSijk[m 8Si‘jklm
— =0, — =0, and =0, =0
Bxij 0Xik Xijk axij[

Let us study separately the corner equations on black and white 4-ambo-simplices.
The corner equations which live on the black 4-ambo-simplex |ijk€m | are given by

asyrem 9.2 ([ijke]) L 0L lijkmD) 9L dijmD
axi;  Ax 9x;j i -

0

and

asikm 9.2 ([ijke]) | 0.L(—lijkm]) = 0.L(—liktm])
= + + =0
0Xik 0Xix 0Xik 0Xik

Explicitly, they read

1 1
—log|E;j| =0 and —log|Ey| =0, (12)
Xij Xik
where
E e XijXpe + XieXjk  XijXkm — XikXjm  XijXem + XimXje
o= . .
XijXke — XikXje  XijXim + XimXjk  XijXem — XieXjm
and
E. - XikXje — XijXke  XikXjm — XimXjk  XikXem — XitXkm
ik 1= : :

XikXje — XieXjk  XikXjm — XijXkm  XikXem + XimXke

For every corner equation (12) there are two classes of solutions, because any solution
can either solve E;; = —1 or E;; = 1. Hereafter, we only consider solutions, where
all fields x;; are non-zero (we call such solutions non-singular).
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Theorem 3.1 Every solution of the system (4) solves either the system

Eijj=—-1, Ex=-1, Ey=-1, Epn=-1, Ej=-1,
EjZ:_la Ejm:_lv Ep=—1, Epy=-1, Epm=-1

or the system

Ej=1 Ey=1 Ey=1 E,=1, E;=1,
jt = 17 Ejm == 1, Eké == 1» Ekm == l» Eem =1

s

13)

(14)

Furthermore, the system (13) is equivalent to the system (7) (that is dKP on the
corresponding black 4-ambo-simplex). The system (14) is equivalent to the system

XikXigX jkXje — XijXieX jkXke + XijXixXjeXpe = 0,
XjeX jmXreXkm — XjkX jmXkeXem + X jrX jeXmXem = 0,
XkmXikXemXie — XkeXikXemXim + XkeXemXieXim = 0,
XieXjeXimXjm — XemX jeXimXij + XemXieX jmXij = 0,

X jmXkmXij Xik — XimXkmXij X jk + XimX jmXixXjx = 0,

5)

which is the system (7) after the transformation x — x~' of fields (that is dKP™ on

the corresponding black 4-ambo-simplex).

Proof Consider a solution x of (4) that solves E;; = —1 and E; = —1. We set

Qjj = XgmXij — XjeXjm + XjeXim, (16)

Qik = XgeXim — XkmXie + XikXem, a7
and

Aji = XjkXem — X joXkm + X jmXke, (18)
and use these equations to substitute x;;, x;x and xj; in E;; = —1 and Ej;; = —1.

Writing down the result in polynomial form, we get
2
X (@i + XieX jm — XimXje)ei; = 0
and

2
Xi @k + X jeXpm — XjmXre)ejx =0,

where ¢;; and e, are certain polynomials. Since for every solutions of (4) all fields
are non-zero this leads us to ¢;; = 0 and e¢;; = 0. Computing the difference of the

latter two equations we get



On the Variational Interpretation of the Discrete KP Equation 389
QjjXpeXiom (@ij + XieXjm — XimXje) — AjkXieXim (@ jk + XjeXkm — XjmXke) =0
and, with the use of (16) and (18),
Xom (@i X j XeeXkm — AjrX jxXigXim) = 0,

which depends on seven independent fields, i.e., no subset of six fields belong to one
octahedron. Then comparing coefficients leads to a;; = a;; = 0. Substituting

j XjeXkm — XjmXke
Xij = —————————— and Xjk = A Ll
Xem Xem

into E;; = —1 and solving the resulting equation with respect to x;;, we get

XitXkm — XimXke

Xik =
Xem
Substituting x;;, x;z and x j; in E;; by using the last three equations, we get Ej; = —1.
Analogously, one can prove that, for a solution x of (4) which solves E;; = —1
and E;; = —1,wehave Ej; = —1, and for asolution x of (4) whichsolves E;; = —
and E;y = —1, we have E;; = —1. Therefore, for every solution x of (4) and for

every white triangle {xq, xg, X, } on the black 4-ambo-simplex [ijkém | we proved
the following: if E, = —1 and Eg = —1 then E, = —1, too.

On the other hand, one can easily see that x solves E;; = 1 or Ej; = 1 if and only
if x~! solves E;j = —1 or Ej; = —1, respectively. Therefore, we also know that, if
E, =1land Eg = 1 then E,, = 1, too.

Summarizing, we proved that every solution x of (4) solves either (13) and then
also (7) or (14) and then also (15).

Consider a non-singular solution x of the system (7). Then

XijXke + XigXjk  XijXkm — XikXjm  XijXem + XimXj¢

E;i =
J

XijXke — XikXje  XijXkm + XimXjk  XijXem — XieXjm

_ XikXje —XimXjk  XieXjm 1
—XitXjk  XikXjm —XimXj¢
and
E XikXje — XijXke  XikXjm — XimXjk  XikXem — XieXkm
ik = : :

XikXje — XigXjk  XikXjm — XijXkm  XikXem + XimXke

XXk XijXkm o XimXke 1
XijXke  XimXjk  —XitXkm

This proves the equivalence of (13) and (7) and also the equivalence of (14)
and (15) since x solves E;; = —1 or (7) if and only if x~! solves E;; =1or (15),
respectively. U
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We will present the closure relation which can be seen as a criterion of integrability:

Theorem 3.2 (Closure relation) There holds:
2
. T
Sljk(m + =0
- 4

on all solutions of (13) and (14), respectively. Therefore, one can redefine the 3-form
£ as
~ 7'[2
L([ijkl]) := ZL([ijkL]) £ T

in order to get S7*" = 0 on all solutions of (13) and (14), respectively.

Proof The set of solutions . of (13), as well as the set of solutions .~ (14),
is a connected seven-dimensional algebraic manifold which can be parametrized
by the set of variables {x;;, Xjx, Xi¢, Xim, Xjk, Xj¢, Xjm}. We want to show that the
directional derivatives of S/¥" along tangent vectors of ./* vanish. It is easy to see
that the stronger property gradS”/*“" = 0 on .+, where we /%" is considered as a
function of ten variables x;;, is a consequence of (13), respectively (14). Therefore,
the function S/ is constant on .7,

To determine the value of SY/*“" on solutions of (13), we consider the constant
solution of (7)

Xij = Xjk = Xkt = Xgm = Xim = 4,
(19)

Xik = Xj¢ = Xpm = Xig = Xj = —1,

where

V5

a:= .
2

N =

(Indeed, for this point every equation from (7) looks like a*> — 1 — a = 0.) Therefore,
this point satisfies (13), because (7) and (13) are equivalent.

Consider the dilogarithm as defined in (11) and suppose that z > 1. According
to [10], we derive:

2

; s o1 [ T .
Lix(z) = —Lia(z7) — EIOg et imlogz

and

ReLi>(z) =ReLiy(z¢'%) = —

1 /Z log(1 — 2x cos 0 + x?)
— dx
2 0 X

1 % log(l —x)? 2] 1 —
:__/ og(l —x) dx:_/ og | xldx:)\(z),
20 X 0 X
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where A(z) is the same function as in (9). Therefore, we have

Mo=1 1,
—Lip(z7') — zlog"z4+ —, z>1.
2 3
By using the following special values [10]
Lir(@®) = % —log*(~a), Lis(~a) = T — log*(~a).

Liz(@) = =T + Llog’(—a), Liz(a™") = =2 — log*(—a).
a straightforward computation gives

L(lijkt]) =2 (=[ijkm]) = Z([ijtm]) = L (—likém]) = Z([jktm])
7[2

:l(A(az) +A(—aH+A@ ) = -=
2 20

and

Sk — 2 ([ijke]) + L (=lijkm]) + L (ijem]) + L (=[iktm]) + L[ jktm])

This is, because the expression for £ ([ijk£]) (see (9)) changes the sign under the
cyclic permutation of indices (ijk¢) and the solution is invariant under cyclic per-
mutation of indices (ijk{m).
Let us now consider the second branch of solutions: one can easily see that
—1
Xij = Xjk = Xk = Xgm = Xim = A, (20)

Xik = Xjg = Xpm = Xjg = Xjp = —1
with

iy

2

(9]

is a solution of (14) and (15), because (19) is a solution of (13) and (7). Therefore,
on the solution (20) as well as on all other solutions of (14), we have

2
giiktm _ T

where we used A(z) = A(z) — A(z™1), and, therefore, A(z™') = —A(z). O
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Analogously, we get similar results for the white 4-ambo-simplex [ijkfm]. Here,
the corner equations are:

Sk 3.2 (Ty[ijem]) | AL T likem) | 9L (Tl jkemD)

= 0
0xijk 0xijk 0Xi ji 0xXijk
and
dSikem 3 L(—=T,[ijkm]) n 0L (—T;liktm]) n 0.L(T;[jktm]) 0
Bxijg Bxijg axijé axij@
Explicitly, they read
1 1
—log|Eijx| =0 and —log|E;j¢| =0, 20
Xijk Xije
where
Eo XijkXkem + XikmXjke  XijkXjem — XijeXjkm  XijkXiem + XijmXike
ijk = . :
XijkXkem — XikeXjkm  XijkXjem + XijmXjke  XijkXiem — XijeXikm
and
E.. - XijeXkem — XikeXjem — XijeXjkm — XijmXjke  XijeXikm — XijkXitm
ije = : :

XijeXkem + XiemXjke  XijeXjkm — XijkXjem  XijeXikm — XijmXike
The analogue of Theorem 3.1 reads:
Theorem 3.3 Every solution of the system (5) solves either the system

Eijx=-1, Ejo=-1, Ej,=-1, Egy=-1, Ejn=-1,

(22)
Eipm=—1, Ej¢=—1, Ejp=-1, Ejpp=—1, Em=-—1

or the system

Eijw=1, Ej=1, Eju=1 Ex=1 Ej,=1,

(23)
Eigm=1, Ej=1, Ejpn=1, Ejpu=1, Epnm=1

Furthermore the system (22) is equivalent to the system (8) (that is dKP on the
corresponding white 4-ambo-simplex). The system (23) is equivalent to the system
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XikmXiemX jkmXjem — XijmXiemX jkmXkem + XijmXikmX jemXktm = 0,
XijeXijmXikeXikm — XijkXijmXikeXiem + XijXijeXikeXiem = 0,

X jkmXijkX jemXije — X jkeXijkX jemXijm + X jkeX jkmX jemXijm = 0, (24)
XikoX jkeXikmX jkm — XkemX jieXikmXijk + XkemXikeXikmXijk = 0,
XjemXkemXijeXike — XiemXkemXijeX jke + XiemX jomXijeX je = 0,

which is the system (8) after the transformation x — x~" of fields (that is dKP™ on
the corresponding white 4-ambo-simplex).

The analogue of Theorem 3.2 reads:

Theorem 3.4 (Closure relation) There holds:
2
Sikem . T _
4

on all solutions of (22) and (23), respectively. Therefore, one can redefine the 3-form
£ as

2
Plijke]) == L([ijke]) £ ﬂ?

in order to get S* = 0 on all solutions of (22) and (23), respectively.

4 The Cubic Lattice ZV

We will now consider the relation between the elementary cells of the root lattice
Q(Ay) and the cubic lattice Z" . The points of Q(Ay) and of Z" are in a one-to-one
correspondence via

. N
P Q(AN) > Z7, x(no,...,Ni—1,Ni, iy, ..., AN) P> X(N0, ..., Rim1, Nig], ..., AN).

In the present paper, we will always apply P; withi < j, k, ¢, ...
We denote by

{jke} :={x, xj, X, Xe, Xk, Xje, Xres Xjre}

the oriented 3D cubes of Z" . We say that the 3D cube {jk¢} is positively oriented if
J < k < £. Any permutation of two indices changes the orientation to the opposite
one. Also in this case, we always write the letters in the brackets in increasing order,
S0, e.g., in writing {jk¢} we assume that j < k < £ and avoid the notation {kj¢} or
{j ek} for the negatively oriented 3D cube —{jk¢}.
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Xkt

(c)

Xke ke

AN

xjk

Xjke

xjk

Xii X x Xj

Fig. 2 Three adjacent 3-cells of the lattice Q(Ay): a black tetrahedron —7; |ijk¢], b octahedron
[ijk€], ¢ white tetrahedron —7;[ijk€]. The sum d of these 3-cells corresponds to a 3D cube e

The object in Q (A y) which corresponds to the 3D cube {jk¢} is the sum of three
adjacent 3-cells, namely

e the black tetrahedron —7; [ijk¢] (see Fig.2a),
e the octahedron [ijkf¢] (see Fig.2b),
e and the white tetrahedron —7;[ijk¢] (see Fig.2c).

It contains sixteen triangles and to every quadrilateral face of { jkl} there corresponds
a pair of these triangles containing one black and one white triangle. Here, the map
P; reads as follows:

Xij = X, x,jr—>xj, xjkr—>xjk, and X,‘jkgl—>)6jkg.
As a four-dimensional elementary cell of 7N, we consider an oriented 4D cube
{jktm} := {x, X}, Xi, Xe, Xon» X jks Xjes X jms Xkt s Xk Xtms X jkts X jkm» X joms Xktms X jkem }-

The 4D cube {jk¢m} corresponds to the sum of four 4-cells in Q(Ay):

e the black 4-simplex —T; [ijkém],
e the black 4-ambo-simplex |ijkfm],
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Xiktm Xtijktm

Xim Xijlm

Xijkm

Xim Xjm

Fig.3 The sum of the black 4-simplex —7; [i jk¢m |, the adjacent black 4-ambo-simplex |ijk€m],
the adjacent white 4-ambo-simplex —7;[ijk€m], and the adjacent white 4-simplex 7;7; [[i jk¢m
corresponds to the 4D cube { jk&m}

e the white 4-ambo-simplex —7;[ijk€m], and
e the white 4-simplex T;T; [ijk{m]

(see Fig. 3). It contains sixteen tetrahedra (eight black and eight white ones) and eight
octahedra. Here, the map P; reads as follows:

Xij /> X, Xijj > Xy, Xjk b Xjk,  Xijke Y Xjkes and Xiijkem > Xjkem-

Also in the cubic case there is an easy recipe to obtain the orientation of the facets
of an (oriented) 4D cube: on every index between the brackets we put alternately
a “4” and a “—” starting with a “+” on the last index. Then we get each facet by
deleting one index and putting the corresponding sign in front of the bracket. For
instance., the 4D cube

-+ -+
{jktm}

has the eight 3D facets: {jk¢}, —{jkm}, {j€m}, —{k€m} and the opposite ones
—Tuljkt}, T{jkm}, =Ti{jem}, and T;{kfm}.

As a consequence of Definition 2.2, in each flower in 7N, every 3D cube has
exactly four adjacent 3D cubes.

We will now prove the analogue of Theorem 2.5. This proof is easier than the one
for Q(Ay), because of the simpler combinatorial structure.
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Theorem 4.1 The flower at any interior vertex of any 3-manifold in ZN can be
represented as a sum of 4D corners in ZN*1,

Proof Set M := N + 1 and consider the flower of an interior vertex x of an arbitrary
3-manifold in Z". Over each 3D corner {jk¢} (petal) of the flower, we can build
a 4D corner adjacent to x on the 4D cube {jk¢M}. Then the vertical 3D cubes
coming from two successive petals of the flower carry opposite orientations, so that
all vertical squares cancel away from the sum of the 4D corners. (I

Let £ be a discrete 3-form on Z". The exterior derivative d £ is a discrete 4-form
whose value at any 4D cube in Z" is the action functional of £ on the 3-manifold
consisting of the facets of the 4D cube:

S =d £({jkem}) = L({jke}) + L(—{jkm}) + £({jem}) + L(—{ktm})
+ L£(=Tuljkt}) + L(Te{jkm}) + L£(=Ti{jlm}) + £(Tj{klm}).

Accordingly, the Euler-Lagrange equations on the 4D cube {jk¢m} are given by

aSjk(m
=0,
ax
asjkém B 8sjk5m —0 3sjkﬁm —0 85jklm _
ax; 0 dxw dxe 0 xm
asjkfm B asjkﬁm _ asjklm _ 85_]'k€m _ asjkfm _ asjkfm _
ank o Bx.,-g o a.ij o axkg o 3ka o 8x€m o
asjkﬁm asjk(im asjkhn 8sjklim
0X ke D 0Xjkm 0Xjem  OXkem '
aSjk(m
= 0. (25
0X jkem

They are called corner equations.
The following statement is an immediate consequence of Theorem 4.1:

Theorem 4.2 For every discrete 3-form on Z" and every 3-manifold in ZV all cor-
responding Euler-Lagrange equations can be written as a sum of corner equations.

5 The dKP Equation on Z"

On the 3D cube {jk¢} in Z* (j < k < £) we put the equation
XjXpe — XpXje + xexj; = 0. (26)

We can extend this system in a consistent way (see [1]) to the four-dimensional cubic
lattice Z* and its higher-dimensional analogues, such that the eight facets {jk¢},
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—{jkm}, {jtm}, —{ktm}, =T, {jke}, To{jkm}, —=Ti{jem}, T;{ktm} of a 4D cube
{jk€m} carry the equations

XjXpe — XpXje + xex i =0, XjmXkem — XkmX jom + XemX jim = 0,

XjXpm — XiXjm + XmXjk =0, XjiXeem — XkeX jkm + XkmX jke = 0, 27
XjXem — XeXjm +XmXje =0,  XjeXpem — XieXjom + XemXjre = 0,

XkXom — XeXkm + XmXpe =0, XjiXjom — XjeXjkm + XjmXjke = 0.

Note that, in the four equations in the left column, the fields with one index always
appear with increasing order of indices. The equations in the right column are shifted
copies of the ones in the left column. One can derive the system (27) from the system
of dKP equations (7) on the black 4-ambo-simplex |ijk¢m ] and the system of dKP
equations (8) on the white 4-ambo-simplex 7;[ijkm£], by removing the equations
on the octahedra [ jk¢m] and [ jkm{], respectively, from both systems and applying
the transformation P; to the fields in the remaining eight equations.
We propose the discrete 3-form £ defined as

L= (P2,

where & is the discrete 3-form on the root lattice Q(Ay) (see (9)). Therefore, £
evaluated at the 3D cube {jk¢} reads as

L{jke}) = (P)«L) (P (=T; Lijke] + lijk] — T;[ijkeT))
= (P)«(L(=T;lijkt]) +Z((ijke]) — ZL(=T;[ijke])) = (P)«ZL ([ijkL]).
— —
=0 =0

For this discrete 3-form, there are no corner equations on the 4D cube {jkém}
centered at x and Xx ¢, since S/ ktm does not depend on these two variables. The
remaining corner equations from (25) are given by

5.§Jktm _9L({jkey) N 9L (—{jkm}) N AL jem)) N AL(Tj{kem})

0x; 0x; 0x; 0x; 0x;
—_—
=0
0L ([ijke 0.L(—[ijkm 0.L(([ijtm 1
:(Pi)*( ;[IJ D + (=[ijkm]) + ([ij ])) = Liogis =0,
Xij dxjj 92 Xj
osIkom _9L(jkeh | dL(—{jkmp  ILCTi{jtm) AT, (ktm))
0x jk h 0x jk 0x jk 0x jk 0x jk
0L ([ijke 0.2 (—[ijk 0L (—T;Tylije
=(Pi)*( (Lijke) | 3L (lijkm]) 3L (~T;Tilijtm])
0x jk 0X j 09X jk
BX(T,-TJ-[ikEm]))
+—
0x jik
1 .
=—log ;jk =0,
Xjk Eik
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aSIkem pe((jkey) | OSTeljkm)) | DS-Tiljtm) | OL(T;{kem)

0x ke h 0x ke 0x ke 0X je 0x ke

—_———

=0

0L (T Tylijkm]) 0L (—T:Tilijtm])  dL(T;T;likem])
=(Pi)« + +
0X7 jke 0x7jke 0x7 jke

1
=——Ilog|—1=0, (28)
Xjke Ejke

where

&= (P)uEij, &5 = (P)Ej, Ej = (P Eiji, and &y = (P)LE ke

Hereafter, we only consider solutions, where all fields are non-zero (we call these
solutions non-singular). As in the case of the root lattice Q (A y) every corner equation
has two classes of solutions.

Theorem 5.1 Every solution of the system (25) solves either the system

éaj:—l, &=-1, &=-1, &,=-1,

ﬁjk:_lv éjl:_l’ éjm:_l’ Cu=-1 Ep=-1 &y =-1,
Ep=—1, Eu=—1, En=—1, Gu=—1, Gm=—1, Em=-1,
Eire = =1, Ejgm =1, Ejom = =1, Epgm = —1 (29)

or the system

(5}:1, éokzlv &219 gmzls
ﬁjkzlv éjézl’ éjm:l’ Cu=1 &n=1 &y =1,

En=1, Ep=1, Em=1, Eu=1, Eu=1, Em=1,
Eixe=1, Ejm=1, Ejom =1, Efgm = 1. (30)

J

Furthermore the system (29) is equivalent to the system (27) (this is dKP on the
corresponding 4D cube). The system (30) is equivalent to the system

XpXeXjkXje — XjXeXjkXpe + XjXpXjeXpe = 0,

Xk XX kX jm — X j XX jkXkm + X j XX jmXiem = 0,
XeXmX jeX jm — XjXmX jeXem + XjXeX jmXem = 0,
XeXimXeXim — XkXmXkeXem + Xk XeXgmXem = 0, 31)
XikmXemX jkmXjem — XjmXemX jkmXkem + XjmXkmX jemXkem = Oa
XkeXemX jkeX jom — XjeXemX jkeXkem + X jeXieX jemXiem = 0,

Xkt XkmX jkeX jkm — X jkXimX jkeXkem + X jkXie X jemXkem = 0,

XjeX jmX jkeX jkm — XjkX jmX jkeX jem + X jiX jeX jkmX jem = 0,
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which is the system (27) after the transformation x +— x~" of fields (this is dKP~ on
the corresponding 4D cube).

Proof Let x be a solution of the system (25) such that &; = —1 and &, = —1. Then
we know from the proof of Theorem 3.1 that

E=—-1, &=-1, &=—1, & =—1,
éjkz_la é'@z_la Eim=—1, ﬁkg=—1, ﬁka—l, &mz—l

J Jm

and that the latter system is equivalent to

XjXke — XpXjg + XeXjp = 0,

XjXpm — XiXjm + XpXjr =0,
XjXem — X¢Xjm + XpXje =0,
XiXem — XeXkm + XmXke = 05

XjkXem — XjeXkm + X jmXee = 0.

On the other hand, if we consider a solution x of (25) such that & = 1 and &; = 1,
we know from the proof of Theorem 3.1 that

(g)j:lv éak:l’ éalzl, gm:19

ﬁjkzlv é,’z:L éjmzl’ Ew=1 &, =1 & =1
and that the latter system is equivalent to
XpX¢XjkXje — XjX¢X jkXpe + XjXpXjeXpe = 0,
XXX jX jm — Xj XX jkXkm + X jXkX jmXem = 0,
XeXmXjeX jm — XjXmX jeXom + XjXeX jmXem = 0,
XeXmXkeXkm — XieXmXkeXem + XpXeXgmXem = 0,
XjeX jmXieXkm — X jkX jmXkeXem + X jxX jeXkmXem = 0.
Now, let x be a solution of the system (25) such that & = —1 and & = —1.

Then we know from the proof of Theorem 3.3 that

En=1, Eu=1, Eu=1, bu=1 Emn=1, Em=1,
e =1, Egm=1, Ejgm=1, Em=1

and that the latter system is equivalent to
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XemX jkm = XtmX jem + X jmXeem = 0,
XkmX jke — XkeX jrom + X jxXkem = 0,
XemXjke — XkeXjem + XjeXpem = 0,
XjmXjke — XjeXjkm + XjxXjgm = 0,

XjxXem — XjeXgm + XjmXpe = 0.

On the other hand, if we consider a solution x of (25) such that & = 1 and &; = 1,
we know from the proof of Theorem 3.3 that

Ex=1, Eu=1, Eu=1 Eu=1 Eu=1&m=1,
Eie=1, Egm=1, Em=1, Eem=1

and that the latter system is equivalent to

XemXemX jkmX jem — X jmXemX jkm Xictm + XjimXkmX jemXkem = 0,
XkeXemX jieX jom — X jeXemX jkeXkem + X jeXieX jemXkem = 0,
XkeXimX jkeX jkom — X jkXimX jkeXkem + X jkXkeX jrmXkem = 0,
Xj0X jmXjkeX jkm — XjkX jmX jkeX jem + X jkX jeX jkmX jem = 0,

XjeX jmXkeXim — X jkX jmXieXem + X jxX jeXkmXem = 0.
Since a solution x of (25) cannot solve
XjkXem — XjeXpm + X jmXpe =0

and
XjeX jmXkeXim — X jkX jmXkeXem + X jiX jeXimXem = 0

at the same time, this proves the theorem. |
Theorem 5.2 (Closure relation) There holds S7%" = 0 on all solutions of (25).

Proof Let x be a solution of (29) or (30). Then

S = dL({ jke}) = (P)(dL(lijktm]) + d.L(—[ijktm])) = Sikim — Siikim

7* x?

=4— — =0
PR
due to Theorems 3.2 and 3.4 since every solution of (29) solves (13) and (22) after
the transformation P; of variables and every solution of (30) solves (14) and (23)
after the transformation P; of variables. O
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6 Conclusion

The fact that the three-dimensional (hyperbolic) dKP equation is, in a sense, equiva-
lent to the Euler-Lagrange equations of the corresponding action is rather surprising
since for the two-dimensional (hyperbolic) quad-equations an analogous statement
is not true (see [4, 6] for more details). On the other hand, in the continuous situa-
tion there is an example of a 2-form whose Euler-Lagrange equations are equivalent
to the set of equations consisting of the (hyperbolic) sine-Gordon equation and the
(evolutionary) modified Korteweg-de Vries equation (see [16] for more details). So,
the general picture remains unclear.

In particular, the variational formulation for the other equations of octahedron
type in the classification of [1] is still an open problem.
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109 “Discretization in Geometry and Dynamics”.

Appendix 1: Facets of N-Cells of the Root Lattice Q(Ay)

Facets of 3-cells:

Black tetrahedra|ijk¢]: four black triangles|ijk]|, —[ij¢], [ik¢], and — [ jkl];
Octahedra[ijk{]: four black trianglesTy [ijk|, =Ty Lijt], T;ike],
and — T; | jkt],
four white triangles[ijk], —[ij¢], [ik€], and — [jk{];
White tetrahedralijk€]: four white trianglesTy [ijk1, =T [ij €1, T;[ikL],
and — T; [ jkLT;
Facets of 4-cells:

Black 4-simplices|ijktm]: fiveblacktetrahedralijke], —|ijkm], |ijem],
—|ikém], and| jkem];

Black 4-ambo-simplices|ijk¢m|: five black tetrahedraTy, |ijk€], —Tyijkm],
Tilijem], —=T;likém], andT; | jktm],
and five octahedra[ijkl], —[ijkm], [ijem],
—[ik€m], and[ jkfm];

White 4-ambo-simplices[ijk€m]: five octahedraZy,[ijkt], —Ty[ijkm], Ti[ijem],
—Tjlikem], andT; [ jktm],
and five white tetrahedra[ijk€], —[ijkm],
[ijem], —[ik€m], and[ jkem7;

White 4-simplices[[ijktmT: five white tetrahedraTy, [ijk¢], —T,[ijkm],
Tilijem], —T;[ikém], andT; [ jkem].
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Appendix 2: 4D Corners on 4-Cells of the Root Lattice
O(AN)

Black 4-simplex [ijktm]:
The 4D corner with center vertex x; contains

e the four black tetrahedra |ijk¢], —|ijkm], |ijém], and —|ikém];

Black 4-ambo-simplex |ijkém ]:
The 4D corner with center vertex x;; contains

o the two black tetrahedra —7;|ikém], and T; | jkém ],
e and the three octahedra [ijk{¢], —[ijkm], and [ijém];

White 4-ambo-simplex [ijkém]:
The 4D corner with center vertex x;jx contains

o the three octahedra Ty[ijtm], —T;[ikém], and T;[ jkém],
e and the two white tetrahedra [ijk{], and —[ijkm];

White 4-simplex [[ijkémT:
The 4D corner with center vertex x;ji¢ contains

o the four white tetrahedra —7;[ijkm], Ti[ijem], —T;[ik€m], and T;[ jk€m1.

Appendix 3: Proof of Theorem 2.4

SetM := N + 1and L := N + 2. Then, for the construction of the sum X of 4D cor-
ners representing the flower o centered in X, we use the following algorithm:

(i) For every black tetrahedron £|ijk¢] € o at the interior vertex X we add the

4D corner with center vertex X on the black 4-simplex +[ijk¢M | to X.

(ii) For every octahedron +£[ijkf] € o we add the 4D corner with center vertex X
on the black 4-ambo-simplex +|ijk¢M | to X.

(iii) For every white tetrahedron £[ijkf] € o we add the 4D corner with center
vertex X on the white 4-ambo-simplex £[ijk¢ M| to X.

(iv) Forevery white tetrahedron £[ijkM| € X \ o which appeared in X during the
previous step we add the 4D corner with center vertex X on the white 4-simplex
FTilijkMLT to X.

Therefore, we have to prove that ¥ = o.

Assume that X = x;. Then for each black tetrahedron +|ijk¢] € o we added
the three black tetrahedra F|ijkM |, &|ij¢M ], and F|ik¢M | to X which do not
belong to o. Moreover, £|ijk¢] has three black triangular facets adjacent to x;,
namely =£|ijk], which is the common triangle with F|ijkM | (up to orientation),
F|ij€], which is the common triangle with £|ij¢M |, and £|ikZ], which is the
common triangle with F|ik¢M |. Therefore, each of these black tetrahedra has to





