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Abstract Given a triangulated region in the complex plane, a discrete vector field
Y assigns a vector Yi ∈ C to every vertex. We call such a vector field holomorphic
if it defines an infinitesimal deformation of the triangulation that preserves length
cross ratios. We show that each holomorphic vector field can be constructed based
on a discrete harmonic function in the sense of the cotan Laplacian. Moreover, to
each holomorphic vector field we associate in a Möbius invariant fashion a certain
holomorphic quadratic differential. Here a quadratic differential is defined as an
object that assigns a purely imaginary number to each interior edge. Then we derive
a Weierstrass representation formula, which shows how a holomorphic quadratic
differential can be used to construct a discrete minimal surface with prescribed Gauß
map and prescribed Hopf differential.

1 Introduction

Consider an open subset U in the complex plane C ∼= R
2 with coordinates z =

x + iy together with a holomorphic vector field

Y = f
∂

∂x
.

Here Y is a real vector field. It assigns to each p ∈ R
2 the vector f (p) ∈ C ∼= R

2.
We do not consider objects like ∂

∂z which are sections of the complexified tangent
bundle (TR

2)C.
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Note f : U → C is a holomorphic function, i.e.

0 = fz̄ = 1

2

(
∂ f

∂x
+ i

∂ f

∂y

)

.

Let t �→ gt denote the local flow of Y (defined for small t on open subsets of U with
compact closure in U ). Then the euclidean metric pulled back under gt is confor-
mally equivalently to the original metric:

g∗
t 〈 , 〉 = e2u〈 , 〉

for some real-valued function u. The infinitesimal change in scale u̇ is given by

u̇ = 1

2
div Y = Re ( fz) .

Note that u̇ is a harmonic function:

u̇zz̄ = 0.

On the other hand, differentiating u̇ twice with respect to z yields one half the third
derivative of f :

u̇zz = 1

2
fzzz .

It is well-known that the vector field Y corresponds to an infinitesimal Möbius trans-
formation of the extended complex plane C if and only if f is a quadratic polyno-
mial. In this sense fzzz measures the infinitesimal “change in Möbius structure”
under Y (Möbius structures are sometimes also called “complex projective struc-
tures” [6]). Moreover, the holomorphic quadratic differential

q := fzzz dz2

is invariant under Möbius transformations Φ. This is equivalent to saying that q is
unchanged under a change of variable Φ(z) = w = ξ + iη whenever Φ is a Möbius
transformation. This is easy to see if Φ(z) = az + b is an affine transformation. In
this case

dw = a dz

d

dw
= 1

a

d

dz

and therefore

Y = f̃
∂

∂ξ
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with

f̃ = a f.

Thus we indeed have

f̃www dw2 = fzzz dz2.

A similar argument applies to Φ(z) = 1
z and therefore to all Möbius transforma-

tions.
For realizations from an open subset U of the Riemann sphere CP1 the vanishing

of the Schwarzian derivative characterizes Möbius transformations. The quadratic
differential q plays a similar role for vector fields. We call q the Möbius derivative
of Y .

An important geometric context where holomorphic quadratic differentials arise
comes from the theory of minimal surfaces: Given a simply connected Riemann
surface M together with a holomorphic immersion g : M → S2 ⊂ R

3 and a holo-
morphic quadratic differential q on M , there is a minimal surface F : M → R

3

(unique up to translations) whose Gauß map is g and whose second fundamental
form is Re q.

In this paper we will provide a discrete version for all details of the above story.
Instead of smooth surfaces we will work with triangulated surfaces of arbitrary
combinatorics. The notion of conformality will be that of conformal equivalence
as explained in [3]. Holomorphic vector fields will be defined as infinitesimal con-
formal deformations.

There is also a completely parallel discrete story where conformal equivalence of
planar triangulations is replaced by preserving intersection angles of circumcircles.
To some extent we also tell this parallel story that belongs to the world of circle
patterns.

The results on planar triangular meshes in this paper are closely related to isother-
mic triangulated surfaces in Euclidean space [8].

2 Discrete Conformality

In this section, we review two notions of discrete conformality for planar triangular
meshes. We first start with some notations of triangular meshes.

Definition 2.1 A triangular mesh M is a simplicial complex whose underlying
topological space is a connected 2-manifold (with boundary). The set of vertices
(0-cells), edges (1-cells) and triangles (2-cells) are denoted as V , E and F .

We denote Eint the set of interior edges and Vint the set of interior vertices.
Without further notice we will assume that all triangular meshes under consideration
are oriented.
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Fig. 1 Two neighboring and
oriented triangles

Definition 2.2 A realization z : V → C of a triangular mesh M in the extended
complex plane assigns to each vertex i ∈ V a point zi ∈ C in such a way that
for each triangle {i jk} ∈ F the points corresponding to its three vertices are not
collinear.

Given two complex numbers z1, z2 ∈ C we write

〈z1, z2〉 := Re(z̄1z2).

We are looking for suitable definitions of conformal structure of a realization z.
In particular, we want z to be conformally equivalent to g ◦ z whenever g : C →
C is a Möbius transformations. This requirement will certainly be met if we base
our definitions on complex cross ratios: Given a triangular mesh z : V → C, we
associate a complex number to each interior edge {i j} ∈ Eint , namely the cross ratio
of the corresponding four vertices (See Fig. 1)

crz,i j = (zj − zk)(zi − zl)

(zk − zi )(zl − zj )
.

Notice that crz,i j = crz, j i and hence crz : Eint → C is well defined. It is easy to
see that two realizations differ only by a Möbius transformation if and only if their
corresponding cross ratios are the same. In order to arrive at a more flexible notion
of conformality we need to relax the condition that demands the equality of all cross
ratios. Two natural ways to do this is to only require equality of either the norm or
alternatively the argument of the cross ratios. This leads to two different notions
of discrete conformality: conformal equivalence theory [9, 13] and circle pattern
theory [11].

Note that for the sake of simplicity of exposition we are ignoring here realizations
in C where one of the vertices is mapped to infinity.

2.1 Conformal Equivalence

The edge lengths of a triangular mesh realized in the complex plane provide a dis-
crete counterpart for the induced Euclidean metric in the smooth theory. A notion
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of conformal equivalence based on edge lengths was proposed by Luo [9]. Later
Bobenko et al. [3] stated this notion in the following form:

Definition 2.3 Two realizations of a triangular mesh z, w : V → C are conformally
equivalent if the norm of the corresponding cross ratios are equal:

| crz | ≡ | crw |,

i.e. for each interior edge {i j}
|(zj − zk)||(zi − zl)|
|(zk − zi )||(zl − zj )| = |(wj − wk)||(wi − wl)|

|(wk − wi )||(wl − wj )| .

This definition can be restated in an equivalent form that closely mirrors the
notion of conformal equivalence of Riemannian metrics:

Theorem 2.4 Two realizations of a triangular mesh z, w : V → C are conformally
equivalent if and only if there exists u : V → R such that

|wj − wi | = e
ui +uj

2 |zj − zi |.

Proof It is easy to see that the existence of u implies conformal equivalence. Con-
versely, for two conformally equivalent realizations z, w, we define a function
σ : E → R by

|wj − wi | = eσi j |zj − zi |.

Since z, w are conformally equivalent σ satisfies for each interior edge {i j}

σ jk − σki + σil − σlj = 0.

For any vertex i and any triangle {i jk} containing it we then define

eui := eσki +σi j −σjk .

Note the vertex star of i is a triangulated disk if i is interior, or is a fan if i is
a boundary vertex. Hence the value ui defined in this way is independent of the
chosen triangle. �

2.2 Circle Patterns

Given a triangular mesh realized in the complex plane we consider the circum-
scribed circles of its triangles. These circles inherit an orientation from their tri-
angles. The intersection angles of these circles from neighboring triangles (Fig. 2)



246 W.Y. Lam and U. Pinkall

Fig. 2 The intersection
angle of two neighboring
circumscribed circles

define a function φ : Eint → [0, 2π) which is related to the argument of the corre-
sponding cross ratio via

φi j = Arg(crz,i j ). (1)

Based on these angles we obtain another notion of discrete conformality which
reflects the angle-preserving property that we have in the smooth theory.

Definition 2.5 Two realizations of a triangular mesh z, w : V → C have the same
pattern structure if the corresponding intersection angles of neighboring circum-
scribed circles are equal:

Arg(crz,i j ) = Arg(crw,i j ),

i.e. for each interior edge {i j}

Arg
(zj − zk)(zi − zl)

(zk − zi )(zl − zj )
= Arg

(wj − wk)(wi − wl)

(wk − wi )(wl − wj )
.

Just as conformal equivalence was related to scale factors u at vertices, having
the same pattern structure is related to the existence of certain angular velocities α

located at vertices:

Theorem 2.6 Two realizations of a triangular mesh z, w : V → C have the same
pattern structure if and only if there exists α : V → [0, 2π) such that

wj − wi

|wj − wi | = ei
αi +αj

2
zj − zi

|zj − zi | .

Proof The argument is very similar to the one for Theorem 2.4. In particular, the
existence of the function α easily implies equality of the pattern structures. Con-
versely, assuming identical pattern structures we take any ω : E → R that satisfies

wj − wi

|wj − wi | = eiωi j
zj − zi

|zj − zi | .
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For any vertex i and any triangle {i jk} containing it we define αi ∈ [0, 2π) such that

eiαi = ei(ωki +ωi j −ω jk ).

Note the vertex star of i is a triangulated disk if i is interior, or is a fan if i is a
boundary vertex. Hence having the same pattern structure implies that the value αi

is independent of the chosen triangle. �

3 Infinitesimal Deformations and Linear Conformal
Theory

We will linearize both of the above notions of discrete conformality by considering
infinitesimal deformations. This will allow us to relate them to linear discrete com-
plex analysis, based on a discrete analogue of the Cauchy Riemann equations [4, 5,
10] (See the survey [12]).

Definition 3.1 An infinitesimal conformal deformation of a realization z : V → C

of a triangular mesh is a map ż : V → C such that there exists u : V → R satisfying

Re
żj − żi

zj − zi
= 〈żj − żi , zj − zi 〉

|zj − zi |2 = ui + uj

2
.

We call u the scale change at vertices.

Definition 3.2 An infinitesimal pattern deformation of a realization z : V → C of
a triangular mesh is a map ż : V → C such that there exists α : V → R satisfying

Im
żj − żi

zj − zi
= 〈żj − żi , i(zj − zi )〉

|zj − zi |2 = αi + αj

2
.

We call α the angular velocities at vertices.

Example 3.3 The infinitesimal deformations ż := az2 + bz + c, where a, b, c ∈ C

are constants, are both conformal and pattern deformations since

żj − żi

zj − zi
= (azi + b/2) + (azj + b/2).

Infinitesimal conformal deformations and infinitesimal pattern deformations are
closely related:

Theorem 3.4 Suppose z : V → C is a realization of a triangular mesh. Then an
infinitesimal deformation ż : V → C is conformal if and only if i ż is a pattern defor-
mation.
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Proof Notice

〈żj − żi , zj − zi 〉
|zj − zi |2 = 〈i żj − i żi , i(zj − zi )〉

|zj − zi |2 .

and the claim follows from Definition 3.1 and 3.2. �

3.1 Infinitesimal Deformations of a Triangle

Let z : V → C be a realization of a triangulated mesh and ż an infinitesimal defor-
mation. Up to an infinitesimal translation ż is completely determined by the infini-
tesimal scalings and rotations that it induces on each edge. These infinitesimal scal-
ings and rotations of edges satisfy certain compatibility conditions on each triangle.
These conditions involve the cotangent coefficients well known from the theory of
discrete Laplacians. As we will see in Sect. 3.2, for conformal deformations (as
well as for pattern deformations) the infinitesimal scalings and rotations of edges
are indeed discrete harmonic functions.

Consider three pairwise distinct points z1, z2, z3 ∈ C that do not lie on a line. In
the following i, j, k denotes any cyclic permutation of the indexes 1, 2, 3. The trian-
gle angle at the vertex i is denoted by βi . We adopt the convention that all β1, β2, β3

have positive sign if the triangle z1, z2, z3 is positively oriented and a negative sign
otherwise. Suppose we have an infinitesimal deformation of this triangle. Then there
exists σi j , ωi j ∈ R such that

żj − żi = (σi j + iωi j )(zj − zi ). (2)

The scalars σi j and ωi j describe the infinitesimal scalings and rotations of the edges.
They satisfy the following compatibility conditions:

Lemma 3.5 Given σi j , ωi j ∈ R the following statements are equivalent:
(a) There exist żi such that (2) holds.
(b) We have

0 = (σ12 + iω12)(z2 − z1) + (σ23 + iω23)(z3 − z2) + (σ31 + iω31)(z1 − z3). (3)

(c) There exists ω ∈ R such that

iω = iω23 + i cot β1(σ31 − σ12)

= iω31 + i cot β2(σ12 − σ23)

= iω12 + i cot β3(σ23 − σ31).
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(d) There exist σ ∈ R such that

σ = σ23 + i cot β1(iω31 − iω12)

= σ31 + i cot β2(iω12 − iω23)

= σ12 + i cot β3(iω23 − iω31).

Proof The relation between (a) and (b) is obvious. We show the equivalence
between (b) and (c). With A denoting the signed triangle area we have the following
identities:

0 = 〈i(zj − zi ), zj − zi 〉,
2A = 〈i(zj − zi ), zk − zj 〉,

〈i(zj − zi ), i(zj − zi )〉 = 〈zj − zi , zj − zi 〉.

Using these identities and z3 − z2 ∈ span
R
{i(z1 − z3), i(z2 − z1)} we obtain

z3 − z2 = cot(β3)i(z2 − z1) − cot(β2)i(z1 − z3). (4)

Cyclic permutation yields

z1 − z3 = cot(β1)i(z3 − z2) − cot(β3)i(z2 − z1),

z2 − z1 = cot(β2)i(z1 − z3) − cot(β1)i(z3 − z2).

Substituting these identities into Equation (3) we obtain

0 = σ1
(
cot(β3)i(z2 − z1) − cot(β2)i(z1 − z3)

) + ω23i(z3 − z2)

+ σ2
(
cot(β1)i(z3 − z2) − cot(β3)i(z2 − z1)

) + ω31i(z1 − z3)

+ σ3
(
cot(β2)i(z1 − z3) − cot(β1)i(z3 − z2)

) + ω12i(z2 − z1)

= (
ω1 + cot β1(σ2 − σ3)

)
i(z3 − z2)

+ (
ω2 + cot β2(σ3 − σ1)

)
i(z1 − z3)

+ (
ω3 + cot β3(σ1 − σ2)

)
i(z2 − z1).

Now we use that λ1, λ2, λ3 ∈ C satisfy

λ1i(z3 − z2) + λ2i(z1 − z3) + λ3i(z2 − z1) = 0,

if and only if λ1 = λ2 = λ3. This establishes the equivalence of (b) and (c). The
equivalence of (b) and (d) is seen in a similar fashion by eliminating i(zj − zi ) in
(3) instead of (zj − zi ). �
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The quantity ω above describes the average rotation speed of the triangle. Simi-
larly, it can be verified that the above σ satisfies

σ = Ṙ

R

where R denotes the circumradius of the triangle. Thus σ signifies an average scal-
ing of the triangle.

3.2 Harmonic Functions with Respect to the Cotangent
Laplacian

In smooth complex analysis conformal maps are closely related to harmonic func-
tions. If a conformal map preserves orientation it is holomorphic and satisfies the
Cauchy Riemann equations. In particular, its real part and the imaginary part are
conjugate harmonic functions. Conversely, given a harmonic function on a simply
connected surface then it is the real part of some conformal map.

A similar relationship manifests between discrete harmonic functions (in the
sense of the cotangent Laplacian) and infinitesimal deformations of triangular
meshes. Discrete harmonic functions can be regarded as the real part of holomorphic
functions which satisfies a discrete analogue of the Cauchy Riemann equations. In
particular, a relation between discrete harmonic functions and infinitesimal pattern
deformations was found by Bobenko, Mercat and Suris [2]. Integrable systems were
involved in this context. We extend their result to include the case of infinitesimal
conformal deformations.

Theorem 3.6 Let z : V → C be a simply connected triangular mesh realized in the
complex plane and h : V → R be a function. Then the following are equivalent:

(a) h is a harmonic function with respect to the cotangent Laplacian, i.e. using
the notation of Fig. 1, for all interior vertices i ∈ Vint we have

∑

j

(cot βk
ij + cot βl

j i )(hj − hi ) = 0. (5)

(b) There exists an infinitesimal conformal deformation ż : V → C with scale
factors given by h. It is unique up to infinitesimal rotations and translations.

(c) There exists an infinitesimal pattern deformation i ż : V → C with h as angu-
lar velocities. It is unique up to infinitesimal scalings and translations.

Proof We show the equivalence of the first two statements. The equivalence of the
first and the third follows similarly.
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Suppose h is a harmonic function. Since the triangular mesh is simply connected,
equation (5) implies the existence of a function ω̃ : F → R such that for all interior
edges {i j} we have

iω̃i jk − iω̃ j il = i(cot βk
ij + cot βl

j i )(hj − hi ).

Here ω̃ is unique up to an additive constant and called the conjugate harmonic func-
tion of h. Using ω̃ we define a function ω : E → R via

iωi j = iω̃i jk − i cot βk
ij (hj − hi ).

Lemma 3.5 now implies that there exists ż : V → C such that

(żj − żi ) =
(

hi + hj

2
+ iωi j

)

(zj − zi ).

This gives us the desired infinitesimal conformal deformation of z with h as scale
factors.

To show uniqueness, suppose ż, ż′ are infinitesimal conformal deformations with
the same scale factors. Then ż − ż′ preserves all the edge lengths of the triangular
mesh and hence is induced from an Euclidean transformation.

Conversely, given an infinitesimal conformal deformation ż with scale factors h.
We write

żj − żi =
(

hi + hj

2
+ iωi j

)

(zj − zi )

for some ω : E → R. Lemma 3.5 implies that there is a function ω̃ : F → R such
that

iω̃i jk = iωi j + i cot βk
ij (hj − hi ).

We have

iω̃i jk − iω̃ j il = i(cot βk
ij + cot βl

j i )(hj − hi )

and

∑

j

(cot βk
ij + cot βl

j i )(hj − hi ) = 0.

Therefore h is harmonic. �
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4 Holomorphic Quadratic Differentials

In this section, we introduce a discrete analogue of holomorphic quadratic differen-
tials. We illustrate their correspondence to discrete harmonic functions. It reflects
the property in the smooth theory that holomorphic quadratic differentials parame-
trize Möbius structures on Riemann surfaces ([6, Chap. 9]).

To simplify the notation, we make use of discrete differential forms. We denote 
E
the set of oriented edges and 
Eint the set of oriented interior edges. Given an oriented
triangular mesh M , a complex-valued function η : 
E → C is called a discrete 1-
form if

η(eij ) = −η(eji ) ∀eij ∈ 
E .

It is closed if for every face {i jk}

η(eij ) + η(ejk) + η(eki ) = 0.

It is exact if there exists a function f : V → C such that

η(eij ) = d f (eij ) := fj − fi .

Similarly, we can consider discrete 1-forms on the dual graph M∗ of M and these are
called dual 1-forms. Given an oriented edge e, we denote e∗ its dual edge oriented
from the right face of e to its left face. The set of oriented dual edges is denoted
by 
E∗.

Definition 4.1 Given a triangular mesh z : V → C realized on the complex plane, a
function q : Eint → iR defined on interior edges is a discrete holomorphic quadratic
differential if it satisfies for every interior vertex i ∈ Vint

∑

j

qij = 0,

∑

j

qij/dz(eij ) = 0.

Theorem 4.2 Let q : Eint → iR be a holomorphic quadratic differential on a real-
ization z : V → C of a triangular mesh. Suppose Φ : C → C is a Möbius transfor-
mation which does not map any vertex to infinity. Then q is again a holomorphic
quadratic differential on w := Φ ◦ z.

Proof Since Möbius transformations are generated by Euclidean transformations
and inversions, it suffices to consider the inversion in the unit circle at the origin

w := Φ(z) = 1/z.
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We have

∑

j

qij/dw(eij ) =
∑

j

−zi zj qij/dz(eij ) = −zi

∑

j

qij − z2i
∑

j

qij/dz(eij ) = 0.

Hence the claims follow. �

We are going to show that on a simply connected triangular mesh, there is a
correspondence between discrete holomorphic quadratic differentials and discrete
harmonic functions.

We first show how to construct a discrete holomorphic quadratic differential from
a harmonic function. Given a function u : V → R on a realization of z : V → C of
a triangular mesh M . If we interpolate it piecewise-linearly over each triangular
face, its gradient is constant on each face and we have gradz u : F → C given by

gradz uijk = i
ui dz(e jk) + uj dz(eki ) + ukdz(eij )

2Aijk
.

Note that we ignore here the non-generic case (which leads to the vanishing of the
area) where the triangle degenerates in the sense that its circumcircle passes through
the point at infinity. Also note that for a non-degenerate triangle that is mapped by z
inC in an orientation reversing fashion the area Aijk is considered to have a negative
sign. Granted this, one can verify that the gradient of u satisfies

〈gradz uijk, dz(eij )〉 = uj − ui ∀{i j} ⊂ {i jk} ∈ F.

We define uz : F → C by

uz := 1

2
gradz u.

and the dual 1-form duz : 
E∗
int → C on M by

duz(e
∗
i j ) := (uz)i jk − (uz) j il

where {i jk} is the left face and { j il} is the right face of the oriented edge eij .

Lemma 4.3 Given a function u : V → R on a realization of a triangular mesh
z : V → C, we have

duz(e
∗
i j )dz(eij )

=−i

2

(
cot β i

jk(uk − uj ) + cot β j
ki (uk − ui ) + cot β j

il(ul − ui ) + cot β i
l j (ul − uj )

)

which is purely imaginary (Fig. 1).
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Proof Since

〈gradz ui jk, dz(eij )〉 = u j − ui = 〈gradz u jkl , dz(ei j )〉,

we have

Re(duz(e
∗
i j )dz(ei j )) = 0.

On the other hand, using equation (4) we get

Re(duz(e
∗
i j )idz(eij ))

=Re(((uz)i jk − (uz)j il)idz(eij ))

= (〈gradz uijk, cot β
i
jkdz(ejk) − cot β j

ki dz(eki )〉
+ 〈gradz ujil , cot β

j
ildz(eil) − cot β i

l j dz(elj )〉)/2
= 1

2

(
cot β i

jk(uk − uj ) + cot β j
ki (uk − ui ) + cot β j

il(ul − ui ) + cot β i
lj (ul − uj )

)
.

Hence the claim follows. �

Lemma 4.4 Given a realization z : V → C of a triangular mesh. A function u :
V → R is harmonic if and only if the function q : Eint → iR defined by

qij := duz(e
∗
i j )dz(eij )

is a holomorphic quadratic differential.

Proof Note q is well defined since

qij = duz(e
∗
i j )dz(eij ) = duz(e

∗
j i )dz(e ji ) = q ji .

It holds for general functions u : V → R that

Re(q) ≡ 0
∑

j

qij/dz(eij ) =
∑

j

duz(e
∗
i j ) = 0 ∀i ∈ Vint .

We know from Lemma 4.3 that for every interior vertex i ∈ Vint

∑

j

qij =
∑

j

duz(e
∗
i j )dz(eij ) = i

2

∑

j

(cot βk
ij + cot βl

j i )(uj − ui ).

Hence, u is harmonic if and only if q is a holomorphic quadratic differential. �
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Lemma 4.5 Let z : V → C be a realization of a simply connected triangular mesh.
Given a function q : Eint → iR such that for every interior vertex i ∈ Vint

∑

j

qij/dz(eij ) = 0,

there exists a function u : V → R such that for every interior edge {i j}

qij = duz(e
∗
i j )dz(eij ).

Proof We consider a dual 1-form τ on M defined by

τ(e∗
i j ) = qij/dz(eij ).

Since M is simply connected and

∑

j

τ(e∗
i j ) =

∑

j

qij/dz(eij ) = 0,

there exists a function h : F → C such that

dh(e∗
i j ) := hijk − hjil = τ(e∗

i j ).

It implies we have Re(dh(e∗)dz(e)) = Re(q) ≡ 0 and

ω(eij ) := 〈2h̄i jk, dz(eij )〉 = 〈2h̄j il , dz(eij )〉

is a well-defined R-valued 1-form. Since the triangular mesh is simply connected
and for every face {i jk}

ω(eij ) + ω(ejk) + ω(eki ) = 0,

there exists a function u : V → R such that for every oriented edge eij

du(eij ) = uj − ui = ω(eij ).

It can be verified that

h = 1

2
gradz u = uz .

Hence we obtain

qij = τ(e∗
i j )dz(eij ) = dh(e∗

i j )dz(eij ) = duz(e
∗
i j )dz(eij )

for every interior edge {i j}. �
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Theorem 4.6 Suppose z : V → C is a realization of a simply connected triangular
mesh. Then any holomorphic quadratic differential q : Eint → iR is of the form

qij = duz(e
∗
i j )dz(eij ) ∀eij ∈ 
Eint

for some harmonic function u : V → R.
Furthermore, the space of holomorphic quadratic differentials is a vector space

isomorphic to the space of discrete harmonic functions module linear functions.

Proof The first part of the statement follows from Lemmas 4.4 and 4.5. In order to
show the second part, it suffices to observe that

duz ≡ 0 ⇐⇒ grad u ≡ a ⇐⇒ du = 〈a, dz〉 ⇐⇒ u = 〈a, z〉 + b

for some a, b ∈ C. �

In previous sections, we showed that every harmonic function corresponds to
an infinitesimal conformal deformation. The following shows that discrete holo-
morphic quadratic differentials are the change in the intersection angles of circum-
scribed circles.

Theorem 4.7 Let z : V → C be a realization of a simply connected triangular
mesh. Suppose u : V → R is a discrete harmonic function and ż is an infinitesi-
mal conformal deformation with u as scale factors. Then we have

duzdz = −1

2

ċrz

crz
= − i

2
φ̇

where φ̇ : Eint → R denotes the change in the intersection angles of neighboring
circumscribed circles.

Proof We write (żj − żi ) = (
hi +hj

2 + iωi j )(zj − zi ). Applying Lemma 4.3 we have

ċrz,i j / crz,i j = iω jk − iωki + iωil − iωlj

= i
(
cot β i

jk(uk − uj ) + cot β j
ki (uk − ui ) + cot β j

il (ul − ui ) + cot β i
lj (ul − uj )

)

= −2duz(e
∗
i j )dz(eij ).

The equality

ċrz

crz
= i φ̇

follows from Equation (1). �
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5 Conformal Deformations in Terms of End(C2)

In this section we show how an infinitesimal conformal deformation gives rise to
a discrete analogue of a holomorphic null curve in C

3. Later we will see that the
real parts of such a “holomorphic null curve” can be regarded as the Weierstrass
representation of a discrete minimal surface.

Up to now we have mostly treated the Riemann sphere CP1 as the extended
complex plane C = C ∪ {∞}. In this section we will take a more explicitly Möbius
geometric approach: We will represent fractional linear transformations of C by
linear transformations of C2 with determinant one. Actually, the group of Möbius
transformations is

Möb(C) ∼= PSL (2,C) ∼= SL (2,C)/(±I ). (6)

However, since we are mainly interested in infinitesimal deformations and any
map into PSL(2,C) whose values stay close to the identity admits a canonical lift
to SL(2,C), we can safely ignore the difference between PSL(2,C) and SL(2,C).

Given a realization z : V → C of a triangular mesh we consider its lift
ψ : V → C

2

ψ :=
(

z
1

)

and regard the realization as a map Ψ : V → CP1 where

Ψ := C

(
z
1

)

= [ψ].

The action of a Möbius transformation on the Riemann sphere is given by a
matrix A ∈ SL(2,C), which is unique up to sign:

[ϕ] �→ [Aϕ].

Before we investigate infinitesimal deformations we first consider finite defor-
mations of a triangular mesh Ψ : V → CP1. Given such a finite deformation, the
change in the positions of the three vertices of a triangle {i jk} can be described by
a Möbius transformation, which is represented by Gijk ∈ SL(2,C). They satisfy a
compatibility condition on each interior edge {i j} (see Fig. 1):

[Gijkψi ] = [Gjilψi ],
[Gijkψj ] = [Gjilψj ].



258 W.Y. Lam and U. Pinkall

Suppose now that the mesh is simply connected. Then up to a global Möbius trans-
formation the map G : F → SL(2,C) can be uniquely reconstructed from the mul-
tiplicative dual 1-form defined as

G(e∗
i j ) := G−1

j il Gijk .

G(e∗
i j ) is defined whenever {i j} is an interior edge and we have

G(e∗
i j ) = G(e∗

j i )
−1.

Moreover, for every interior vertex i we have

∏

j

G(e∗
i j ) = I.

The compatibility conditions imply that for interior each edge {i j} there exist
λi j,i , λi j, j ∈ C\{0} such that

G(e∗
i j )ψi = λi j,iψi

G(e∗
i j )ψj = λi j,jψj .

Since λi j,i λi j, j = det(G(e∗
i j )) = 1, we have

λi j := λi j,i = 1/λi j,j .

Because of G(e∗
i j ) = G(e∗

i j )
−1 we know

λi j = λi j,i = 1/λj i,i = λj i .

Hence λ defines a complex-valued function on the set Eint of interior edges.
We now show that for each interior edge λi j determines the change in the cross

ratio of the four points of the two adjacent triangles. Note that the cross ratio of four
points in CP1 can expressed as

cr([ψj ], [ψk], [ψi ], [ψl]) = det(ψk, ψj ) det(ψl, ψi )

det(ψi , ψk) det(ψj , ψl)
.

Lemma 5.1 Suppose we are given four points [ψi ], [ψj ], [ψk], [ψl] ∈ CP1 and G ∈
SL(2,C) with

Gψi = λ−1ψi

Gψj = λψj
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for some λ ∈ C\{0}. Then the cross ratio of the four transformed points

[ψ̃i ] = [Gψi ], [ψ̃j ] = [Gψj ], [ψ̃k] = [Gψk], [ψ̃l] = [ψl ]

is given by

cr([ψ̃j ], [ψ̃k], [ψ̃i ], [ψ̃l]) = cr([ψj ], [ψk], [ψi ], [ψl ])/λ2.

Proof

cr([ψ̃j ], [ψ̃k], [ψ̃i ], [ψ̃l ]) = det(Gψk, Gψj ) det(ψl , Gψi )

det(Gψi , Gψk) det(Gψj , ψl)

= cr([ψj ], [ψk], [ψi ], [ψl])/λ2.

�

We now can summarize the information about finite deformations of a realization
as follows:

Theorem 5.2 Let Ψ : V → CP1 be a realization of a simply connected triangu-
lar mesh. Then there is a bijection between finite deformations of Ψ in CP1 mod-
ulo global Möbius transformations and multiplicative dual 1 forms G : 
E∗

int →
SL(2,C) satisfying for every interior vertex i

∏

j

G(e∗
i j ) = I

and for every interior edge

G(e∗
i j ) = G(e∗

j i )
−1

G(e∗
i j )ψi = λ−1

i j ψi

G(e∗
i j )ψj = λi jψj .

Here λ : Eint → C\{0}. We denote cr : Eint → C the cross ratios of Ψ and c̃r :
Eint → C the cross ratios of a new realization described by G. Then

c̃r = cr /λ2.

In particular,

|λ| ≡ 1 =⇒ the deformation is conformal.

Arg(λ) ≡ 0 =⇒ the deformation is a pattern deformation.
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Suppose we have a family of deformations described by dual 1-forms Gt :

Eint → SL(2,C) with G0 ≡ I . By considering η := d

dt |t=0 Gt we obtain the fol-
lowing description of infinitesimal deformations:

Corollary 5.3 Let Ψ : V → CP1 be a realization of a simply connected triangular
mesh. Then there is a bijection between infinitesimal deformations of Ψ in CP1

modulo infinitesimal Möbius transformations and dual 1 forms η : 
Eint → sl(2,C)

satisfying for every interior vertex i

∑

j

η(e∗
i j ) = 0 (7)

and for every interior edge

η(e∗
i j ) = −η(e∗

j i )

η(e∗
i j )ψi = −μi j ψi

η(e∗
i j )ψj = μi j ψj .

Here μ : Eint → C. We denote cr : Eint → C the cross ratios of Ψ and ċr : Eint →
C the rate of change in cross ratios induced by the infinitesimal deformation
described by η. Then

μ = −1

2

ċr

cr
.

In particular,

Re(μ) ≡ 0 =⇒ the infinitesimal deformation is conformal,

Im(μ) ≡ 0 =⇒ the infinitesimal deformation is a pattern deformation.

Note that given a mesh, the 1-form η is uniquely determined by the eigenfunction
μ. We now investigate the constraints on μ implied by the closedness condition (7)
of η.

Consider the symmetric bilinear form ( , ) : C2 × C
2 → sl(2,C)

(φ, ϕ)v := det(φ, v)ϕ + det(ϕ, v)φ.

For ψi �= ψj ∈ C
2 we define

mij := 1

det(ψi , ψj )
(ψj , ψi ) ∈ sl(2,C).




