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Chapter 15
New Options for Understanding and Dealing 
with Index Bias

In this chapter I introduce a new approach for addressing the problem of index bias 
at the point of measurement. Specifically, I introduce new formulations of popular 
indices of uneven distribution that are free of bias and take expected values of zero 
when individuals and households are randomly assigned to residential locations. I 
accomplish this task by drawing on the difference of means formulations of segre-
gation indices introduced in earlier chapters to first identify and then eliminate the 
root source of bias in standard versions of popular indices of uneven distribution. 
The crucial insight from the difference of means formulation is that the values for 
all popular indices of uneven distribution can be seen as resting on person-specific 
scores for pairwise group contact (p). Close consideration reveals that the source of 
index bias is found in these group contact scores. Happily, a surprisingly simple 
refinement in the calculation of these scores eliminates index bias.

I review the root problem and its solution in more detail in the body of this chap-
ter but offer a brief preview the essence of the problem and the solution here. To 
begin, recall that the difference of means framework establishes that all popular 
indices of uneven distribution can be formulated in terms of group differences in 
scaled residential exposure or contact. More specifically, the score for a particular 
index of uneven distribution can be obtained by calculating the difference of group 
means on individual residential outcomes (y) scored using an index-specific scaling 
function y f p= ( ) . The input to the scaling function, “p”, is the individual’s level of 
pairwise contact with the reference group in the comparison. The value of p is cal-
culated from the area population counts for the two groups in the segregation com-
parison based on p n n ni i i i= +( )1 1 2/ . This approach to calculating the value of p 
introduces inherent upward bias in group differences on scores for p and also group 
differences on scores of y.

The source of bias is simple; the count terms (i.e., n1i and n2i) used in the calcula-
tion of group contact (pi) include the individual in question. The score for contact 
thus combines two components of contact  – contact with self and contact with 
neighbors. For any individual the component of contact that derives from contact 
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with neighbors can vary widely; it can range from no (0 %) contact with the refer-
ence group to only (100 %) contact with the reference group. In principle, this com-
ponent of contact can be random for any individual regardless of group membership. 
Thus, under random assignment the expected value of this component of contact 
will be the same for every individual regardless of group membership and expected 
group differences will be zero (0). In contrast, the component of contact that derives 
from self-contact cannot be randomly assigned; it is fixed and invariant for each 
individual. Contact with self distorts group comparisons on contact because this 
component of contact inherently differs by race. Specifically, self-contact makes the 
assessed value of contact (p) intrinsically higher for members of the reference group 
and intrinsically lower for members of the comparison group. This is the source of 
bias in indices of uneven distribution.

This can be understood intuitively by considering the situation where residential 
assignments are random. The expected representation of the reference group among 
neighbors will obviously be same for all individuals and for both groups. But when 
self-contact is added in, the distribution of values on p necessarily shifts up for 
members of the reference group and necessarily shifts down for members of the 
comparison group. Index scores are computed from the difference of groups means 
on scaled contact (y) scored from simple pairwise contact (p). Since all of the index-
specific scaling functions (i.e., y f p= ( ) ) score y as a positive, monotonic function 
of p, the expected distribution of y will necessarily be higher for the reference group 
than for the comparison group. As a result, standard versions of indices of uneven 
distribution are biased upward; that is, their expected values under random assign-
ment (E[•]) are positive.

I eliminate index bias in indices of uneven distribution by making a simple 
refinement to the contact calculation for individuals; I assess contact using counts 
for neighbors instead of area population. For purposes of discussion, I designate the 
revised version of contact as p′. This modification removes the fixed contribution of 
self-contact from the calculation of group contact scores for individuals. Intuitively, 
the expected representation of the reference group among neighbors is the same for 
all individuals under random assignment regardless of group membership. As a 
result, the expected distribution of values on contact with neighbors (p′) is the same 
for both groups. It follows necessarily that the same is true for the expected distribu-
tion of scaled contact (y′) scored from p′. Accordingly, the expected value of the 
group difference of means on scaled contact (y′) also is zero under random assign-
ment. Thus, indices of uneven distribution calculated in this way are unbiased. 
Below I develop this conclusion more carefully. In Chap. 16 I report results of 
empirical analyses demonstrating that indices of uneven distribution computed 
using this relatively simple refinement take an expected value of zero under random 
assignment.

15  New Options for Understanding and Dealing with Index Bias
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15.1  �The Source of the Initial Insight

I should give credit where credit is due and note that a study by Laurie and Jaggi 
(2003) set me on the path to discovering a general strategy for developing unbiased 
versions of all popular indices of uneven distribution. Laurie and Jaggi used a 
Schelling-style agent simulation model to produce model-generated residential pat-
terns in a virtual city.1 As is common in agent models they assessed segregation at 
very small spatial scales. For purposes of the discussion here I consider the example 
of a city with simple housing grid that is divided into small “blocks” based on 3 × 3 
square sections that contain 9 households.2 Ordinarily, segregation assessed at this 
fine-grained spatial resolution would be subject to extremely high levels of index 
bias. For example, in a city with an 80/20 White-Black group ratio the value of E[D] 
would be 37.9 and the value of E[S] would be 11.1. Laurie and Jaggi (2003) mea-
sured segregation using an index of their own construction which they termed the 
“ensemble averaged, von Neumann segregation coefficient.” They designated their 
measure as “S” but I term it “LJ” here to credit them and also to avoid confusion 
with using S to designate the separation index. Lauri and Jaggi claimed their index 
had an expected value of zero under random distribution; that is E LJ[ ] = 0 . Initially 
I was skeptical of the claim. But I examined the behavior of their index in detail and 
discovered the claim was valid; Laurie and Jaggi’s LJ index was indeed “unbiased.” 
That is, over repeated trials of randomly generated residential distributions the dis-
tribution of values for scores on the LJ index will have a mean of zero.

Intrigued by this property and its potential benefits for measuring segregation in 
agent-models, I examined the formula for their index more closely to see how it 
related to more well-known indices of uneven distribution (Fossett 2007). I found 
the formula yielded the average over all individuals of a “scaled” score on same-
group contact. For each individual the scaled score is obtained by first taking the 
difference between the observed proportion same-group among the individual’s 
neighbors from the expected proportion based on the group’s representation in the 
population and then expressing this result as a proportion of the maximum possible 
deviation under complete segregation. Putting this in notation more familiar to 
demographers and sociologists, scores for White households (agents) were given by 
p P Pi −( ) −( )/ 1  where P is proportion White in the population of agents and pi is 

1 Laurie and Jaggi (2003) is one of many recent studies using Schelling-style agent simulation 
models – computer-implemented elaborations of the influential agent model of segregation dynam-
ics first introduced in Schelling (1971).
2 Laurie and Jaggi actually used a smaller, spatially delimited “von Neumann” or “rook’s” neigh-
borhood which consists of the 4 neighboring households who share sides with a focal household in 
a housing grid. I use the 3 × 3 “bounded” neighborhood to correspond better with practices in 
sociological segregation studies. All findings I note in this discussion also apply to spatially delim-
ited neighborhoods of any spatial scale. But I defer detailed discussion of this topic for another 
time.

15.1  The Source of the Initial Insight
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proportion White for the individual’s neighbors.3 Similarly, scores for Black house-
holds (agents) were given by q Q Qi −( ) −( )/ 1  where Q is proportion Black in the 
population of agents and qi is proportion Black for the individual’s neighbors. The 
sum of these scores is then divided by T, the total number of households (agents), to 
obtain the overall average. The resulting expression (dropping subscripts for conve-
nience of presentation) is

	
LJ T p P P q Q Q= ( ) ⋅ −( ) −( ) + −( ) −( ) 1 1 1/ / / .Σ Σ

	

Interestingly, I found the separate averages for Whites and Blacks calculated as 
shown below also gave the same result. That is,

	
LJ W p P P B q Q Q= ( ) ⋅ −( ) −( ) = ( ) ⋅ −( ) −( )1 1 1 1/ / / / .Σ Σ

	

These expressions can be restated as follows

	
LJ p W P P q B Q Q= −( ) −( ) = −( ) −( )Σ Σ/ / / / .1 1

	

This expression reveals a close correspondence between LJ and Bell’s (1954) 
revised index of isolation (IR). Bell’s IR expresses a group’s average for same-group 
contact as a proportion of its possible logical range. For Whites and Blacks, respec-
tively, IR would be given as

	
I P P P andR WW= −( ) −( )/ ,1

	

	
I P Q QR BB= −( ) −( )/ 1

	

where: P W w pWW i i= ( ) ⋅ ⋅( )1 / Σ ; P B b qBB i i= ( ) ⋅ ⋅( )1 / Σ ; P W T= ( )/ ; Q B T= ( )/ ;  
W, B, and T are the city totals for the White, Black, and Total populations, respec-
tively; wi, bi, and ti, are the counts for White, Black and Total population in area i; 
and pi and qi are area proportion White and Black, respectively, based on wi/ti and 
bi/ti.

The contact expressions PWW and PBB can be restated as Σ w p Wi i⋅( ) /  and 
Σ b q Bi i⋅( ) / , respectively. If the calculations are expressed from the point of view 
of individuals, as in Lauri and Jaggi, they can be given as Σp/W and Σq/B. Thus, IR 
for Whites and Blacks will take the same form given above for LJ. Thus,

	
I p W P P andR = −( ) −( )Σ / / ,1

	

3 To clarify terms in this discussion, city-level terms are given as follows: W and B are totals for 
Whites and Blacks, respectively, T W B= + , P W T= / , and Q B T= / . For each individual, 
w and b are the number of White and Black neighbors in the relevant neighborhood, t w b= + , 
and p and q are proportion White and Black, respectively, based on p w t= /  and q b t= / .

15  New Options for Understanding and Dealing with Index Bias
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I q B Q QR = −( ) −( )Σ / / 1

	

As shown here the two measures – LJ and IR – appear to be equivalent, but there 
is an important difference between them that causes IR and LJ to exhibit fundamen-
tally different behavior. The difference in behavior is that Bell’s IR will manifest 
positive bias (i.e., E IR[ ]>0 ) while Laurie and Jaggi’s LJ will be unbiased (i.e., 
E LJ[ ]= 0 ). The difference in behavior traces to one crucial difference between the 
calculations for the two indices. It is the difference in how the values of p and q are 
calculated for LJ and IR. For Bell’s IR the calculation of contact terms follows the 
standard methodological practice in sociological segregation studies; the contact 
terms p and q are calculated using count terms for the full area population. 
Significantly, this calculation includes the focal household in the count terms that 
appear in the numerator and the denominator of the contact calculations. In contrast, 
for Laurie and Jaggi’s LJ the calculation of contact terms p and q is based on a dif-
ferent procedure; it uses count terms for the focal household’s neighbors. Thus, the 
approach Laurie and Jaggi use excludes the focal household from the count terms 
used in the calculations. To clarify, the contact scores used in calculating IR and LJ 
differ as follows.

For IR, p w t= /  and q b t= / .

For LJ, p w t′ = −( ) −( )1 1/  and q b t′ = −( ) −( )1 1/ .

I use the prime symbol to differentiate contact based on neighbors from contact 
based on area population.

Closely comparing the design and behavior of the two measures led me to draw 
several conclusions. One is that, when focusing on a two group comparison, the LJ 
index can be described as an unbiased version of IR. Another is that the only differ-
ence between the standard (biased) and unbiased versions of IR is how contact is 
calculated. Specifically, self-contact is eliminated in the unbiased LJ version and 
this is accomplished by the simple exercise of excluding the focal household from 
the count terms that appear in the numerator and denominator of the contact calcula-
tions. This revealed that bias in IR traces to a single source – the impact of incorpo-
rating self-contact into the calculation of group contact scores for individuals. It 
also revealed that bias could be eliminated by following Laurie and Jaggi’s example 
and making the simple adjustment of computing group contact for individuals based 
on count terms for neighbors instead of count terms for area population. When this 
adjustment is implemented, values of IR take an average value of zero when calcu-
lated over repeated trials for random residential distributions.

15.1  The Source of the Initial Insight



242

15.2  �Building on the Initial Insight

Based on these intriguing findings, I focused on the question of whether this mea-
surement strategy could be adapted in a general way for application with measures 
of uneven distribution. I focused first on the separation index (S) as a natural first 
choice because it is equivalent to Bell’s revised index of isolation (IR) in the special 
case where the city population consists of only two groups (James and Taeuber 
1985; Stearns and Logan 1986; White 1986).4 In light of this it is straightforward to 
describe Laurie and Jaggi’s LJ index as an unbiased version of the separation index 
(S). Thus, Laurie and Jaggi deserve credit for establishing the core strategy for 
developing an unbiased version of S.

Initially I was frustrated in applying this insight to other indices of uneven distri-
bution. The crucial insight of the strategy is to eliminate bias by eliminating the 
impact of self-contact from group contact calculations. But the best known comput-
ing formulas for indices of uneven distribution do not provide an obvious opportu-
nity for acting on this insight because they do not yield index scores as group 
differences in average contact outcomes for individuals. As one example, James and 
Taeuber (1985: 6) give the following widely used computing formula for calculating 
the value of separation index

	
S NPQ t p Pi i= ⋅ −( )1

2

/ .Σ
	

This formula is efficient for computing values of S. But it does not give the value of 
S as a group difference in average contact scores for individuals. Moreover, I found 
that implementing the pi adjustment used by Laurie and Jaggi in this formula did not 
yield an unbiased version of S with the desirable properties of the version estab-
lished by Laurie and Jaggi.

I then struck on a second key insight. It is that eliminating bias from index scores 
first requires that the index be formulated as a difference of means on residential 
outcomes scored from pairwise contact. This isolates the impact of group differ-
ences in self-contact separately by group so its role can be eliminated. This prompted 
me to search for a formulation of the separation index that (a) would highlight the 
role of average group contact outcomes for individuals and (b) could be used as a 
template for deriving similar formulations for other popular indices of uneven 
distribution.

Appendices outline a derivation I that achieved this goal by expressing the sepa-
ration index (S) as a group difference of means on contact with the reference group 
in the comparison.5 I review a generic formulation in the additional material but give 
the result here using the example of White-Black segregation with Whites being 

4 That is, one can describe the separation index (S) as a special case of Bell’s Revised Index of 
Isolation (IR) computed using only pairwise population counts.
5 Later I found a similar derivation had been reported much earlier in a little known methodological 
paper by Becker et al. (1978).
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designated as the reference group. Thus, S is the White-Black difference in average 
contact with Whites based on

	 S P PWW BW= – 	

where P W w pWW i i= ( ) ⋅ ⋅( )1 / Σ , and P B b pBW i i= ( ) ⋅ ⋅( )1 / Σ , with “W” and “B” 
designating total population for the reference group (Whites) and the comparison 
group (Blacks), respectively, wi and bi indicating area counts for the two groups, and 
p w w bi i i i= +( )/  indicating pairwise contact with the reference group for indi-
viduals residing in area “i”.

Refining the contact calculations to eliminate the role of self-contact, leads to the 
unbiased version of S given as

	 S P PWW BW
′ ′ ′= – 	

where P′WW and P′BW are contact expressions based on counts for neighbors instead 
of area population. They are obtained as follows. P W w pWW i i= ( ) ⋅ ⋅( )′1 / Σ , and 

P B b pBW i i= ( ) ⋅ ⋅( )′1 / Σ , with pi
′ being calculated from w w bi i i−( ) + −( )1 1/  for 

Whites and from w w bi i i−( ) + −( )0 1/  for Blacks.

15.3  �A More Detailed Exposition of Bias in the Separation 
Index

I now review the issue of index bias for the separation index (S) in more detail. I 
continue with the example of White-Black segregation and for simplicity consider 
a situation where the city in question is not small, consists of only Whites and 
Blacks, and is divided into areas of constant size in terms of area population (t).6 I 
start with the question of “What can be expected when households are distributed 
randomly across housing units in all areas of the city?” For any household, White or 
Black, the expected contact with Whites is assessed using counts for neighbors. 
Normally I designate this as pʹ but for the current discussion I also sometimes des-
ignate it as pN using the subscript “N” to indicate “computed for neighbors.” The 
expected value of this calculation is essentially equal to proportion White in the city 
(i.e., E P E P P W W BWW BW

′ ′  =   = = +( )/ ).7

Intuitively, this is easy to understand. When a household’s neighbors are obtained 
by a random draw from a large city population, the expected proportion Whites for 
the neighbors will be the city proportion White ( E p P′  = ). Note that the expected 

6 The assumption that the city is not small assures that an individual household has a negligible 
impact on the city-wide group proportion for the reference group (P).
7 For ease of presentation, I ignore the impact of the focal household’s contribution to P for the city 
as a whole. In most empirical applications, the impact is negligible.

15.3  A More Detailed Exposition of Bias in the Separation Index
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result is essentially the same for all households whether White or Black. More 
exactly, there is a very slight difference in expected value associated with the con-
tribution the focal household makes to the combined total of Whites and Blacks and 
how this varies with the race of the focal household. In a very small city the P and 
Q results might differ slightly by race if one calculated P′ as W W B−( ) + −( )1 1/  
for Whites and W W B−( ) + −( )0 1/  for Blacks. In larger cities this potential differ-
ence becomes negligible and I ignore it here for convenience of exposition.

The results for expected contact in local areas can be quite different when contact 
with Whites (p) is assessed using counts for area population instead of counts for 
neighbors. Expected contact with Whites (E[p]) will now reflect the weighted aver-
age of two contributions. The first contribution is the household’s contact with 
White neighbors (pN). As noted in the previous paragraph, this reflects a random 
draw of Whites and Blacks and its expected value is equal to P for both Whites and 
Blacks. The second contribution is the household’s self-contact with Whites (pS). 
The value of self-contact will be 1 for White households and 0 for Black households 
so the contribution of self-contact to contact with Whites in the area population (p) 
varies systematically by race. The relative contribution of the two components of 
contact depends on the value of area (pairwise) population size (t). Contact with 
Whites based on area population can be given by

	
p p t t p tN S= ⋅ −( ) + ⋅( )⋅1 1/ /

	

where t is area population and t − 1 is the number of neighbors a household has.
Under random distribution, the expected value of the term p t tN ⋅ −( )1 /  is the 

same for every household in the city. But the term p tS ⋅( )1 /  is systematically dif-
ferent for Whites and Blacks. Specifically, pS is 0/t for Blacks and 1/t for Whites. 
This causes the expected value of the White-Black difference in mean contact with 
Whites to differ by 1/t.

To further clarify, I examine expected contact separately by race. A White house-
hold’s expected number of White neighbors under random assignment is given by 
the household’s number of neighbors (t − 1) multiplied by expected contact with 
Whites for neighbors (pN) which as noted above is E P P W W BWW

′  = = +( )/ . 
Unsurprisingly, the White household’s expected self-contact with Whites in the area 
population (pS) is 1. As a result the expectation for White contact with Whites in the 
standard contact formulation based on area population (i.e., E[PWW]) can be given as 
follows.

	
E P E P t t tWW WW[ ]=   ⋅ −( )( ) + ⋅( )′ 1 1 0 1/ . /

	

A Black household’s expected number of White neighbors under random assign-
ment is the same as that expected for a White household. It is given by the house-
hold’s number of neighbors (t − 1) multiplied by expected contact with Whites for 
neighbors (pN) which as noted above is E P P W W BBW

′  = = +( )/ . Unsurprisingly, 
the Black household’s expected self-contact with Whites in the area population (pS) 
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is 0. As a result the expected value for Black contact with Whites in the standard 
contact formulation based on area population (i.e., E[PBW]) can be given as 
follows.

	
E P E P t t tBW BW[ ]=   ⋅ −( )( ) + ⋅( )′ 1 0 0 1/ . /

	

Because E P E P PWW BW
′ ′  =   = , it is now becomes clear that upward bias in the 

separation index (S) traces solely to role of self-contact in the group contact calcu-
lations for the standard formula for the index.

In the difference of means formulation S P PWW BW= −  (given here in pairwise P* 
contact notation) and the expected value of S is given by the expected value of its 
components. That is, E S E P E PWW BW[ ]= [ ] − [ ] . This can be evaluated as follows.

	
E S E P E PWW BW[ ]= [ ] − [ ] 	

	
E S t t E P t t t E PWW BW[ ] = −( )( ) ⋅   + ( ) ⋅  − −( )( ) ⋅  

′ ′1 1 1 0 1/ / . / ++ ( ) ⋅ 1 0 0/ .t
	

	
E S t t E P t t E P tWW BW[ ] = −( )( )⋅   − −( )( )⋅   + ( )⋅  −

′ ′[ / / /1 1 1 1 11 0/ t( )⋅  	

	
E S t t P t t P t tW W[ ] = −( )( ) ⋅ − −( )( ) ⋅  + ( ) ⋅  − ( ) ⋅1 1 1 1 1 0/ / / / ]

	

	
E S t t[ ] = ( )⋅ − ( )⋅1 1 1 0/ /

	

	
E S t[ ]=1 / 	

Note that this result is identical to the expected value for S previously established 
and reported by Winship (1977: 1064).

Now consider the expected value for the separation index when contact for indi-
viduals is assessed using counts for neighbors instead of counts for area 
population.8

	
E S E P E PWW BW

′ ′ ′  =   −   	

	
E S P P′  = −

	

	
E S′  = 0 	

8 Again, this assumes city size is sufficiently large that an individual household’s contribution to P 
is negligible.

15.3  A More Detailed Exposition of Bias in the Separation Index
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This establishes that an unbiased version of the separation index (i.e., Sʹ with 
E S ′  = 0 ) can be obtained by eliminating the role of self-contact when assessing 
each individual’s contact with the reference group.

15.4  �Situating This Result and Its Implications 
in the Difference of Means Framework

I now recast the results for S just presented in the notation of the more general dif-
ference of means framework. In that framework the standard formula for S is

	
S W w y B b yi i i i= ⋅ −( )= ( ) ⋅ ⋅( ) − ( ) ⋅ ⋅( )100 1 11 2Y Y / / .Σ Σ

	

When computing S by this formula, values of yi are set according to the index-
specific scaling function y f p= ( ) . In the case of S, the scaling function is the iden-
tity function and thus y pi i= . Accordingly, the contact formula for S White-Black 
segregation given in the preceding section

	
S P P W w p B b pWW BW i i i i= = ( ) ⋅ ( ) − ( ) ⋅ ⋅( )– / · /1 1Σ Σ

	

can be converted into the difference of means formula for S by simply substituting 
yi for pi.

I introduce the unbiased version of the separation index (Sʹ) first for two reasons. 
One is that, as mentioned earlier, it was the first index for which I was able to estab-
lish an unbiased version. The second is that the nature of bias for S is especially 
straightforward and easy to explain. But S is not a special case among indices of 
uneven distribution. The core strategy of revising the formula to remove the contri-
bution of self-contact can be applied to any index of uneven distribution that can be 
placed in the difference of means framework.

In standard index calculations group contact is assessed using area population 
counts and thus reflects the weighted average of two components. The first compo-
nent registers contact with neighbors. This expected value of this component of 
contact is the same for all individuals and groups in the comparison and so does not 
contribute to index bias. The second component registers self-contact which is fixed 
for every individual and differs systematically by group. This introduces bias by 
systematically inflating contact scores for members of the reference group and 
reducing contact scores for members of the comparison group. Eliminating the sec-
ond component from contact calculations yields unbiased group means on contact 
scores and this results in an unbiased index score.

To summarize, the following two important conclusions apply to all popular 
indices of uneven distribution – including G, D, A, R, and H – that can be place in 
the difference of means framework.

15  New Options for Understanding and Dealing with Index Bias
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•	 bias in standard index formulations traces to calculating group contact (pi) for 
households based on area population counts, and

•	 unbiased versions of the index can be obtained by calculating group contact 
based on counts for neighbors.

I now briefly review how these conclusions generalize and apply to other popular 
and widely used indices of uneven distribution.

15.4.1  �Expected Distributions of pʹ and yʹ Under Random 
Assignment

When households are randomly assigned to areas, the expected distribution of raw 
contact scores calculated using counts for neighbors (hereafter designated pi

′) will 
be the same for both Whites and Blacks. As a result, expected values for group 
means on scaled exposure (yi

′) scored based on any index-specific scaling of “raw” 
contact among neighbors (pi

′) will be the same for both Whites and Blacks (i.e., 
E Y E YW B

′ ′  =   ).

This can be established as follows. The expected distribution of values for raw 
contact with the reference group (pi

′) calculated using counts for neighbors will be 
given by the binomial probability distribution for a given number of neighbors. This 
expected distribution will be the same regardless of whether the focal household for 
this set of neighbors is White or Black. Thus, the expected distribution of pi

′ will be 
the same for Whites and Blacks. Values of contact with the reference group (pi

′) 
determine residential outcome scores (yi

′). So the expected distribution of contact 
scores (pi

′) directly determines the expected distribution of residential outcomes 
scores (yi

′). This also will be the same for Whites and Blacks. The expected distribu-
tion of residential outcomes (yi

′) determines the expected mean on scaled contact 
(Yʹ) and this also will be the same for Whites and Blacks. Because the expected 
means on scaled contact are the same for Whites and Blacks (i.e., Y YW B

′ ′= ), the 
expected group difference of means (i.e., Y YW B

′ ′= ), difference under random 
assignment is zero. This leads to the following general conclusion.

Scores for indices computed as a difference of means in scaled contact with the reference 
group calculated for neighbors (instead of area population) will be unbiased. That is, the 
expected value of index scores under random assignment will be zero (0.0).

15.5  �Reviewing a Simple Example in Detail

It is instructive to review a simple example in some detail to show how expected 
group means on residential outcomes (y) differ depending on whether an individu-
al’s contact with the reference group (p) is assessed using counts for neighbors or 
counts for area population. For purposes of illustration I consider the example of a 
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hypothetical city where the population consists of only Whites and Blacks, propor-
tion White for the city (P) is equal to 0.90, and area size (ti) is equal to 21 house-
holds.9 Table  15.1 presents the expected distributions for contact scores (p) and 
index-specific residential outcomes scores (y) for the dissimilarity index (D) and the 

9 The number of households is substantially higher than would be found in typical census blocks 
but substantially lower than would be found in typical census block groups.

Table 15.1  Calculations to obtain values of D and S for White-Black segregation from differences 
of group means on residential outcomes (y) based on contact with Whites for area population and 
among neighbors under random distribution

Count 
of 
Whites

Whites 
p 
(×100)

Blacks 
p 
(×100)

Share 
of 
Whites

Share 
of 
Blacks

Whites 
yD 
(×100)

Blacks 
yD 
(×100)

Whites 
yS 
(×100)

Blacks 
yS 
(×100)

Among neighbors
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1–11 – – – – – – – –
12 60.00 60.00 0.04 0.04 0.00 0.00 60.00 60.00
13 65.00 65.00 0.20 0.20 0.00 0.00 65.00 65.00
14 70.00 70.00 0.89 0.89 0.00 0.00 70.00 70.00
15 75.00 75.00 3.19 3.19 0.00 0.00 75.00 75.00
16 80.00 80.00 8.98 8.98 0.00 0.00 80.00 80.00
17 85.00 85.00 19.01 19.01 0.00 0.00 85.00 85.00
18 90.00 90.00 28.52 28.52 100.00 100.00 90.00 90.00
19 95.00 95.00 27.02 27.02 100.00 100.00 95.00 95.00
20 100.00 100.00 12.16 12.16 100.00 100.00 100.00 100.00
Sum 
or 
mean

100.00 100.00 67.69 67.69 90.00 90.00

For area population
0 N/A 0.00 0.00 0.00 N/A 0.00 N/A 0.00

1–11 – – – – – – – –
12 57.14 57.14 0.01 0.04 0.00 0.00 57.14 57.14
13 61.90 61.90 0.04 0.20 0.00 0.00 61.90 61.90
14 66.67 66.67 0.20 0.89 0.00 0.00 66.67 66.67
15 71.43 71.43 0.89 3.19 0.00 0.00 71.43 71.43
16 76.19 76.19 3.19 8.98 0.00 0.00 76.19 76.19
17 80.95 80.95 8.98 19.01 0.00 0.00 80.95 80.95
18 85.71 85.71 19.01 28.52 0.00 0.00 85.71 85.71
19 90.48 90.48 28.52 27.02 100.00 100.00 90.48 90.48
20 95.24 95.24 27.02 12.16 100.00 100.00 95.24 95.24
21 100.00 N/A 12.16 N/A 100.00 N/A 100.00 N/A
Sum 
or 
mean

100.00 100.00 67.69 39.17 90.48 85.71

Notes: “N/A” indicates the combination does not occur. “–” indicates outcomes are omitted 
because their frequency is negligible
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separation index (S) under random residential distributions based on a binomial 
probability model. Table 15.2 presents similar results for the Hutchens square root 
index (R) and the Theil entropy-based index (H). The first panel in each table gives 
the results when households’ contact with Whites is assessed using counts for neigh-
bors. The second panel in each table gives the parallel results when households’ 

Table 15.2  Calculations to obtain values of R and H for White-Black segregation from differences 
of group means on residential outcomes based on contact with Whites for area population and 
among neighbors under random distribution

Count 
of 
Whites

Whites 
p 
(×100)

Blacks 
p 
(×100)

Share 
of 
Whites

Share 
of 
Blacks

Whites 
yR 
(×100)

Blacks 
yR 
(×100)

Whites 
yH 
(×100)

Blacks 
yH 
(×100)

Among neighbors
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1–11 – – – – – – – –
12 60.00 60.00 0.04 0.04 28.99 28.99 42.11 42.11
13 65.00 65.00 0.20 0.20 31.24 31.24 45.70 45.70
14 70.00 70.00 0.89 0.89 33.74 33.74 49.56 49.56
15 75.00 75.00 3.19 3.19 36.60 36.60 53.79 53.79
16 80.00 80.00 8.98 8.98 40.00 40.00 58.54 58.54
17 85.00 85.00 19.01 19.01 44.24 44.24 64.06 64.06
18 90.00 90.00 28.52 28.52 50.00 50.00 70.83 70.83
19 95.00 95.00 27.02 27.02 59.23 59.23 80.08 80.08
20 100.00 100.00 12.16 12.16 100.00 100.00 100.00 100.00
Sum 
or 
mean

100.00 100.00 55.96 55.96 73.69 73.69

For area population
0 N/A 0.00 0.00 0.00 N/A 0.00 N/A 0.00

1–11 – – – – – – – –
12 57.14 57.14 0.01 0.04 27.79 27.79 40.15 40.15
13 61.90 61.90 0.04 0.20 29.82 29.82 43.45 43.45
14 66.67 66.67 0.20 0.89 32.04 32.04 46.95 46.95
15 71.43 71.43 0.89 3.19 34.51 34.51 50.73 50.73
16 76.19 76.19 3.19 8.98 37.35 37.35 54.87 54.87
17 80.95 80.95 8.98 19.01 40.73 40.73 59.52 59.52
18 85.71 85.71 19.01 28.52 44.95 44.95 64.93 64.93
19 90.48 90.48 28.52 27.02 50.68 50.68 71.57 71.57
20 95.24 95.24 27.02 12.16 59.85 59.85 80.63 80.63
21 100.00 N/A 12.16 N/A 100.00 N/A 100.00 N/A
Sum 
or 
mean

100.00 100.00 56.56 46.34 74.35 66.04

Notes: “N/A” indicates the combination does not occur. “–” indicates outcomes are omitted 
because their frequency is negligible
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contact with Whites is assessed using counts for area population in the standard 
way.

I first review the results in Table 15.1. The first column in the first panel of the 
table lists the possible counts for Whites among neighbors. The areas in the example 
have 21 total households so every household has exactly 20 neighbors, a situation 
that would be common when measuring segregation using block-level data. Except 
for the outcome of 0, which warrants separate comment, the outcomes for counts of 
White neighbors below 12 are omitted from the listing because their occurrence 
under random distribution is quantitatively negligible. The values of proportion 
White among neighbors (p′) is given separately for Whites and Blacks in the next 
two columns. Note that proportion White among neighbors is the same for both 
Whites and Blacks under all possible combinations. The share – that is, the propor-
tion – of households in the group expected to experience each of the possible levels 
of contact under random distribution is given separately for Whites and Blacks in 
the next two columns. Note that group shares at every outcome are the same for both 
White and Black households. Scores of residential outcomes y′ scored from p′ using 
in computing the dissimilarity index (D) under the difference of means calculation 
approach are reported separately for Whites and Blacks in the next two columns. 
Scores of residential outcomes (y′) relevant for computing the separation index (S) 
are reported separately for Whites and Blacks in the last two columns. The results 
for the expected group means on index-specific residential outcomes are given in 
the bottom row of the panel. These are obtained by summing the products of group 
shares and residential outcomes scores (y′).

Table 15.2 continues the exercise and has the same structure as Table 15.1. The 
only difference is that it provides information on the residential outcomes (y′) that are 
used in computing the Hutchens square root index (R) and the Theil entropy index (H). 

The results for the analysis in the first panels in Tables 15.1 and 15.2 are easy to 
summarize. For all four indices – D, S, R, and H, Whites and Blacks both experi-
ence all possible outcomes on p′ and both groups identical expected distributions 
across possible outcomes on number of White neighbors. Accordingly, they have 
identical expected values for the means on the unbiased version of the residential 
outcome scores (y′) that determine each segregation index score. Consequently, the 
expected values of Dʹ, Sʹ, Rʹ, and Hʹ all are zero (0.0). For example, proportion 
White among neighbors equals the city-wide proportion (0.90) when the count of 
White neighbors is 18, 19, or 20. Residential outcomes (y′) relevant for calculating 
D are scored 1.0  in these cases and 0.0  in all other cases. Column 4 shows that 
67.69 % of Whites experience this residential outcome. Column 5 shows that the 
same is true for Blacks. Accordingly, the expected mean for the 0–1 scoring of y 
scored for D is 0.6769 for both Whites and Blacks (values shown in the final row of 
columns 6 and 7). This result shows that Whites and Blacks are equally likely to 
reside in areas where their contact with White neighbors equals or exceeds the pro-
portion White in the city as a whole. As a result, the expected value of D′ is 0.0 (i.e., 
E D E Y E YW B

′ ′ ′  =   −  ( ) = −( )0 6769 0 6769. . ).
The group means reported in columns 8 and 9 show that Whites and Blacks 

also experience identical average levels of contact with Whites neighbors; spe-
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cifically, on average 90.0 % of their neighbors are White, a level of contact match-
ing the representation of Whites in the city population overall. So the expected 
value of S′ also is 0.0 (i.e., D S E Y E YW B

′ ′ ′  =   −  ( ) = −( )0 9000 0 9000. . ). 
Similar results are seen when residential outcomes are scored as relevant  
for computing the Hutchens square root index (R′) (i.e., 
E R E Y E YW B

′ ′ ′  = =   −  ( ) = −( )0 0 0 5596 0 5596. . . ) and the Theil entropy 

index (H′) (i.e., E H E Y E YW B
′ ′ ′  = =   −  ( ) = −( )0 0 0 7369 0 7369. . . ).

These results are easy to summarize. When neighbors are a random draw, Whites 
and Blacks have identical probability distributions for experiencing different levels 
of unbiased contact with White neighbors (p′). It then follows that Whites and 
Blacks also have identical group means on residential outcomes (y′) scored from 
unbiased contact with White neighbors (pʹ).

I now review the results in the second panel of Tables 15.1 and 15.2 where con-
tact with Whites is computed in the standard way based on counts for area popula-
tion. The results here play out much differently. The key change producing the 
differences is that counts in the numerator and denominator of the calculation of 
proportion White (p) now include the focal household. Accordingly, the value for a 
household’s contact with Whites (p) based on area population reflect a weighted 
average of the household’s contact with Whites for neighbors (p′) and the house-
hold’s self-contact with Whites designated here by pS which is 1 1 1= ( )/  for White 
households and 0 0 1= ( )/  for Black households. The relevant expression is

	
p p pS= ⋅( ) + ⋅( )′ 20 21 1 21/ /

	

The distribution of values for contact with Whites among neighbors (p′) remains the 
same as before. This means that all changes in contact with Whites in the lower 
panel trace to the impact of self-contact with Whites (pS) which is systematically 
different for Whites and Blacks.

To see the implications it is useful to consider how the results change for a house-
hold with 18 White neighbors, the case that in this example has important implica-
tions for the expected value of the dissimilarity index. For both White and Black 
households who have 18 White neighbors the value of contact with Whites among 
neighbors (p′) is 0.90 and results in a value of y ′ =1  when residential outcomes (y′) 
are scores as relevant for the dissimilarity index (D). The results change when con-
tact with Whites is based on area population (p). For a White household the value of 
contact with Whites based on area population (p) is given by

	

p p pS= ⋅( ) + ⋅( )
= ⋅( )⋅( ) + ( )⋅( )⋅

=

′ 20 21 1 21

18 20 20 21 1 1 1 21

0 90

/ /

/ / / /

. ⋅⋅( ) +
= +

=

0 9524 0 0476

0 8571 0 0476

0 9048

. .

. .

. . 	
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For a Black household the value of p is given by

	

p p pS= ⋅( ) + ⋅( )
= ( )⋅( ) + ( )⋅( )⋅

=

′ 20 21 1 21

18 20 20 21 0 1 1 21

0 952

/ /

/ / / /

. 44 0 90 0 0

0 8571 0 0

0 8571

⋅( ) +
= +
=

. .

. .

. . 	

The White and Black households have identical contact with Whites among neigh-
bors and accordingly in the upper panel are scored identically on the residential 
outcome ( y ′ =1 ) relevant for computing Dʹ. But in the lower panel the residential 
outcome (y) relevant for computing D is scored 1 for the White household – based 
on 0 9048 0 90. .≥  – and 0 for the Black household – based on 0 8571 0 90. .< .

The expected proportion of households that have 18 White neighbors is 0.2852 
for both Whites and Blacks. The difference in how these households are scored on 
scaled contact with Whites in the upper and lower panels contributes to determining 
the level of bias in D. Whites are scored the same in both the upper and lower pan-
els; y y′ = =1 . But Blacks are scored differently in the upper and lower panels; 
y ′ =1  in the upper panel and y= 0  in the lower panel. This difference reduces the 
expected Black mean on scaled contact with Whites from E YB

′  = 0 6769.  based 
on neighbors in the upper panel to E YB[ ] = 0 3917.  based on area population in the 
lower panel. In contrast, the expected White mean on scaled contact with Whites is 
the same  – E Y E YW W

′  = [ ] = 0 6769.   – under both calculations. Thus, the  
expected value of D changes from 0.0 when contact with Whites (p′) is  
based on neighbors ( E D E Y E YW B

′ ′ ′  = − = − =( ] ( ] . . .0 6769 0 6769 0 0 ) to  
0.2852 when contact with Whites (p) is based on area population 
( E D E Y E YW B[ ] = − = − =( ] ( ] . . .0 6769 0 3917 0 2852 ).

Scaling to 100  in keeping with convention, the “bias” in the standard  
version of the index of dissimilarity (D) under random distribution is  
28.52. The parallel calculations for the separation index (S) 
( E S E Y E YW B[ ] = − = − =( ] ( ] . . .0 9048 0 8571 0 0477 ) indicate that bias in the stan-
dard version is 4.77. The interested reader can confirm that these values for E[D] 
and E[S] are equal to values of E[D] and E[S] obtained using analytic formulas 
given in Winship (1977).

This example reveals in detail how bias enters into the picture and distorts scores 
for standard versions of indices of uneven distribution. The example also documents 
how the simple refinement of assessing group contact based on neighbors instead of 
area population eliminates index bias for all indices of uneven distribution that can 
be placed in the differences of means formulation. The basis for this welcome result 
is easy to summarize. When self-contact is eliminated from that calculation, the two 
groups in the comparison will have identical expected distributions for the number 
of neighbors from the reference group and the number of neighbors from the com-
parison group. It then follows that expected group means on residential outcomes 
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(y′) scored of the distribution of unbiased contact values (p′) will be identical for 
both groups.

15.5.1  �Additional Reflections on Results Presented 
in Tables 15.1 and 15.2

The analysis presented in Tables 15.1 and 15.2 clarifies how index bias originates in 
the role of self-contact. The results provide an intuitive basis for understanding why 
bias is greater when effective area size (ENS) is small. It is because self-contact will 
have a bigger impact on assessments of an individual’s contact with the reference 
group when area counts are small as they are in this example. If the same exercise 
were repeated with area population size set to 5,001 instead of 21, the resulting 
magnitude of index bias would be much smaller. Alternatively, if the exercise were 
repeated with area counts of 9 (equivalent to a “Queen’s” neighborhood of eight 
adjacent neighbors plus the focal household), the magnitude of index bias would be 
even larger.

Reflecting on the difference between unbiased contact (p′) and standard contact 
(p) also yields additional insight into why the expected level of bias varies from 
index to index. The role of self-contact in standard calculations of contact is to shift 
the distribution of values of p up for the reference group and down for the compari-
son group. These shifts in p are then translated into impacts on scaled contact (y) 
based on the index-specific scaling function y f p= ( ) . I established earlier that the 
scaling functions for G, D, R, and H are nonlinear. The nonlinearity has implica-
tions for bias. Specifically, bias at the level of group differences on raw contact (p) 
will translate into larger group differences in scaled contact (y) when the scaling 
function is nonlinear and the magnitude of bias is greater when the scaling function 
is more strongly nonlinear. This provides a succinct explanation for why levels of 
bias are higher for G and D compared to R and H and why the level of bias is lowest 
for S. The scaling function y f p= ( )  for S is linear; so bias impacting the value of p 
is carried forward unchanged. The scaling functions for G and D depart from linear-
ity the most; so bias impacting p is “amplified” to a greater degree when values of y 
are assigned for these indices. The scaling functions for R and H involve milder 
nonlinearity; so, while bias impacting p also is amplified when values of y are 
assigned, the resulting distortion is not as dramatic.

Finally, this also provides an explanation for why bias in S does not vary with 
group size, but bias in the other measures, and especially in G and D, does vary with 
group size. The reason is that the nonlinear scaling functions for G and D measures 
become more strongly nonlinear when groups are unequal in size. This means that 
the role of nonlinearity in exaggerating group differences in y scored from p is mag-
nified for these measures when groups are more imbalanced in size.
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15.6  �Summary

This chapter reviews how the difference of means formulation of indices of uneven 
distribution leads to new insights about the nature of index bias and makes it pos-
sible to address index bias at the point of measurement. The insight is that, when 
segregation is cast as group differences in means on scaled group contact, bias can 
be traced to a relatively simple source; namely, the role of self-contact which inher-
ently and unsurprisingly differs by race. Eliminating self-contact from index calcu-
lations by assessing group contact based on neighbors instead of area population 
eliminates this inherent source of bias in index scores. The chapter shows that 
resulting “unbiased” versions of unbiased indices are attractive for many reasons. 
They are attractive on formal grounds because analysis based on binomial probabil-
ity models shows that they have expected values of zero under random assignment. 
They are attractive because the index refinements are easy to explain; for any indi-
vidual group contact can be a random draw when computed using neighbors but it 
is always inherently biased when computed using area population that includes the 
individual. Finally, the unbiased versions of indices introduced here are attractive 
because they allow researchers to use familiar indices and apply familiar substantive 
interpretations as well as new interpretations.

The next chapter presents evidence on another aspect of the unbiased versions of 
indices of uneven distribution introduced here; their behavior over varying circum-
stances of study design. It uses simulation methodology to generated residential 
distributions over a wide range of circumstances and shows that the unbiased ver-
sions of popular indices introduced in this chapter behave as desired in circum-
stances where bias renders scores for standard versions of the indices untrustworthy 
and potentially misleading. It also shows that unbiased indices are attractive because 
they near-exactly replicate the behavior of standard versions of indices in situations 
where bias is negligible and they yield clearly superior assessments of segregation 
in situations where the impact of bias on standard versions of indices is 
non-negligible.
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