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�Appendix A: Summary of Notation and Conventions

This appendix reviews the notation and conventions for terms used in this mono-
graph. Where appropriate it provides commentary to clarify usage by context.

�Pairwise Calculations

In standard applications, indices of uneven distribution are based on pairwise popula-
tion counts and group proportions. The adjective “pairwise” indicates that calcula-
tions use only population counts for the two groups in the segregation comparison. If 
other groups are present in the population, their counts are excluded and have no 
impact on index scores. Accordingly, unless indicated by direct statement or by obvi-
ous context, references here to total counts and terms based on total counts (e.g., 
group proportions) should be taken as being based on pairwise comparisons; that is, 
based on the sum of the population counts for just the two groups in the comparison.

�Reference and Comparison Groups (Groups 1 and 2)

When index scores are calculated using the difference of means formulation intro-
duced in this monograph it is necessary to designate one of the two groups in the 
segregation comparison as the “reference” or “focal” group. The second group is 
then designated the “comparison” group. The choice of which group is designated 
as the “reference” is arbitrary and it has no impact on the resulting index scores. The 
choice is necessary to organize calculations and facilitate presentation. For sub-
scripting purposes it is convenient to designate the reference group as “Group 1” 
and the comparison group as “Group 2”.
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The empirical literature on residential segregation in US urban areas overwhelm-
ingly focuses on majority-minority segregation comparisons such as White-Black, 
White-Latino, and White-Asian comparisons. Based on substantive concerns 
regarding majority-minority inequality and assimilation, it is customary to assess 
residential distributions for different minority groups – e.g., Blacks, Latinos, and 
Asians – in relation to the residential distribution of the majority group – Whites. I 
follow this custom and thus designate the majority group – Whites – as the reference 
group.

This has no consequence for index scores or for their substantive implications. 
But it does structure discussion and interpretation of results to focus on implications 
for majority-minority inequality and residential assimilation.

�City-Wide Terms for Pairwise Calculations

N1 =  the city-wide population count for Group 1, the “reference” or “focal” group.
N2 =  the city-wide population count for Group 2, the “comparison” group.

T =  the combined city-wide pairwise population count ( T N N= +1 2 ).
P =  the city-wide proportion for Group 1 ( P N N N= +1 1 2[ ] ).

Q =  the city-wide proportion for Group 2 (Q N N N= +2 1 2[ ] ; Q P= −1 ).

�Area-Specific Terms for Pairwise Calculations

i =  index for the areas of the city; applied where appropriate, omitted to reduce 
clutter when unnecessary (e.g., when clear based on context).

j =  a second index for the areas of the city used in formulas where one area (denoted 
by i) is compared to other areas (denoted by j).

n1 =  the area population count for Group 1, the reference group.
n2 =  the area population count for Group 2, the comparison group.
t =  the combined area pairwise count ( t n n= +1 2 ).

p =  the area proportion for Group 1 ( p n n n= +1 1 2[ ] ).

q =  the area proportion for Group 2 ( q n n n= +2 1 2[ ] ; q p= −1 ).

s1 =  the area share of the city-wide Group 1 population ( s n N1 1 1= ).

s2 =  the area share of the city-wide Group 2 population ( s n N2 2 2= ).

�Terms for Individuals or Households

k =  an index for individuals in a group or, depending on context, in the city-wide 
population.
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m =  an index similar to k for individuals in a group or in the city-wide population. 
This is relevant for some formulas for the Gini Index (G) where individuals 
indexed by k are compared to all other individuals in the population indexed 
by m.

�Selected Terms and Conventions Relevant for the Gini Index (G)

Xi =  cumulative proportion of Group 1 based on ordering areas from low to high 
on pi and then summing area group share terms (X si = Σ 1  over relevant areas).

Yi =  cumulative proportion of Group 2 based on ordering areas from low to high 
on pi and then summing area group share terms (Y si = Σ 2  over relevant areas).

�Selected Terms and Conventions Relevant for the Theil Entropy 
Index (H)

The original derivation of the Theil index is grounded in an information theory 
framework (Shannon 1948; Theil and Finizza 1971; Theil 1972) drawing on a 
notion of entropy (E) quantified as given below.

E =  entropy for the city overall given by E P Log P Q Log Q= ⋅ ( )+ ⋅ ( )2 21 1 .

Ei =  entropy for area i given by E p Log p q Log qi i i i i= ⋅ ( )+ ⋅ ( )2 21 1 .

Note that Log2 denotes the base 2 logarithm. Many applications use natural loga-
rithms in place of base 2 logarithms.

�Selected Terms and Conventions Relevant for the Atkinson 
Index (A)

Formulas for the Atkinson index (A) include two constants – α and β. Values for α 
are restricted to fall between 0 and 1 exclusive of end points (i.e., 0 1< <α ). β is 
obtained by 1−α . The Atkinson index is symmetric when α is 0.5 and is asymmet-
ric otherwise. When A is asymmetric it yields different index values depending on 
which of the two groups in the comparison is adopted as the reference group in the 
comparison. This leads some to view asymmetric versions of A as unacceptable for 
use as a general measure of segregation (White 1986). I agree with this view. 
Accordingly, discussion of the Atkinson index in this monograph is limited to the 
symmetric version where α β= =0 5. . This version of the Atkinson index has close 
relations with the Hutchens square root index (R) which is more tractable 
mathematically.
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�Appendix B: Formulating Indices of Uneven Distribution 
as Overall Averages of Individual-Level Residential Outcomes

This appendix chapter reviews alternative formulations of indices of uneven distri-
bution to clarify how aggregate segregation is related to individual residential out-
comes. This is useful for at least two inter-related reasons; one substantive and one 
methodological. The substantive reason is that sociological interest in segregation 
usually rests on the assumption that it has important implications for individual life 
chances associated with area of residence. Based on this concern, it would be useful 
to better understand how indices of uneven distribution register individual residen-
tial outcomes. The methodological reason is that formulating indices of uneven dis-
tribution in terms of individual residential outcomes is a necessary step for clarifying 
how segregation emerges from individual-level residential attainment processes.

The view that segregation emerges from micro-level attainment processes and 
carries important implications for group differences in residential outcomes is 
hardly new or controversial. In light of this it is surprising that methodological dis-
cussions of indices of uneven distribution give little attention to this issue. For 
example, consider two familiar formulas for the widely used Gini Index (G) and the 
Delta or Dissimilarity Index (D) shown in Fig. B.1.1 These formulas were featured 
five decades ago in Duncan and Duncan’s (1955) landmark methodological study. 
These formulas and close variations on them are widely used in empirical studies in 
part because they are computationally efficient and are easy to implement. However, 
Duncan and Duncan raised the concern that “[i]n none of the literature on segrega-
tion indices is there a suggestion of how to use them to study the process of segrega-
tion” (1955:216, emphasis in original). The reason for this is that the formulas given 
in Fig. B.1 provide little basis for understanding how segregation is connected to the 
residential outcomes of individuals. Indeed, individual-level residential outcomes 
are “invisible” in these formulas.

Advances in computing technology have rendered the issue of computing effi-
ciency mostly irrelevant. Yet it is still typical for the measurement of segregation 
using G, D, and other indices to be discussed in relation to convenient computing 
formulas. It is fine to use efficient computing formulas for the narrow purpose of 
obtaining index values. But researchers and broad audiences who gain their under-
standing of segregation based solely on these formulas will have, at best, only vague 
notions regarding how segregation arises from micro-level attainment processes. 
This problem can be addressed by considering alternative formulations of popular 
segregation indices that clarify how index scores are connected to individual resi-
dential outcomes.

1 Figure B.1 also includes a similar style formula for the more recently introduced Hutchens square 
root index (R) (2001).
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�Focusing Attention on Individual-Level Residential Outcomes

All widely used indices of uneven distribution can be formulated in terms of 
individual-level residential outcomes (y) that are scored from area group (e.g., 
racial) proportions (p). This can be done in two distinct ways. One is to formulate 
index scores as simple overall averages of individual-level residential outcomes (y). 
The other is to formulate index scores as a difference of group means on individual-
level residential outcomes (y). Both approaches can be used to obtain “correct” 
index values. But that is a minor benefit as convenient formulas for obtaining cor-
rect index values are readily available. The main benefit of these formulations is that 
they can be used to gain insight into how different indices register and summarize 
individual residential outcomes. In addition, formulating indices in terms of indi-
vidual attainments brings certain practical advantages which I note below.

Figure B.2 presents computing formulas that highlight how individual-level resi-
dential outcomes are registered by six popular measures of uneven distribution – the 
Gini Index (G), the Delta or Dissimilarity Index (D), the Atkinson Index (A), the 
Hutchens Square Root Index (R), the Theil Entropy index (H), and the Separation 
Index (S) (also known as the variance ratio [V], and eta squared [η2]). The calcula-
tions indicated in these formulas involve first computing area-specific scores (i.e., 
neighborhoods) based on pairwise group proportions and then averaging these 
scores over individuals. More specifically, the formulas have the following 
features:

•	 the core terms in the calculations are scores computed for areas (indexed here by 
“i”) based on calculations involving area group proportions; that is involving the 
values of pi and qi as given in Appendix A,

•	 the area-specific scores are summed over all individuals based on weighting the 
score for each area by the area-specific combined population count (t) for the two 
groups in the segregation comparison,

•	 the population-weighted sum of area-specific scores is then divided by the com-
bined population of the two groups for the city (T) to obtain an overall average, 
and

Fig. B.1  Area-based computing formulas for indices of uneven distribution that do not draw on 
individual-level residential outcomes (Note: N denotes city-wide population count, n denotes area 
population count, subscripts 1 and 2 denote the two groups in the segregation comparison, sub-
script i denotes area, Xi and Yi denote the cumulative proportions of groups 1 and 2 over areas 
ranked from low to high on pi – the group 1 (reference group) proportion in the combined group 
population in area i (pi = n1i/[n1i + n2i]))
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•	 any other terms present in the formula serve only to rescale the resulting overall 
average to the range 0–1.

Based on these features, it is appropriate to describe the resulting index value as an 
overall individual-level average on area-specific residential outcomes scored from 
area group composition (p).

Figure B.3 reorganizes the expressions in Fig. B.2 to present them in a form that 
explicitly casts each index in terms of an index-specific, individual-level residential 
outcome (y) that is averaged over all individuals in the two groups in the compari-
son. The formulas in this figure are not necessarily the most convenient for comput-
ing index scores. But they make it clear that aggregate segregation index scores can 
be understood as simple summary measures (i.e., means) for individual residential 
outcomes.

The individual level residential outcomes (y) identified in Fig. B.3 can be char-
acterized as follows: the outcomes register the degree to which the group proportion 
for the area (pi) departs from the group proportion for the city as a whole. The spe-
cific way in which this departure is quantified varies from one index to another and 
that becomes the basis for each one’s unique way of registering uneven distribution. 

Fig. B.2  Area-based computing formulas for indices of uneven distribution that implicitly feature 
averages for individual-level residential outcomes
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But all of the indices can be understood as registering average exposure to depar-
tures from the group mix that would obtain under even distribution. If all neighbor-
hoods have the group mix of the city as a whole, all of the values of y will be 0 and 
the final index value also will be 0. If members of the two groups never reside in the 
same areas, the values of y move to the extreme values that can apply to individuals 
residing in neighborhoods where pi is 1 or 0 and the sum of y goes to the maximum 
value possible for the city given its group composition. The resulting sum is then 
rescaled to yield an index value of 1 by incorporating index-specific constant terms 
(e.g., 2PQ for D).

Options for Spatial Versions of Indices of Uneven Distribution

These index formulations carry at least one practical benefit; they can be used to 
calculate spatial segregation scores as well as aspatial segregation scores for any of 
the indices. That is,

Formulas that cast segregation index values as overall averages on individual-level 
residential outcomes can readily be adapted for computing spatial as well as 
aspatial versions of the segregation indices.

Aspatial versions of segregation indices are familiar and widely used in empirical 
studies. They are obtained by applying the computing formulas introduced here, or 

Fig. B.3  Alternative formulas for uneven distribution that explicitly cast indices as overall aver-
ages of residential outcomes (y) for individuals (Note: k and m index individuals, pk denotes the 
pairwise area proportion for the reference group (pi) for the k’th individual, pm denotes area propor-
tion for the reference group (pi) for the m’th individual)
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any of the formulas introduced earlier, using data for non-overlapping “bounded” 
areas such as school districts, census tracts, block groups, or blocks. In the aspatial 
formulation, each bounded area represents a particular neighborhood and every 
individual or household in the area is treated as having the residential outcome cal-
culated for this area.

When index values are cast as overall averages of individual-level residential 
outcomes as in Fig. B.3, the indices also can be implemented in spatial measures. 
This is accomplished by computing averages for individual residential outcomes (y) 
that scored for “overlapping” spatially-defined neighborhoods that are specified 
uniquely for each individual based on the population residing within a spatially 
defined neighborhood. For example, the spatial formulation could be implemented 
using census data by taking small bounded areas such as census blocks and defining 
the spatial neighborhood as the population residing in the “focal” block plus the 
surrounding adjacent blocks. In this approach the population in any particular block 
will be part of uniquely-defined, spatially-delimited neighborhood.

When using these formulas, the question of whether the index is viewed as aspa-
tial or spatial depends only on how “neighborhoods” are conceived. This can be 
stated in general terms as follows. Whether or not the index values obtained using 
these formulas are properly described as spatial or aspatial is determined by the 
definitions of the neighborhoods used to calculate the individual-level residential 
outcomes used in the relevant index calculations. If the residential outcomes are for 
non-overlapping bounded areas, the index values are aspatial. If the residential out-
comes are for individual-specific, overlapping neighborhoods, then the index values 
are spatial.

�Summary of Difference of Means Formulations

I now review a second way in which indices of uneven distribution can be formu-
lated in terms of individual-level residential outcomes. This is to cast each index as 
a difference of group means on individual-level residential outcomes. Groups are 
designated as groups 1 and 2 with group 1 being taken as the reference group.2 Each 
segregation index value (S) is then given as the difference of group means (Y Y1 2− ) 
on individual residential outcomes (y) that are scored as a function of the pairwise 
proportion for group 1 in the area in which the individual resides (i.e., y f p= ( ) ).

Figure B.4 gives formulas for calculating values of popular segregation indices 
in this manner. My intent here is only to introduce formulas that place popular indi-
ces of uneven distribution in the general “difference of group means” framework. 
Appendices C-F provide detailed discussions of the mathematical basis for the for-
mulas given here. The body of the monograph provides a more general discussion 
of this new measurement approach and the benefits associated with adopting it.

2 The choice of which group serves as the reference is arbitrary in the sense that the index score 
obtained is the same either way.
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For the moment I note that the approach is attractive on conceptual grounds 
because these formulas clarify that segregation indices measure whether groups to 
experience similar or different averages on specific residential outcomes. 
Additionally, the formulas reveal that differences between indices arise from a sin-
gle source; the specific nature of the scaling function y f p= ( )  that scores residen-
tial outcomes (y) from values of area group proportion (p). Area group proportion 
(p) reflects simple group contact or exposure in its original or “natural” metric. The 
scoring function y f p= ( )  rescales group contact and maps it onto an alternative 
scaling metric for residential outcomes (y) specific to the index in question. From 
this perspective all popular indices of uneven distribution register group differences 
of means on “scaled” pairwise group contact.

�Appendix C: Establishing the Scaling Functions y =f p( )  
Needed to Cast the Gini Index (G) and the Dissimilarity Index 
(D) as Differences of Group Means on Scaled Pairwise 
Contact

This is the first of several appendix chapters which establish how popular indices of 
uneven distribution can be placed in the “difference of group means” framework. 
The feature of this framework is that the values of each index are obtained as a 
simple difference of group means on individual residential outcomes (y) that are 
scored from to 0 to 1 based on area group proportion (p) computed from pairwise 
population counts. Taking the familiar example of White-Black segregation, area 

Fig. B.4  Formulas casting indices of uneven distribution (S) as group differences of means 

(Y Y1 2− ) on individual residential outcomes (y) (Note: pi denotes the pairwise area proportion for 
the reference group (pi) in the area where individual i resides and yi is the residential outcome score 
generated by the index-specific scoring function f(pi))
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group proportion (p) can be set to proportion White of the combined White and 
Black population in the area; that is, p w w b= +( )  where w and b are the counts of 
Whites and Blacks, respectively, in the area.3 Residential outcome scores (y) are 
then obtained from an index-specific scaling function y f p= ( )  that takes values of 
p that range from 0 to 1 and rescales them to new values that also range from 0 to 1. 
The segregation index score is then obtained from the difference (Y YW B− ) where 
YW and YB are the group means for Whites and Blacks, respectively, on residential 
outcomes (y).

For individuals, p registers simple pairwise “contact” or “exposure” to the refer-
ence group based on residing in a given area. In the example under consideration the 
reference group is Whites and p thus registers “contact with” or “exposure to” 
Whites. The residential outcome score (y) can be described as “scaled pairwise 
contact” or “scaled pairwise exposure”. Accordingly, the segregation index score 
can be described as a difference of group means on scaled contact; in the example 
under consideration, it is the White-Black difference in average scaled contact with 
Whites.

�The General Task

The key to placing a particular index of uneven distribution in the difference of 
means framework is to identify a scaling function y f p= ( )  that accomplishes the 
goal of scoring residential outcomes (y) from area group proportions (p) such that 
the scores for y fall over the range 0–1 and yield the value of the index of interest as 
a difference of means on y for the two groups in the segregation comparison. I have 
identified scaling functions meeting these criteria for all popular indices of uneven 
distribution including: the gini index (G), the delta or dissimilarity index (D), the 
Hutchens square root index (R), the Theil entropy index (H) and the separation 
index (S). Placing these various indices in the difference of means framework gives 
them a common basis for interpretation and a specific basis for comparison. The 
common basis for interpretation is that all indices measure White-Black differences 
in average scaled contact with Whites. The specific basis for comparison is that the 
differences between index scores arise solely from differences in how index-specific 
scaling functions y f p= ( )  map values of pairwise contact from its original or “natu-
ral” metric based on area group proportion (p) onto values of residential outcomes 
(y).

The main task of this appendix chapter and the ones that follow it is to establish 
the particular scaling function y f p= ( )  that will yield the value of the index in ques-
tion. The general way task is to start with a generic expression of the difference of 
means formulation.

3 Alternatively, p can be set to area proportion Black. The choice is arbitrary as the index score is 
the same either way.
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Differenceof MeansFormula Y Y W w y B b yW B i i i i= −( ) = ( ) ⋅ −( ) ⋅1 1Σ Σ

	

Then equate this formula to a standard formula for the index of interest and then 
manipulate the full expression to obtain a solution for y. In this appendix chapter 
and the ones that follow it I review steps that accomplish this task and establish a 
basis for an index specific scaling function y f p= ( )  relevant for G, D, R, H, and S.

I expect that many readers will not be especially interested in the derivations of 
the relevant scaling functions. With this in mind, I presented only the final formulas 
in the main body of this monograph and in the overview discussion just provided in 
Appendix B. Readers who are not interested in the details of these derivations can 
rely on these earlier presentations and skip the remainder of this chapter and the 
additional appendix chapters that follow. For those who elect to slog through the 
technical details, I thank you in advance for your patience and forbearance. I claim 
only that the derivations accomplish what is needed and apologize for the fact that 
they are tedious and inelegant.

�Introducing the Function y = f p( )  for the Gini Index (G)

For the Gini Index (G) the relevant scaling function y f p= ( )  is relatively simple; it 
is the quantile (percentile) or relative rank transformation.

y=  quantile(p), or, more exactly
y quantile p= ⋅ ( )2 .

Under this scaling approach, households are assigned values on residential out-
comes (y) based on the population-weighted relative rank position of their area of 
residence on area group proportion (p); more specifically, the quantile score on p for 
individuals.

I review the quantile scaling function in more detail below. For the moment 
I note briefly that the scaling function y f p= ( )  for G is a continuous, monotonic, 
nonlinear transformation of p that changes p from its original or “natural” metric to 
a new scaling metric. The nonlinear transformation produces a curve that tends to 
rise faster when p is low and when p is high and tends to rise more slowly when p is 
in the middle ranges. As a result, the scaling transformation serves to exaggerate 
group differences on p over portions of the lower and upper ranges of the scale of p 
(i.e., p < 0 25.  and p > 0 75. ) while compressing group differences on p over mid-
dle portions of the range of p (i.e., 0 30 0 70. .< <p ). Thus, the quantile transforma-
tion can and often does change small quantitative differences between Whites and 
Blacks on p into large differences on rank-order quantile scores. This in turn makes 
average White-Black differences on y larger than average White-Black differences 
on p. The tendency is moderate when groups are approximately equal in size. It 
becomes more and more pronounced when groups become increasingly unequal in 
size.
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As formulated for the difference of group means framework, the Gini Index (G) 
for White-Black segregation can be given by

	

Y Y =G 2, or
Y Y 0.5=2 Y Y =G
W W

W B W B

−
− −( ) ( ) 	

(C.1)

for y quantile p= ( ) , or, alternatively, for y 2·quantile p= ( ) ,

	
Y Y =G.W B−( ) 	

(C.1a)

In this formulation residential outcomes (y) register each household’s relative rank 
position on area proportion White (p), YW is the mean on y for White households, 
and YB is the mean on y for Black households. One way to describe the formulation 
is that the value of G is the observed difference of group means on quantile scores 
for p divided by 0.5, the maximum value possible when scoring y as quantile scores. 
Alternatively, if y is scored as twice the quantile score (i.e., 2 . quantile(p)), G is the 
simple difference of means.4

G Is a Measure of Rank Order Inequality on Contact

Surprisingly, methodological reviews of segregation indices rarely make, much less 
emphasize, the point that the Gini Index (G) assesses uneven distribution in terms of 
group differences in rank order standing on area group proportion scores (p). This 
quality of G has been noted in methodological studies that review the application of 
G as a measure of inter-group inequality on ordinal variables. Lieberson (1976) 
introduced a measure of inter-group inequality on ordinal outcomes which he 
termed the index of net difference (ND). He characterized ND as being “analogous” 
to G (1976:281). Fossett and South (1983) noted that ND and G are more than 
analogous; they are mathematically equivalent (this is established in expressions 
(C.2a) and (C.2b) below). Accordingly, ND can be characterized as an alternative 
computing formula for G that supports an explicit and potentially attractive substan-
tive interpretation in terms of group difference in rank advantage.

This provides an initial basis for interpreting G for White-Black segregation as 
an index of relative rank difference between Whites and Blacks in their distribution 
on residential contact with Whites (p). Specifically, in the ND formulation, the 
value of G is the difference of two probabilities; (a) the probability that a randomly 
chosen White will have greater residential contact with Whites than will a randomly 

4 Under maximum uneven distribution all Whites live in neighborhoods that are 100 %  
White and  all Blacks live in neighborhoods that are 100 % Black. Their respective average  
quantile scores  on  area proportion White will be 1 − P/2 for Whites and Q/2 for Blacks. The  
group (White-Black) difference of means will be (1 − P/2) − Q/2 which resolves to 

1 P 2+Q 2 1 P+Q 2 1 1 2 0.5.− − −= = =( ) ( )
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chosen Black, and (b) the probability that a randomly chosen Black will have greater 
residential contact with Whites than will a randomly chosen White.

Fossett and South (1983:861) note that the value of ND, and therefore G, can be 
obtained from the following computing formula

	
ND G x w W b Bi j i j= = ⋅( )( )Σ Σ

	

where i and j index areas ranked on area proportion White (p), and x is scored: 1 if 
( i j> ), 0 if ( i j= ), and −1 if ( i j< ). This formula highlights that G responds solely 
to White-Black comparisons on rank order standing on area proportion White (p). 
Thus, it gives insight into why G is insensitive to the quantitative magnitude of 
group differences on p; G treats all White-Black differences on p as either 1 or −1, 
regardless of the difference involved is large or small.

Fossett and Siebert (1997, Appendix A) also explore the formulation of G as a 
measure of inter-group inequality on ranked outcomes. They showed that G is a 
special case of Somers’ dyx, a measure of ordinal (rank-order) association. 
Consequently, G can be interpreted as an ordinal slope coefficient that indicates the 
impact of race (i.e., group membership) on the rank order standing of individuals on 
residential contact with Whites (p). Of more direct relevance for the present discus-
sion, Fossett and Siebert also noted that the value of G can be given as twice the 
difference of group means on percentile (or quantile) scores for ranked outcomes. In 
application to White-Black segregation this means that G registers the White-Black 
difference of means on quantile scores for contact with Whites (p).

�Calculating G as a Difference of Means

The procedure for obtaining the value of G for White-Black segregation as a differ-
ence of means on residential outcomes (y) can be given as follows. First implement 
the relative rank scoring function y f p= ( )  by ordering areas from low to high based 
on values of area proportion White (pi).5 Note that pi is calculated using only counts 
for Whites and Blacks (i.e., p w w bi i i i= +( ) ). Designate the number of house-
holds in the area ranked lowest on area proportion White (p1) by t1 based on 
t w b1 1 1= +  where w1 and b1 are the counts for Whites and Blacks, respectively, in 
the area. Then calculate the average relative rank position (y1) on area proportion 
White (p1) for households in this area as y t T1 1 2= ( )  where T is the combined 
population of Whites and Blacks in the city based on T W B= + . The calculation 
reflects the fact that households in this area occupy ranks 1 through t1 on area pro-
portion White (p) and so they all are assigned the average for this range of relative 
rank positions. The number of households in the area ranked next lowest on area 

5 Areas that are identical on area proportion White (p) can be combined and treated as single areas, 
or they can be handled separately. There is no practical difference as the average score for y will 
be the same either way.
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proportion White (p2) is designated by t2. The average relative rank position (y2) for 
these households on area proportion White (p) is t t T1 2 2+ ( ) / / , the average for 
the relative rank position for households in the area. Continue with this procedure 
until all areas are scored on y.

The resulting White-Black difference of means on y is then given by

	 Y Y w y W b y BW B i i i i− = −Σ Σ . 	

This result takes a value equal to G/2.

�Deriving G as a Difference of Means

The next several sections establish that the difference of means formulation of the 
Gini Index (G) maps exactly onto the usual computing formulas for G. Unfortunately, 
the discussion is long and tedious. Readers who are not interested in these details 
should skip forward to the section that discusses the differences of means formula-
tion of the Dissimilarity Index (D).

Specifying Some Useful Terms and Relationships

To begin, it is helpful to introduce several terms and establish certain relationships 
among them. I start by introducing the following three terms:

pt t Ti i= , this term registers the i’th area’s proportion (share) of the city’s com-
bined population of Whites and Blacks,

pw w Wi i= , this term registers the i’th area’s proportion (share) of the city’s 
White population, and

pb b Bi i= , this term registers the i’th area’s proportion (share) of the city’s Black 
population.

When calculating G the areas of the city are ordered from lowest to highest value on 
area proportion White (p). This leads to the following terms

cpt pt t Ti i i= =Σ Σ , cumulative proportion (share) of the city’s combined popula-
tion of Whites and Blacks residing in areas ranked 1 through i on area proportion 
White (p),

cpw pw w Wi i i= =Σ Σ , cumulative proportion (share) of the city’s White popula-
tion residing in areas ranked 1 through i on area proportion White (p), and

cpb pb b Bi i i= =Σ Σ , cumulative proportion (share) of the city’s Black population 
residing in areas ranked 1 through i on area proportion White (p).

These terms can be used to give the familiar computing formula for G introduced 
by Duncan and Duncan (1955: 211) as
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	 G pw pb pb pwi i i i= ⋅ − ⋅− −Σ Σ Σ Σ1 1. 	 (C.2)

This can be restated with alternative notation as

	
G cpw cpb cpb cpwi i i i= ⋅( )− ⋅( )− −Σ Σ1 1 .

	
(C.2a)

Recognizing that cpw cpb pw cpb cpw cpbi i i i i i⋅( ) = ⋅( )+ ⋅( )− − − −1 1 1 1 , and that 

cpb cpw pb cpw cpb cpwi i i i i i⋅( ) = ⋅( )+ ⋅( )− − − −1 1 1 1 , (C.2a) can be restated as

	
G pw cpb pb cpwi i i i= ⋅( )− ⋅( )− −Σ Σ1 1 	

(C.2b)

Expressions (C.2), (C.2a), and (C.2b) are mathematically equivalent variations of the 
standard computing formula for G. Expression (C.2a) corresponds to the traditional 
computing formulas for G given in Duncan and Duncan (1955). Expression (C.2b) 
is an alternative computing formula for G which Lieberson (1976) termed ND.

�A Brief Demonstration

I begin with an example that applies the terms introduce above to obtain G by the 
conventional formula and also demonstrates how the value of G can be obtained by 
the simpler approach of computing the difference of group means from percentile 
scores. The example case has just five areas, each one with 100 people. These are 
listed from high to low based on proportion White in the area. Appendix Fig. C.1 
lists for basic terms for each area. These include the group count terms (ti, wi, bi), 
proportion White for the area (pi), the proportion of the group population residing in 
the area (pti, pwi, pbi), and the cumulative proportion of the group population resid-
ing in areas with area proportion White at or below pi (cpti, cptwi, cptbi).

Appendix Fig. C.2 presents terms that are used directly to calculate the value of 
G. The second and third columns in the figure present the terms used to calculate the 
value of G via the Lieberson (1976) “net difference” variation of the formula given 
in Duncan and Duncan (1955) (expression (C.2b) above). The difference between 
the sums for the two columns (i.e., 0.903–0.027) yields the value of G as 0.876. The 
fourth column gives the percentile score for each area as ranked on area proportion 

Fig. C.1  Example of calculating the Gini index – intermediate terms
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White (p). This is the residential outcome (y) relevant for computing G in the  
difference of means framework. The fifth and sixth columns give weighted  
sum calculations for obtaining separate group means on y for Whites and  
Blacks. Twice the difference of the sums for the two columns (i.e., 
2 2 0 631 0 193 2 0 438⋅ ( ) = ⋅( ) = ⋅Y YW B– . – . . )  also yields the value of G as 0.876.

�Getting on with the Derivation

This example illustrates that the difference of means approach for obtaining G is 
simple and straight forward. The next task is to show how these formulas for G (C.2, 
C.2a, and C.2b) map onto the terms in the formulation of G as the White-Black dif-
ference of means Y YW B−  on relative rank position on area proportion White (p). I 
apologize in advance for the fact that the derivation to follow is long and tedious. I 
suspect a simpler derivation can be given but I have not discovered it. What follows 
is one way to accomplish the task.

My first step is to introduce the term RRTi as an alternative designation of yi as 
“relative rank” standing on area proportion White (p). Thus,

	
RRT y pt pt t t Ti i i i i i= = +( ) = +( )− −Σ Σ1 12 2 .

	

The “RR” in “RRT” refers to relative rank and the “T” indicates that it is calculated 
for the total of the combined population of White and Black households (ignoring 
other households). Multiplying relative rank by 100 gives a percentile score. Given 
these terms, the White-Black difference of means for yi is given by

	

Y Y pw y pb y or alternatively

Y Y pw RRT pb
W B i i i i

W B i i

− = ⋅ − ⋅
− = ⋅ −

Σ Σ
Σ Σ

, , ,

ii iRRT⋅ . 	
(C.3)

Next I introduce two related terms – RRWi and RRBi. RRWi registers average 
relative rank position on area proportion White (p) based on the distribution of 
White households only and is given by

Fig. C.2  Example of calculating the Gini index – final terms
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RRW pw pw w w Wi i i i i= +( ) = +( )− −Σ Σ1 12 2 .

	

RRBi registers the relative rank position on area proportion White (p) based on the 
distribution of Black households only and is given by

	
RRB pb pb b b Bi i i i i= +( ) = +( )− −Σ Σ1 12 2 .

	

The terms RRTi, RRWi, and RRBi, are closely interrelated. Specifically, each one 
can be defined in terms of the other two according to the following expressions.

	 RRT P RRW Q RRBi i i= ⋅ + ⋅ 	 (C.4a)

	
RRW RRT Q RRB Pi i i= − ⋅( ) 	

(C.4b)

	
RRB RRT P RRW Qi i i= − ⋅( ) 	

(C.4c)

The basis for expression (C.4a) can be clarified as follows

	

RRT pt pt

t t T

w b w b T

w

i i i

i i

i i i i

i

= +( )
= +( )
= + + +( )
=

−

−

− −

Σ
Σ
Σ Σ
Σ

1

1

1 1

2

2

2 2

−− −

− −

+( ) + +( )
= +( ) ⋅ ( )  + +( )

1 1

1 1

2 2

2 2

w T b b T

w w W T W b b B
i i i

i i i i

Σ
Σ Σ ⋅⋅( ) 

=( ) ⋅ +( ) + ( ) ⋅ +( )
=( ) ⋅ +

− −

−

T B

W T w w W B T b b B

W T w
i i i i

i

Σ Σ
Σ

1 1

1

2 2

ww W B T b b B

P pw pw Q pb pb
i i i

i i i i

2 2

2 2
1

1 1

( ) + ( ) ⋅ +( )
= ⋅ +( )+ ⋅ +( )
=

−

− −

Σ
Σ Σ

PP RRW Q RRBi i⋅ + ⋅ . 	

Expressions (C.4b) and (C.4c) are simple rearrangements of (C.4a).
The relationships among RRTi, RRWi, and RRBi help clarify how G relates to 

Y YW B− .  Expression (C.3) shows that the values of RRTi are directly used in com-
puting YW and YB. Expression (C.4a) establishes that RRTi can be given in terms of 
RRWi and RRBi. These two terms can be incorporated into familiar computing 
expressions for G (yielding Eq. (C.5) below).

Before reviewing this in more detail I first digress to note that values of RRWi 
and RRBi define points on the segregation curve, the well-known graphical repre-
sentation of uneven distribution that supports an appealing geometric interpretation 
of G. The segregation curve is constructed by taking areas in ascending order of 
area  proportion White (p) and then plotting cumulative proportion White 
( cpw w Wi i=Σ ) against cumulative proportion Black ( cpb b Bi i=Σ ). The curve 
is contrasted with the diagonal line that would result under conditions of exact even 
distribution and the value of G is given by ratio of the area between the diagonal and 
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the curve to the total area under the diagonal. The values of RRWi by RRBi fall on 
the midpoints of the line segments that form the segregation curve.

The values of RRWi and RRBi can be used to directly calculate the value of G. To 
see this, start with the following familiar computing formula for G given by Duncan 
and Duncan (1955: 211)

	 G pw pb pb pwi i i i= ⋅ − ⋅− −Σ Σ Σ Σ1 1 . 	 (C.2, restated)

Then add 0 in the form of Σ Σpw pb pw pbi i i i⋅ − ⋅2 2  to obtain

	 G pw pb pb pw pw pb pw pbi i i i i i i i= ⋅ − ⋅[ ]+ ⋅ − ⋅[ ]− −Σ Σ Σ Σ Σ Σ1 1 2 2 . 	

Rearrange terms

	
G pw pb pb pb pw pwi i i i i i= ⋅ +[ ]− ⋅ +[ ]− −Σ Σ Σ Σ1 12 2 .

	

Drawing on terms given earlier, substitute RRBi for Σpb pbi i 1 2+[ ]  and RRWi for 
Σpw pwi i 1 2+[ ]  to obtain

	 G pw RRB pb RRWi i i i= ⋅ − ⋅Σ Σ . 	 (C.5)

For later notational convenience, I designate Σpw RRBi i⋅  as GW and Σpb RRWi i⋅  
as GB to get the compact expression

	 G G GW B= − . 	 (C.5a)

Note that the terms GW and GB support straightforward substantive interpreta-
tions. Specifically, GW indicates the proportion of total comparisons between White 
and Black households where the White household is higher on area proportion 
White (p) and GB similarly indicates the proportion of comparisons where the Black 
household is higher.6

	 Y Y pw RRT pb RRTW B i i i i− = ⋅ − ⋅Σ Σ . 	 (C.3, restated)

Expression (C.5) is very similar in form to expression (C.3) (restated here for 
convenience). This suggests that the relationship of G to Y YW B−  can be expressed 
in terms of specific relationships between the core terms in (C.3) and (C.5). This is 
indeed the case. The first relationship involves the terms Σpw RRBi i⋅  from (C.5) 
and Σpw RRTi i⋅  from (C.3). Their relationship can be given as

	
Σ Σpw RRB pw RRT P Qi i i i⋅ = ⋅( )– .2

	
(C.6)

6 This corresponds closely to Lieberson’s (1976) index of net difference (ND) interpretation of 
G. The only difference computationally is how ties are handled in the computations. In Lieberson’s 
calculations, ties are dealt with separately. In this calculation, ties are apportioned in equal halves 
to each outcome. The resulting value of G (or ND) is identical.
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The second relationship involves the terms Σpb RRWi i⋅  from (C.5) and 
Σpw RRTi i⋅ .  from (C.3). Their relationship can be given as

	

Σ Σpb RRW pb RRT Q Pi i i i⋅ = ⋅( )– / .2

	
(C.7)

Similarly, the central terms in (C.2) for Y YW B−  can be expressed in relation to the 
terms in (C.5) for G based on

	 Y pw RRT Q pw RRB P Q G P andW i i i i W= ⋅ = ⋅ ⋅ + = ⋅ +Σ Σ 2 2, 	 (C.8)

	 Y pb RRT P pb RRW Q P G QB i i i i B= ⋅ = ⋅ ⋅ + = ⋅ +Σ Σ 2 2. 	 (C.9)

Restating these using more compact notation yields

	
G Y P QW W= ( )– / .2

	
(C.6a)

	
G Y Q PB B= ( )– / .2

	
(C.7a)

	 Y Q G PW W= ⋅ + / 2 	 (C.8a)

	 Y P G QB B= ⋅ + 2 	 (C.9a)

Establishing Expressions (C.6, C.6a) and (C.8, C.8a)

For the sake of completeness I show here how expressions (C.6, C.6a) and (C.8, 
C.8a) can be obtained. I begin by drawing on (C.4b) to restate the term Σpw RRBi i⋅  
from (C.5) and then rearrange the result as follows.

	
Σ Σpw RRB pw RRT P RRW Qi i i i i⋅ = ⋅ − ⋅( )  	

	
Σ Σpw RRB pw RRT Q RRW P Qi i i i i⋅ = ⋅ ( ) ⋅( ) –

	

	
Σ Σ Σpw RRB pw RRT Q pw RRW P Qi i i i i i⋅ = ⋅ ( ) ⋅ ⋅( )–

	

	
Σ Σ Σpw RRB pw RRT Q pw RRW P Qi i i i i i⋅ = ⋅( ) ⋅( )( )–

	

The value of the term Σpw RRWi i⋅  is 0.5 because the mean of relative rank posi-
tion is necessarily 0 5. = ½ . Accordingly, the last expression can be simplified by 
substituting (½) for Σpw RRWi i⋅  to obtain (C.6) as follows

	
Σ Σpw RRB pw RRT Q P Qi i i i⋅ = ⋅( ) −( )( )½
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Σ Σpw RRB pw RRT P Qi i i i⋅ = ⋅( )– 2

	
(C.6, restated)

Or in more compact notation

	
G Y P QW W= ( )– 2

	
(C.6a, restated)

Reversing sides and rearranging terms to isolate YW yields

	
Y P Q G GW W W– 2( ) = =

	

	 Y Q P Q GW W– 2 = 	

	 Y Q G P QW W= + 2 	

	
Y Q G P QW W= ⋅ +( )2

	

	 Y Q G PW W= ⋅ + 2 	 (C.8a, restated)

Expanding to less compact notation

	 Σ Σpw RRT Q pw RRB Pi i i i⋅ = ⋅ ⋅ + 2. 	 (C.8, restated)

Establishing Expressions (C.7, C.7a) and (C.9, C.9a)

Next I show here how expressions (C.7, C.7a) and (C.9, C.9a) can be obtained. I 
begin by drawing on (C.4a) to restate the term Σpb RRWi i⋅  from (C.5) and then 
rearrange the result as follows.

	
Σ Σpb RRW pb RRT Q RRB Pi i i i i⋅ = ⋅ − ⋅( )  	

	
Σ Σpb RRW pb RRT P RRB Q Pi i i i i⋅ = ⋅ ( )− ⋅( )  	

	
Σ Σ Σpb RRW pb RRT P pb RRB Q Pi i i i i i⋅ = ⋅ ( )− ⋅ ⋅( ) 	

	
Σ Σ Σpb RRW pb RRT P pb RRB Q Pi i i i i i⋅ = ⋅( ) ⋅( )( )–

	

Since Σpb RRBi i⋅  is 0 5. = ½ , the last expression can be simplified by substituting 
(½) for Σpb RRBi i⋅  to obtain (C.8) as follows

	
Σ Σpb RRW pb RRT P Q Pi i i i⋅ = ⋅( ) −( )( )½

	

	
Σ Σpb RRW pb RRT Q Pi i i i⋅ = ⋅ −( )2 .

	
(C.8, restated)
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Or more compactly

	
G Y Q PB B= −( )2 .

	
(C.8a, restated)

Reversing sides and rearranging terms to isolate YB yields

	 Y P Q P GB B− =2 	

	 Y P G Q PB B= + 2 	

	
Y P G Q PB B= ⋅ +( )2

	

	 Y P G QB B= ⋅ + 2 	 (C.9a, restated)

	 Σ Σpb RRT P pb RRW Qi i i i⋅ = ⋅ ⋅ + 2. 	 (C.9, restated)

Some Implications of Expressions (C.6) and (C.7)

Based on (C.6) and (C.7), G as given in (C.5) can be obtained from the core terms 
that define Y YW B−  in (C.3) as follows

	
G pw RRT P Q pb RRT Q Pi i i i= ⋅( ) − ⋅( )Σ Σ– / / – / /2 2

	
(C.10)

or, in more compact notation,

	
G Y P Q Y Q PW B= ( ) − ( )– – .2 2

	
(C.10a)

Similarly, based on (C.8) and (C.9), the term Y YW B−  in (C.3) can be obtained from 
the terms that define G in (C.5) as follows

	
Y Y Q pw RRB P P pb RRW QW B i i i i− = ⋅ ⋅ +( ) ⋅ ⋅ +( )Σ Σ2 2–

	
(C.11)

or, in more compact notation,

	
Y Y Q G P P G QW B W B− = ⋅ +( ) ⋅ +( )2 2– .

	
(C.11a)

These results establish that the value of the Gini Index (G) can be directly and 
exactly mapped onto the terms of the group difference of means (Y YW B− ) on resi-
dential outcomes (y) scored on the basis of relative rank position on area group 
proportion (p).
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The Role of P and Q in Scaling Terms when Groups Differ in Relative Size

The results just reviewed show that, while the relationship between G and  
(Y YW B− ) is exact, it also is complex. Expressions (C.10, C.10a) and (C.11, C.11a) 
clarify how scores for G map onto scores for (YW – YB). In this, it is clear that the 
terms for relative group size – P and Q – play important roles. How can this be 
understood? One answer to that question is that the operations involving P and Q in 
these expressions rescale the core terms of G so they will map onto the core terms 
of Y YW B− , and vice versa. This is necessary because the core terms in G and 
Y YW B−  have different logical ranges. Accordingly, the operations involving P and 
Q in expression (C.10) rescale the core terms of Y YW B−  so they will take the same 
value as their corresponding terms in G. Similarly, the operations involving P and Q 
in expression (C.11) rescale the core terms of G so they will take the same value as 
their corresponding terms in Y YW B− .

The logical ranges for both G and its core terms are constant across all combina-
tions of P and Q. The core term Σpw RRBi i⋅  (i.e., GW) has a logical range of 0.5 
based on having a minimum possible value of 0.5 under even distribution and a 
maximum value of 1.0 under complete segregation. The core term Σpb RRWi i⋅  
(i.e., GB) also has a logical range of 0.5 based on having a minimum possible value 
of 0.0 under complete segregation and a maximum value of 0.5 under even distribu-
tion. Thus, G ranges from a minimum of 0.0 under even distribution based on

	 G pw RRB pb RRWi i i i= ⋅ − ⋅ = − =Σ Σ 0 5 0 5 0 0. . . 	

to a maximum of 1.0 under complete segregation based on

	 G pw RRB pb RRWi i i i= ⋅ − ⋅ = − =Σ Σ 1 0 0 0 1 0. . . 	

The logical range for Y YW B−  also is always constant but it is 0.5 not 1.0. This 
accounts for why G is divided by 2 in expression (C.1). Note, however, that the logi-
cal ranges for the two core terms YW and YB are not constants. In each case one 
boundary of their logical range is a constant but the other boundary varies with the 
values of P and Q. For the term Y pw RRTW i i= ⋅Σ  the fixed boundary is its mini-
mum possible value of 0.5, which occurs under even distribution. Its upper bound-
ary (i.e., maximum possible value) is given by Q P+ 2 , which occurs under 
complete segregation and varies in exact value with city ethnic composition. For the 
term Y pb RRTB i i= ⋅Σ , the fixed boundary of its logical range is 0.5, its maximum 
possible value which occurs under even distribution. Its lower boundary (i.e., the 
minimum possible value) is given by Q/2 which occurs under complete segregation 
and varies in exact value with city ethnic composition.

Thus, Y YW B−  ranges from a minimum of 0.0 under even distribution based on

	 Y Y pw RRT pb RRTW B i i i i− = ⋅ − ⋅ = − =Σ Σ 0 5 0 5 0 0. . . 	

to a maximum of 0.5 under complete segregation based on
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Y Y pw RRT pb RRT Q P Q

Q P Q P
W B i i i i− = ⋅ − ⋅ = +( ) − ( )

= + = +( ) =
Σ Σ 2 2

2 2 2 0 5. .
	

In light of these points, Expression (C.10) can now be understood as follows. The 
values of P/2 and Q in the term (Σpw RRT Pi i⋅ – 2 ) / Q rescale the value of the 
core term Σpw RRTi i⋅  used in computing YW in Y YW B−  to map its position in the 
logical range of 0.5 to (Q P+ 2 ) onto the correct position in the logical range of 0.5 
to 1.0 for the parallel core term Σpw RRBi i⋅  used in computing G. Similarly, the 
values of Q/2 and P in the term (Σpb RRT Qi i⋅ – 2 ) / P rescale the core term 
Σpb RRTi i⋅  used in computing YB in Y YW B−  to map its position in the logical 
range of Q/2 to 0.5 onto the correct position in the logical range of 0.0 to 0.5 for the 
parallel core term Σpb RRWi i⋅  used in computing G.

Expression (C.11) can be interpreted in a similar way. P/2 and Q in the term 
(Q pw RRB Pi i⋅ ⋅Σ – 2 ) / Q rescale the core term Σpw RRBi i⋅  used in computing 
G to map its position in the logical range of 0.5 to 1.0 on to the correct position in 
the logical range of 0.5 to Q P+ 2  for the core term Σpw RRTi i⋅  used in comput-
ing Y YW B− . Similarly, Q/2 and P in the term ( P pb RRW Qi i⋅ ⋅Σ – 2 ) / P rescale 
the core term Σpb RRWi i⋅  used in computing G to map its position in the logical 
range of 0.0 to 0.5 onto the correct position in the logical range of Q/2 to 0.5 for the 
core term Σpb RRTi i⋅  used in computing Y YW B− .

The Special Circumstance When P Q=

Things are relatively simple when P Q= . This can be seen by rearranging terms in 
(C.10) to obtain the alternative expression.

	
G Q pw RRT P pb RRT Q P P Qi i i i= ( ) ⋅ ⋅ −( ) ⋅ ⋅ + −1 1 2 2Σ Σ

	
(C.12)

When P Q= , this resolves to

	

G pw RRT pb RRTi i i i= ( ) ⋅ ⋅ − ( ) ⋅ ⋅
+ ( ) ⋅ ( )  ( ) ⋅ (
1 1 2 1 1 2

1 2 2 1 2 1 2 2 1 2

Σ Σ
– ))  	

	
G pw RRT pb RRTi i i i= ⋅ ⋅ − ⋅ ⋅ + ( ) ( )2 2 1 2 1 2Σ Σ –

	

	
G pw RRT pb RRTi i i i= ⋅ ⋅ − ⋅( )2 Σ Σ

	

	 G pw RRT pb RRTi i i i2 = ⋅ − ⋅Σ Σ 	

	 G Y YW B2 = − . � (C.1, restated)
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This corresponds to expression (C.1) presented at the beginning of this section.
Similarly, rearranging terms in (C.11) leads to the following alternative 

expression.

	 Y Y Q pw RRB P pb RRW P QW B i i i i− = ⋅ ⋅ ⋅ ⋅ + −Σ Σ– 2 2 	 (C.13)

When P Q,=  this resolves to

	
Y Y pw RRB pb RRWW B i i i i− = ( ) ⋅ ⋅ −( ) ⋅ ⋅ + ( ) −( )1 2 1 2 1 2 2 1 2 2Σ Σ

	

	
Y Y pw RRB pb RRWW B i i i i− =( ) ⋅ ⋅ − ⋅( )1 2 Σ Σ

	

	 Y Y Gw B− = 2 	 (C.1, restated)

And this also corresponds to expression (C.1).

Summary Comments on Formulating G as a Difference of Means (YW – YB) 
on Relative Rank

The relationship in expression (C.1) now can be placed in broader context as fol-
lows. The core terms that define G in expression (C.2) map directly and exactly onto 
the core terms that define Y YW B−  in expression (C.3). Consequently, G can be 
described as registering the White-Black difference in average relative rank on area 
proportion White (p). Examined in the “natural” metric of relative rank scores, the 
difference of means Y YW B−  has a logical range of 0.0–0.5 while the logical range 
of G is 0.0–1.0. Hence, expression (C.1) equates the two measures based on 
Y Y GW B− = 2.

�The Dissimilarity Index (D) – A Special Case of the Gini Index (G)

The dissimilarity or delta index (D) is closely related to the Gini Index (G). More 
specifically, D can be described as a special case of G where G is computed after 
areal units ordered on area group proportion scores (p) are collapsed into two cate-
gories: areas where the group proportion score exceeds the city-wide group propor-
tion (i.e., p P> ) and areas where it does not (i.e., p P≤ ). Based on this, D can be 
expressed as a difference of group means on residential outcomes (y) scored from 
area group proportions (p) in a manner comparable to that just outlined for G.

D and G both are intimately related to the segregation curve, a graphical device 
for depicting uneven distribution popularized by Duncan and Duncan (1955). An 
example of a standard segregation curve is shown in Fig. C.3. The curve is based on 
block group data for Whites and Blacks in the Houston, Texas metropolitan area in 
2000 and is constructed as follows. First the areas (in this case block groups) are 
placed in ascending order based on proportion White (p) in the area. Then the curve 
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is traced by drawing line segments connecting the sequence of (x,y) pairings for the 
cumulated proportion of the White population (on the y-axis) and the cumulated 
proportion of the Black population (on the x-axis) as areas are taken in ascending 
order on the value of p. The resulting curve is contrasted with the diagonal line 
between the starting point (0,1) and ending point (1,1) of the curve. The diagonal 
represents the segregation curve that would obtain under the condition of exact even 
distribution. The gap between the curve and the diagonal visually indicates the 
degree of departure from even distribution.

As is well known, G and D both have direct quantitative and geometric relations 
to the curve’s departure from the diagonal. G registers the departure quantitatively 
based on the ratio of the area between the curve and the diagonal to the total area 
under the diagonal. In the example shown, the value of G is 84.7. D registers the 
degree of departure quantitatively based on the maximum vertical difference 
between the curve and the diagonal and in the example shown has a value of 69.0.

The geometric relationships to the segregation curve for G and D highlight an 
important difference between the two measures. The area interpretation of G makes 
it clear that its value is determined by the shape of the full curve. In contrast, the 
vertical line interpretation of D makes it clear that its value is determined by a single 

Fig. C.3  Example Segregation Curve for White-Black Comparison (Note: Units are ordered from 
low to high on area proportion White. Gini index is 84.7, Delta is 69.0)
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point on the segregation curve. Accordingly, G responds to any residential shifts 
that promote more even distribution (i.e., that reduce the area between the diagonal 
and the curve) while D responds to such changes only if they affect the position of 
a particular point on the curve. The difference is highlighted in Fig. C.4. Here the 
segregation curve in the first graph is supplemented with a second segregation 
curve. This is a three point segregation curve defined by the triangle involving three 
points from the full segregation curve; the two end points (0,0) and (1,1) of the 
diagonal and the point on the full curve where the vertical distance between the 
curve and the diagonal is at its maximum. This last point determines the value of D 
so I designate it as (xD, yD). In the example shown it is (0.132, 0.822).7

7 Becker et al. (1978) present a similar graphical analysis of D.

Fig. C.4  Example segregation curves for white-black comparison (Note: Units are ordered from 
low to high on area proportion White. Gini index is 84.7, Delta is 69.0)
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D Is G Calculated from a Special Three-Point Segregation Curve

D can be seen as a special case of G calculated for the three-point segregation curve 
defined by the points (0,0), (xD, yD), and (1,1). More specifically, D represents the 
minimum value of G that can obtain for a curve that has the point (xD, yD). This is 
depicted graphically in the detailed example in Appendix Fig. C.5. The relation-
ships involved can be outlined in a general way as follows. Recall that the value of 
G is given by A/T where A is the area between the diagonal and the segregation 
curve and T is the total area under the diagonal which is ½. For the three point seg-
regation curve associated with D, A is equal to the area of the triangle that forms the 
three-point segregation curve. Accordingly, A b h= ⋅ ⋅½  where A is the area of the 
triangle, b is the length of the base of the triangle, and h is the height of the triangle. 
The base of the triangle is the diagonal and thus b is equal to the length of the diago-
nal which is √2 . The height of the triangle (h) is equal to the length of the line that 
extends perpendicular from the diagonal and ends on the segregation curve at the 
point (xD, yD). This line is a side of a right isosceles triangle whose base has a length 
equal to the value of D – the maximum vertical distance from the segregation curve 
to the diagonal. Thus, h D= √ 2 .

Fig. C.5  Example segregation curves for G and D with details (Note: Units are ordered from low 
to high on area proportion White. Gini index is 84.7, Delta is 69.0 = (86.8−17.8))
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It follows that the area (A) between the diagonal and the three point segregation 
curve for D is given by A b h D D.= ⋅ ⋅ = ⋅√ ⋅ √( ) = ⋅½ ½ ½2 2  It also follows that the 
value of the Gini Index (G) for the three point segregation curve is given by 
G A T D= = ⋅( )½ ½  which resolves to D. This establishes that the value of D is 
equivalent to the value of G for a simplified segregation curve analysis in which all 
areas of the city are grouped into just two categories; all areas where p P≤ , and all 
areas where p P.>

The comparison of the three-point segregation curve with the full curve high-
lights two characteristics of D. One is that D G≤  because the full segregation curve 
for G can never be “inside” the three-point segregation curve for D. Another is that 
D is insensitive to variations in residential distribution other than the distinction 
between residing in areas where p P>  or not. Finally, D can be understood as the 
minimum possible value of G for a curve containing the point (xD, yD) because D 
treats Whites and Blacks as experiencing only two relative rank scores and this 
maximizes ties between Whites and Blacks on relative ranks. Expanding the curve 
to consider more points cannot reduce the value of G as the construction principles 
are such that the segregation curve can only stay the same or expand outward from 
the three-point curve if more points are added to the curve.

D Is a Simple Difference of Group Proportions Residing in Areas 
Where  p P≥≥

There is an alternative computing approach for D that is simple and carries an 
appealing substantive interpretation. It is based on understanding D as the differ-
ence in group proportions residing in areas where p P.≥  This interpretation traces 
to the fact that the maximum vertical difference between the curve and the diagonal 
occurs at a particular point on the segregation curve. Specifically, it is first encoun-
tered at the end of the line segment on the curve for the last areal unit where p P.<  
It then is maintained for all subsequent points on the curve for areas where p P.=  It 
is last encountered at the beginning of the line segment on the curve for the first 
areal unit where p P.≥

When there are no areas where p P,=  the maximum vertical difference between 
the curve and the diagonal will be at a single point; the point where the line segment 
for the last area where p < P connects with the line segment for the first area where 
p P.>  When some areas have p P,=  the maximum vertical difference will be found 
at the beginning and end of the line segment formed for these areas. So it is correct 
to say that the maximum vertical distance corresponding to the value of D can be 
found at the following locations on the line segments that create the segregation 
curve.

•	 the end point of the line segment for the first area where p P<
•	 any point on line segments for areas where p P=
•	 beginning of the line segment for the first area where p > P
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Because the vertical distance is at its maximum at the beginning and end of line 
segments where p P= , one can say the maximum vertical distance is found

•	 the end point of the line segment for the last area where p P≤
•	 the beginning point of the line segment for the first area where p P≥

This can be seen by reviewing the construction of the segregation curve in 
more detail. Starting at (0,0) the curve is formed by plotting line segments con-
necting (x,y) points for group population shares that are being cumulated over 
areas taken in ascending order of p. Except in the unusual case of exact even dis-
tribution, p P<  for the initial areas and the line segments plotted for these areas 
will have a slope of less than 1. Accordingly, the curve initially falls away from the 
diagonal and the vertical distance between the curve and the diagonal increases 
with each successive area so long as p P<  with the vertical distance being greatest 
at the end point of the line segment for the area. The maximum vertical distance is 
first reached when the sequence arrives at the first area where p P.≥  If the next 
area plotted is one where p P=  (exactly), the line segment for that area will have 
a slope of 1 and will run parallel to the diagonal. The maximum vertical distance 
is maintained for all subsequent areas where p P=  (exactly).8 This changes when 
the sequence reaches the first area where p P.>  At this point, the slope of the line 
segment plotted for that area will be greater than 1 and the segregation curve 
begins rising faster than the diagonal. Accordingly, the vertical distance between 
the curve and the diagonal will start to decline. It will continue to decline with 
each successive area in the sequence and the curve ultimately rises back to the 
diagonal to connect with the end point (1,1).

This discussion makes it clear that the value of D can be understood as a simple 
difference of group proportions. Specifically, the value of D is equal to the difference 
between the proportions of Whites and Blacks, respectively, that reside in areas 
where Whites are represented at or above the level for the city overall (i.e., p P≥ ). 
For convenience, I designate the (x,y) pair for the beginning point of the line seg-
ment for the first area where p P≥  as (xD, yD). Applying the subscript “D” indicates 
that the values of xD and yD determine the value of D. The values of xD and yD reg-
ister the proportions of Blacks and Whites, respectively, that reside in areas where 
Whites are under-represented (i.e., areas where p P< ). Under even distribution the 
value of yD would be equal to xD. In light of this, the value of D is given by (xD – yD), 
the vertical distance between the diagonal and the curve at this point. The values 
(1− xD ) and (1− yD ) similarly indicate the proportions of Blacks and Whites, 
respectively, who reside in areas where Whites are represented at parity or higher 
(i.e., areas where p P≥ ). D also can be obtained from ( 1 1−[ ] −[ ]y xD D– ). This 
expression supports an appealing substantive interpretation of D; it is the White-
Black difference in the proportions that reside in areas where proportion White is at 
or above the level of the city overall.

The example presented in Fig. C.5 shows that 82.2 % of Blacks and 13.2 % of 
Whites reside in areal units where Whites are under-represented (i.e., p P< ). It 

8 These points are noted in Becker et al. (1978) and Duncan and Duncan (1955).
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likewise shows that 86.8 % of Whites and 17.8 % of Blacks reside in area units 
where the presence of Whites equals or exceed the citywide level (i.e., p P≥ ). The 
value of D can be obtained in either of two ways. It can be obtained from the Black-
White difference in percentages in residing in areas where Whites under-represented 
(i.e., D= − =82 2 13 2 69 0. . . ). Alternatively and more appropriately for the purposes 
of the present task, it can be obtained from the White-Black difference in percent-
ages in residing in areas where Whites are represented at or above the level for the 
city overall (i.e., D= − =86 8 17 8 69 0. . . ).

The Dissimilarity or Delta Index (D) – Alternative Functions for Scaling 
Contact

The above discussion establishes at least two viable ways to score individual resi-
dential outcomes (y) based on area group proportion scores (p) such that delta (D) 
can be obtained as a simple difference of group means. The first option is based on 
viewing D as a special case of the Gini Index (G). In this approach, y is scored as 
the relative rank (percentile) transformation of p applied to the two-category resi-
dential scheme for the special case of the three-point segregation curve described 
above. In this case delta (D) can be given by an expression comparable to Expression 
(C.1) introduced earlier for G. Specifically,

	
Y Y D or alternatively Y Y DW B W B− = −( ) =2 2, , ,

	

where D can be understood as a special case of G.
The second alternative involves an even simpler scoring scheme for y. This scal-

ing function draws on the mundane fact that a proportion is equivalent to the mean 
for a variable that is scored 0 or 1. The above discussion established that D is equal 
to the White-Black difference in proportions residing in areas where p P≥ . 
Accordingly, the group proportions involved can be restated as group means on a 
variable that is scored 1 for individuals who reside in an area that reaches or exceeds 
parity on contact with whites White (i.e., areas where p P≥ ) and 0 otherwise (i.e., 
when p P< ). This provides the basis for obtaining D by scoring residential out-
comes for individuals (y) as 1 for areas where proportion White are at or above 
parity (i.e., p P≥ ) and 0 otherwise. Then compute the means for Whites and Blacks 
separately to obtain the value of D according to

	 Y Y DW B− = . 	

One benefit of the resulting difference of means formulation of D is that it calls 
attention to how segregation as measured by D is linked with individual residential 
outcomes. Specifically, this formulation highlights the fact that D registers group 
differences in average contact with Whites when contact is rescaled from its origi-
nal, “natural” metric of p  – which can vary continuously over the range of 0–1 
(inclusive) – to a binary scoring of either 0 or 1. Seeing D formulated in this way 
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may raise questions concerning the methodological implications and desirability of 
collapsing p to a dichotomy when assessing group differences in exposure. I leave 
these issues for discussion elsewhere.

�Alternative Graphical Explorations of Relative Rank Position

Before concluding this appendix chapter, I offer additional comments on the topic 
of relative rank position. The preceding discussion establishes that the values of G 
and D reflect group differences in relative rank position on area proportion White 
(p). It is surprising that this is not already more widely appreciated because G and 
D have close relationships with the segregation curve which is an appealing graphi-
cal device for comparing group differences in distribution over areas ranked on 
proportion White (p). With this in mind it is instructive to directly consider group 
distributions on relative rank position.

To that end, Fig. C.6 presents graphs that help provide additional insight into 
how relative rank position relates to group distributions. The figure presents 6 
graphs. Each graph plots three curves that are constructed by first ordering areas 
from low to high on area proportion White (p) and then plotting the cumulated pro-
portions of the White and Black population against the cumulated proportion of the 
total (combined White and Black) population and then also plotting the cumulated 
proportion of the total population against itself to form a diagonal line rising from 
(0,0) to (1,1). These plotted values are designated here designated as

Fig. C.6  Plots of cumulative proportions of whites, blacks, and combined total by cumulative 
proportion of combined total
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The graph that results from plotting these values as described is similar to the 
segregation curve in one key respect; under conditions of exact even distribution, 
the curves for the White and Black population will coincide with the diagonal line 
for the total population. So the diagonal is a reference point for even distribution. A 
key difference from the segregation curve is that under conditions of uneven distri-
bution, the curve for the cumulating proportion of the Black population will rise 
above the diagonal and the curve for the cumulating proportion of the White popula-
tion will fall below the diagonal. Like the segregation curve, the areas between the 
curves and the diagonal in this graph have relationships to the values of G and 
D. This should not be surprising since the information plotted is very similar to the 
information plotted in the segregation curve. However, the visual representation 
here is distinct.

One feature of this graphical device is that the diagonal directly reflects relative 
rank position on area proportion White (p). Thus, the contrast between the diagonal 
and the curves for Whites and Blacks provides a basis for grasping their differences 
in relative rank position. A curve that rises above the diagonal is skewed toward 
below average rank positions. A curve that falls below the diagonal is skewed 
toward above average rank positions. The implications of the curves for group 
means on relative rank position are depicted graphically by plotting two vertical 
lines; one indicates the value of mean relative rank for Whites (YW) and the other 
indicates mean relative rank for Blacks (YB). Under conditions of exact even 
distribution, these will necessarily coincide at the value of 0.50, the overall mean on 
relative rank for area proportion White (p). Where these two values differ, the value 
for YW exceeds 0.50 and is necessarily higher than the value of YB which falls below 
0.50. As noted earlier, the logical range for YW is from 0.5 to Q P+ ( )2  and the 
logical range of YB is from Q/2 to 0.5, and the maximum value for (YW – YB) is 0.5 
which occurs under complete segregation.

The graphs in the figure are organized by two rows and three columns. The three 
columns are for three conditions for segregation. The graphs in the first (leftmost) 
column are for the extreme condition of exact even distribution where the value of 
G is 0. The graphs in the third (rightmost) column are for the opposite extreme con-
dition of complete segregation where the value of G is 100. The graphs in the mid-
dle column are for substantial, but not complete, segregation where the value of G 
is 0.900.9 The two rows are for two conditions of city racial composition. The top 
row is for a city where P and Q are both 0.50. The bottom row is for a city where P 
is 0.80 and Q is 0.20.

9 These segregation curves are based on simulated data generated using the hyperbola model for the 
segregation curve described in Duncan and Duncan (1955: 214).
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The graphs on both rows of the first column look the same. This is because under 
conditions of even distribution cpt cpw cpbi i i= =  and the graph will necessarily 
consist of three identical diagonal lines rising from the lower left to the top right and 
this pattern holds regardless of the values of P and Q. Similarly, the vertical lines 
depicting the values of YW and YB coincide and both are plotted at the value of 0.50.

When segregation exists, each of the three curves will be distinct. This is seen in 
the two graphs in the middle column of the figure which are for examples where the 
value of G is 0.900. The diagonal lines in the two graphs are produced by plotting 
cpti against itself. Because areas are ordered from low to high on area proportion 
White (p), the curves plotting cpbi by cpti rise faster than the diagonals. In contrast, 
the curves plotting cpwi by cpti rise slower than the diagonals. The vertical lines in 
these graphs indicate that, as noted above, the means on relative rank (y) for Blacks 
(YB) are below 0.50 and the means on relative rank (y) for Whites (YW) are above 
0.50. The variation in location in the top and bottom rows documents how the par-
ticular values of the group means depend not only on the level of segregation 
involved but also on the values of P and Q. In both cases, however, the difference of 
means Y YW B−  is 0.450 and is equal to G/2.

The graphs in the third (rightmost) column depict the extreme condition of com-
plete segregation where G is 1.00. Again the diagonal lines in the graphs reflect the 
curves plotting cpti by cpti. The curves plotting cpbi by cpti rise from 0.0 when cpt 
is 0.0 to 1.0 when cpt is Q (which is 0.5 in the top graph and 0.2 in the bottom graph) 
and then remain at 1.0 until cpt is 1.0. The curves plotting cpwi by cpti stay at 0.0 
until cpti reaches Q, then climbs to 1.0 when cpt reaches 1.0. Here the vertical lines 
depicting the means on relative rank (y) for Blacks (YB) are at the value Q/2 which 
is 0.25 in the top graph and 0.10 in the bottom graph. In contrast, the vertical lines 
depicting means on relative rank (y) for Whites (YW) are at the value Q P+ 2  which 
is 0.75 in the top graph and 0.60 in the bottom graph. In both of these example cases, 
the difference between the two means is 0.5, the maximum possible value the differ-
ence can take. This is one half of G’s maximum value of 1.0, consistent with rela-
tionship in Expression (C.1).

The graphs in Fig. C.6 illustrate an important implication of expressions (C.4b) 
and (C.4c); namely, that the height of the curves for cpbi and cpwi at a given value 
of cpti will depend on two factors. One, obviously, is the extent of segregation 
between Whites and Blacks. That is made clear by the progression across columns 
for either row of the figure. The other factor is the relative sizes of the groups in the 
comparison; that is, the ratio of P and Q. That is made clear by how the curves for 
cpbi and cpwi, and the group means associated with these curves (plotted as vertical 
lines), differ with the value of P.

I offer one last set of comments on the graphs in this figure. G and D have defi-
nite relationships to the graphs in Fig. C.6. The area between the curve plotting cpbi 
by cpti and the diagonal equals the value of G for the comparison of Blacks against 
total (GTB). The area between the curve plotting cpwi by cpti and the diagonal equals 
the value of G for the comparison of Whites against total (GTW). The sum of these 
two determines the value of G for the comparison of Whites to Blacks. Specifically, 
G is given by the ratio of the sum of these two areas to 0.5, the maximum possible 
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value for the sum. D is equal to the maximum vertical distance between the curves 
for cpbi and cpwi and, exactly as is the case for the segregation curve, this is value 
is seen at the last area where p Pi ≤ .

One implication I stress here is that the segregation curve, while familiar and 
appealing in many ways, is not the only graphical device for comparing group dis-
tributions over areas ranked on area proportion White (p). The graphs presented here 
contain the same information as the segregation curve and like the segregation curve 
they support a geometric interpretation of the values of G and D. In addition, they 
provide a more direct basis for assessing group differences on residential outcomes 
(y) that are scored to reflect relative rank position on area proportion White (p).

�The Nature of the Y-P Relationship for G

The nature of the y-p relationship for the Gini Index (G) is complex and difficult to 
summarize. Since the relationship is based on a relative rank (percentile or quantile) 
transformation, the y-p relationship is monotonic and positive. But few general 
statements beyond that can be offered.

I have explored the relationship by performing simulation studies to gain insight 
into the nature of the y-p relationship. I cannot provide a full review of these explo-
rations here. But I will provide a brief summary of key points. The simulations 
assumed a model city with the following characteristics. It has 1000 neighborhoods 
with 10,000 persons in each neighborhood and only two groups  – Whites and 
Blacks. I populated individual neighborhoods based on a model segregation curve; 
specifically, a segregation curve defined by the “hyperbola model” described in 
Duncan and Duncan (1955: 213–215). By using the hyperbola model I was able to 
establish particular values of G in a given simulation and thus can vary city racial 
composition (P) and the value of G independently across simulation trials.

Each unique combination of values for P and G produces a unique distribution of 
Whites and Blacks across the neighborhoods of the city. Based on the resulting 
distributions, I calculated the scores of p and y for each neighborhood using proce-
dures outlined earlier. I then performed graphical analyses to gain insight into how 
the y-p relationship varies across different combinations of values for P and G. 
I offer the following to summarize key findings from my explorations.

•	 The relationship between y  – relative rank position on p  – and p is always 
nonlinear.

•	 The value of y always increases as p increases but generally rises faster (has a 
steeper slope) at the beginning and at the end and rises slower (has a shallower 
slope) in between.

•	 The nonlinear y-p relationship is variable, not fixed. Its exact form varies with 
the values of city racial composition (P) and the value of G.

•	 City racial composition (P) determines whether the y-p relationship is symmetri-
cal or asymmetrical. It is symmetrical when P is 50 and increasingly asymmetri-
cal as P departs further from 50.

Appendices



319

•	 The value of G determines whether the nonlinearity in the y-p relationship 
describe above is mild or pronounced. When G is high, the “steeper” portions of 
the y-p curve occur over short ranges on p and the “flatter” portion of the y-p 
curve occurs over an extended range of p. As the value of G declines, the “flatter” 
portion of the y-p curve becomes less distinct from the “steeper” portions of the 
curve.

I conclude this discussion by describing how the principles just listed play out in 
selected example cases. I start with an example for a hypothetical “City A” where 
the racial composition of the city is balanced (i.e., P = 50 ) and the level of segrega-
tion as measured by G is high (i.e., G = 90 ). As shown in the top panel of Appendix 
Fig. C.7, the y-p relationship is symmetrical (because P is 50) and strongly nonlin-

Fig. C.7  Examples of y-p relationship under varying combinations of G and P
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ear (because G is high). Specifically, y rises rapidly over a short portion of the lower 
range for p ( p = −0 15 ); y then rises slowly over an extended portion of the inter-
mediate range of p ( p = −15 85 ); and y then rises rapidly again over a short portion 
of the upper range of p ( p = −85 100 ). More specifically, y increases about 40 
points over the range of 0–20 for p, then increases only 20 points over the range of 
20–80 for p, and then increases another 40 points over the range of 80–100 for p.

The example labeled City B lowers G to 60 but leaves P unchanged at 50. The 
resulting y-p curve is shown in the lower left panel of the figure. The relationship 
remains symmetrical, as in City A, because P is 50. But the lower value for G pro-
duces a less strong nonlinear relationship evident in the fact that the differences 
between the steeper and flatter portions of the curve now are smaller. The example 
labeled City C leaves G unchanged for City A, but increases P to 85, a value more 
typical for US urban areas. The y-p curve continues to have distinct steep and flat 
portions as in City A. But now the curve is asymmetrical with most of the rise in y 
taking place over the last portion of the range of p ( p = −90 100 ).

The pattern seen in City C becomes even more dramatic when relative minority 
group size is at low levels (i.e., below 5) and P is high. This provides a basis for 
understanding a finding that is discussed in Chaps. 6, 7, and 8 of the main text. The 
finding is that scores for G and D can be and often are much higher than scores for 
S when the two groups in the comparison are imbalanced in size. As the pattern for 
City C shows, this possibility arises because the two groups can differ by relative 
small amounts on p – the area outcome that determines S – and at the same time can 
differ by large amounts on y as scored for G and D. The pattern for City A, and 
especially the pattern for City B, yield insight into why discrepancies between G 
and D in comparison with S tend to be much smaller when city racial composition 
is balanced.

�Appendix D: Establishing the Scaling Function y f p= ( )  
Needed to Cast the Separation Index (S) as a Difference 
of Group Means on Scaled Pairwise Contact

In this appendix I establish the scaling function y f p= ( )  that accomplishes the goal 
of scoring residential outcomes (y) from area group proportions (p) such that the 
scores for y fall over the range 0–1 and yield the value of the separation index (S) as 
a difference of means on y for the two groups in the segregation comparison. The 
end result is that, in the example of using S to assess White-Black segregation, 
S Y YW B= −  where YW and YB are the group means for Whites and Blacks, respec-
tively, on individual residential outcomes (y) scored from the value of the area group 
proportion (p) for the areas in which the individuals reside.

The value of p for an area reflects pairwise group contact or exposure. 
Accordingly, the value of y for an area can be described as reflecting scaled pairwise 
group contact or exposure and the expression (Y YW B− ) can described as the differ-
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ence of group means on scaled pairwise group contact. The scaling function 
y f p= ( )  that places S in the desired difference of group means framework is devel-
oped below. The scaling function is simple and substantively attractive. Specifically 
it is the exact one-to-one linear function f p pi i( ) =  which means that S can be 
placed in the difference of means framework without rescaling p from its original or 
“natural” metric of pairwise group contact.

The separation index (S) has been known by many names including: the variance 
ratio index (V, James and Taeuber 1985), the correlation ratio (r, Stearns and Logan 
1986; White 1986), eta squared (η² , Duncan and Duncan 1955; James and Taeuber 
1985), the mean square deviation (MSD, White 1986; Zoloth 1976), rij (Coleman 
et al. 1975), and S (Zoloth 1976; Becker et al. 1978). The index is well established 
in the literature on segregation measurement and has been widely used in empirical 
segregation studies for many decades. S is particularly attractive when cast in the 
difference of means framework used here because S can be expressed as a differ-
ence of means on scaled pairwise group contact where group contact is based on 
area group proportion (p) in its “natural” metric – that is, without rescaling p as is 
required for the other indices considered here.

As best I have been able to determine, Becker et al. (1978: 353) were the first to 
show that in the two group case S can be given as the simple difference between the 
focal group’s contact with itself (i.e., generically, PXX, for White contact with 
Whites, PWW) and the comparison group’s contact with the focal group (i.e., generi-
cally, PYX, for Black contact with Whites, PBW) based on

S P PXX YX= –  in generic form and

S P PWW BW= –  for White-Black segregation.

Note that this relationship holds only when the population consists of only two 
groups and it does not generalize to situations where the population consists of three 
or more groups. The relationship can be adapted to all circumstances by restating 
contact as “pairwise” contact instead of “overall” contact as follows

	 S P PXX XY YX XY= −. . . 	

Here the suffix “.XY” in the subscripts contact indicates that the contact calcula-
tions are based only on the counts of the two groups in the segregation comparison. 
Thus, PXX. XY denotes the focal group’s pairwise contact with itself and PYX. XY 
denotes the comparison group’s pairwise contact with the focal or “reference” 
group.

For White-Black segregation, conventional or “overall” contact indices as intro-
duced by Bell (1954) are given by

	
P W w p W w w tWW i i i i i= ⋅ = ⋅ ( )1 1Σ Σ

	

for White contact with Whites and
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P B b p B b w tBW i i i i i= ⋅ = ⋅ ( )1 1Σ Σ

	

for Black contact with Whites. The corresponding pairwise contact indices are 
given as follows.

	
P W w p W w w w b andWW WB i i i i i i. ,= ⋅ = ⋅ +( )( )1 1Σ Σ

	

	
P B b p B b w w bBW WB i i i i i i. = ⋅ = ⋅ +( )( )1 1Σ Σ

	

The difference key difference between overall and pairwise contact is that 
t w bi i i≠ +( )  when the population includes groups other than Whites and Blacks.

All popular indices of uneven distribution [are usually applied as “pairwise”] 
measures. That is, their calculations draw only on counts for the two groups in the 
segregation comparison. So formulating contact indices in this way is not unusual. 
One simply must bear in mind that contact in this formulation is interpreted in terms 
of the pair of groups involved in the comparison. When the population also includes 
groups other than Whites and Blacks, the separation index is given by

	 S P PWW WB BW WB= −. . 	

where PWW. WB is White’s average pairwise contact with Whites and PBW. WB is Black’s 
average pairwise contact with Whites. When the population consists only of Whites 
and Blacks, the same expression obviously continues to hold but the “. WB” subscript 
is not necessary.

The distinction between overall and pairwise contact is important but it is cum-
bersome. Since all indices of uneven distribution are based on pairwise compari-
sons, I drop the “. XY” suffix notation from this point forward. Thus, for convenience, 
the expression

	 S P PWW BW= – 	

indicates a pairwise construction unless otherwise noted. Likewise, pairwise con-
structions are assumed for city and area proportion White (P and pi, given respec-
tively by P W W B= +( )  and p w w bi i i i= +[ ] ) and city and area proportion 
Black (Q and qi, given respectively as Q B W B= +( )  and q b w bi i i i= +[ ] ). 
These conventions are in keeping with the literature on segregation measurement 
which lets context dictate when area proportion White (pi) should computed using 
“overall” calculations (i.e., p w ti i i= ) or “pairwise” calculations (i.e., 
p w w bi i i i= +[ ] ).

To conclude this discussion, the separation index (S) can be given as the group 
difference of means on average pairwise contact with the reference group. In the 
case of White-Black segregation, S = PWW–PBW. The terms PWW and PBW assess 
White and Black group averages on area proportion White (pi). Setting residential 
outcomes (yi) to the value of area proportion White (pi) allows one to place S in the 
notation of the difference of means framework restating it as S = YW–YB. The next 
sections review terms from the “variance ratio” formulation of S and then demon-

Appendices



323

strates that the differences of means formulation of S and the variance ratio formula-
tion of S are equivalent.

�Variance Analysis

I now consider the relationship S=η²  in more detail. I acknowledge that the expres-
sions and relationships I introduce below are not particularly original. They have 
been noted elsewhere including, for example, in papers by Becker et  al. (1978): 
353) and White (1986:207) and also in statistical texts such as Blalock (1979: 81). 
The contribution of the discussion here is that it collects and calls attention to points 
not emphasized in most previous discussions.

Duncan and Duncan (1955) noted that the separation index (S) (which they 
termed the variance ratio) is equivalent to the eta squared (η² ) statistic from analy-
sis of variance. More specifically, S is equal to η²  for the analysis of how X, an 
individual-level binomial variable for race (coded 1 for Whites and 0 to Blacks), 
varies over areas. The value of S thus indicates the proportion of variation in race 
(X) that is “explained” by area of residence. Under even distribution S will be 0 
because the representation of Whites and Blacks in each area will exactly reflect 
each group’s representation in the city overall and knowledge of area will not 
improve the prediction of race above the baseline of assuming the overall city aver-
age. Under complete segregation S will be 1 because area of residence will be 
homogeneous – either all White or all Black – and thus area will perfectly predict 
race. Intermediate success in prediction is quantified as the ratio BSS/TSS from 
analysis of variance where BSS is the “between group sum of squares” for indi-
vidual deviations from the overall mean and TSS is “total sum of squares” for 
individual deviations from the overall mean. The overall mean for X is the propor-
tion White in the city population (P) so TSS X Pk= ∑ −( ) ²  with k used here to 
index individuals. Predictions for X are based on category means for X which in 
this case are equal to area proportion White (pi) so BSS p Pik= ∑ −( ) ²  with i here 
serving to index areas. Finally, for completeness, inability to explain X is quanti-
fied by WSS/TSS where WSS is the “within group sum of squares” given by 
WSS X pi ik=∑ −( ) ².

It is useful to note at this point that the value of η²  also is equal to the square of 
the individual-level bivariate correlation of race (X) and area proportion White (pi). 
Thus, one can interpret S as indicating the degree to which race determines area 
proportion White (p) for individuals as quantified by r²  from the regression of pi on 
X or of η²  from the analysis of how pi varies by race. Either way, it is clear that the 
value of S revolves around the impact of race on contact with Whites at the indi-
vidual level as reflected in the White-Black difference of means in contact with 
Whites (pi). Under even distribution explanation S will be 0 because all p Pi =  so 
the White and Black means for contact with Whites (pi) are the same and knowledge 
of race will not improve the prediction of contact with Whites (p) above the baseline 
of assuming the overall city average (P). Under complete segregation S will be 1 
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because race will perfectly predict contact with Whites with all Whites living in 
areas where pi =1  and all Blacks living in areas where pi =0.

The more general relationship including intermediate outcomes is set forth in 
more detail below. Relevant relationships from analysis of variance can be summa-
rized as follows.

	 TSS BSS WSS= + 	

	 η²=BSS TSS 	

	 η²= −1 WSS TSS 	

	
TSS X Pik= −( )ΣΣ ²

	

	
WSS X pik i= −( )ΣΣ ²

	

	
BSS t p Pi i= ( )Σ – ²

	

with “i” serving as an index of areas and “k” serving as an index of individuals 
within areas.

The following expressions are adapted from discussions in White (1986: 207) 
and Becker et al. (1978: 353) and indicate how TSS, WSS, and BSS also can be 
obtained from terms that found in standard computing formulas for S.

	 TSS TPQ= 	

	 BSS t p TPi i=Σ ² – ² 	

	 WSS t p qi i i=Σ 	

	
BSS TSS TPQ t p TPi i= ( )−1 2 2Σ

	

The basis for the three expressions is established as follows. First, the equivalence 
of TSS and TPQ can be established as follows based on Whites and Blacks being 
scored 0 and 1 on race (X).

TSS X Pik= −( )Σ ² (a standard formula for TSS)

 � = −( ) + −( )W P B P1 0² ² (restate as separate operations for Whites  
and Blacks)

 � = −( ) + −( )TP P TQ P1 0² ² (replace W with TP and B with TQ)

 � = + −( )TPQ TQ P² ²0 (replace (1 − P)2 with Q2)

 � = +TPQ TQP² ² (replace (0 − P)2 with P2)

 � = ( )+ ( )TPQ Q TPQ P (reorganize terms)

 � = +( )TPQ Q P (reorganize terms)

TSS TPQ= (based on Q P+ =1 )
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Next, the equivalence of WSS and Σ tipiqi can be established as follows.

WSS X pik i= −( )ΣΣ ² (standard formula for WSS)

 � = −( ) + −( )Σ Σw p b pi i i i1 0² ² (restate as separate operations for Whites  
and Blacks)

 � = −( ) + −( )Σ Σt p p t q pi i i i i i1 0² ² (replace wi with tipi and bi with tiqi)

 � = ( ) + −( )Σ Σt p q t q pi i i i i i² ²0 (replace 1− pi  with qi)

 � = +Σ Σt p q t q pi i i i i i² ² (replace 0 −( )pi ²  with pi ² )

 � = ( )+ ( )Σ Σt p q q t p q pi i i i i i i i (reorganize terms)

 � = +( )Σ t p q q pi i i i i (reorganize terms)

WSS t p qi i i=Σ (based on q pi i+ =1 )

Then the equivalence of BSS and Σ t p TPi i ² – ²  can be established as follows

BSS t p Pi i= ( )Σ – ² (standard formula for BSS)

 � = +( )Σ t p p P Pi i i² – ²2 (multiply out p Pi −( ) ² )

 � = +Σ Σ Σt p t p P t Pi i i i i² – ²2 (reorganize as multiple summations)

 � = ⋅ + ⋅Σ Σ Σt p P t p P ti i i i i² – ²2 (move constants outside of summations)

 � = +Σ Σt p P t p TPi i i i² – ²2 (substitute T for Σ ti)

 � = +Σ t p PTP TPi i ² – ²2 (substitute TP for Σ tipi based  
on P t p Ti i= Σ )

 � = +Σ t p TP TPi i ² – ² ²2 (reorganize terms)

BSS t p TPi i=Σ ² – ² (combine terms)

From these expressions, η2 and S can be obtained from the following computing 
formulas

	 S BSS TSS= =η² 	

	
S t p P TPQi i= = −( )η Σ² ² ² .
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�Formulation as a Difference of Means

S also can obtained from the simple difference between pairwise White contact with 
Whites (PWW) and pairwise Black contact with Whites (PBW); that is, S P PWW BW= – .  
Because yi for S is scored directly from pi, YW = PWW and YB = PBW and the following 
equalities hold.

	 Y Y BSS TSSW B– = 	

	 P P TSSWW BW– = BSS 	

I provide a derivation establishing these equivalences below. I initially developed 
the derivation independently. However, I later discovered that a similar derivation 
had been given in Becker et al. (1978: 353).

S Y Y
P P

W B

WW BW

=
=

–
–

(follows because yi = pi)

= ( ) −( )Σ Σw p W b p Bi i i i (standard expressions for PWW  
& PBW)

= ( ) − ( )Σ Σt p p W t p q Bi i i i i i (replace wi with tipi and bi with tiqi)

=( ) − ( )Σ Σt p TP t p q TQi i i i i² (replace W with TP and B with TQ)

=( )( ) −( ) ⋅Q Q t p TP P P t p q TQi i i i iΣ Σ2 ) (introduce 1 in the form of Q/Q  
and P/P)

= ⋅( ) − ⋅( )Q t p TPQ P t p q TPQi i i i iΣ Σ² (reorganize terms)

= ⋅ − ⋅( )Q t p P t p q TPQi i i i iΣ Σ² (reorganize terms)

= ⋅ − ⋅ −( ) Q t p P t p p TPQi i i i iΣ Σ² 1 (reorganize terms)

= ⋅ − ⋅ − ⋅( ) Q t p P t p P t p TPQi i i i i iΣ Σ Σ² ² (restate P t p pi i i⋅ −( )Σ 1   
as P t p P t pi i i i⋅ − ⋅Σ Σ ² )

= ⋅ + ⋅ − ⋅( )Q t p P t p P t p TPQi i i i i iΣ Σ Σ² ² (reorganize terms)

= +( ) ⋅ − ⋅ P Q t p P t p TPQi i i iΣ Σ² (reorganize terms)

= − ⋅( )Σ Σt p P t p TPQi i i i² ((P + Q = 1 and drops out)

= − ⋅( )Σ t p P TP TPQi i ² (substitute TP for Σ tipi)

= −( )Σ t p TP TPQi i ² ² (reorganize terms)

S BSS TSS= (substitute BSS for Σ t p TPi i ² ²−   
and TSS for TPQ as established  
earlier)
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As a last comment, I note that the discussion here shows that S simultaneously 
registers two separate and distinct aspects of the relationship between race and con-
tact with Whites (p).

•	 Under the traditional eta squared or variance ratio interpretation, S indicates the 
strength of the association between race (i.e., group membership) and contact 
with Whites (p).

•	 Under the new interpretation of S as a difference of group means for contact with 
Whites, S indicates the “impact” or “effect” of race (i.e., group membership) on 
contact with Whites.

Thus, S equals both the regression coefficient (b) for race and the square of the cor-
relation coefficient (r) from the bivariate regression analysis predicting contact with 
Whites (pi) based on race (X). Interestingly, both options allow for applying signifi-
cance tests for the value of S.

�Appendix E: Establishing the Scaling Function y =f p( )  Needed 
to Cast the Theil Entropy Index (H) as a Difference of Group 
Means on Scaled Pairwise Contact

In this appendix I establish the scaling function y f p= ( )  that accomplishes the goal 
of scoring residential outcomes (y) from area group proportions (p) such that the 
scores for y fall over the range 0–1 and yield the value of the Theil entropy index 
(H) as a difference of means on y for the two groups in the segregation comparison. 
The end result is that, in the example of using H to assess White-Black segregation, 
H Y YW B= −  where YW and YB are the group means for Whites and Blacks, respec-
tively, on individual residential outcomes (y) scored from the value of the area group 
proportion (p) for the areas in which the individuals reside.

The scaling function y f p= ( )  that places H in the difference of group means 
framework is developed below. Discussion of this function in the main body of this 
monograph notes that y is a smooth continuous, nonlinear transformation of p that 
changes p from its original or “natural” metric to a new metric that exaggerates 
group differences on p over portions of the lower and upper ranges of p (i.e., roughly 
p<0 25.  and p > 0 75. ) and compresses group differences on p over middle por-
tions of the range of p (i.e., roughly 0 30 0 70. .< <p ).

Please note that the primary credit for discovering the scaling function for H 
should be given to Warner Henson, III. Warner derived the first version of the scal-
ing function for H while working with me as an undergraduate research fellow 
completing his BS in sociology at Texas A&M University.10 I have subsequently 
added refinements and extensions to his work to serve the needs of this monograph, 

10 That was in the 2007. Soon after, Mr. Henson graduated and enrolled in the Sociology doctoral 
program at Stanford University.
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but these are minor changes. Mr. Henson established the essential features of the 
derivation.

Continuing with the familiar example of White-Black segregation, a basis for 
scoring residential outcomes (y) such that the scores of y fall over the same range as 
p (i.e., 0–1) and yield the Theil index (H) as the difference of means (Y YW B− ) can 
be established as follows. First, start with the desired equivalence

	
H Y Y T t E e EW B i i= − = ( ) ⋅ −( )1 Σ .

	

The expression on the far right side is an adaptation of the formula for H given in 
James and Taeuber (1985). Next replace the terms YW and YB with alternative com-
puting expressions as follows

	
1 1 1W w y B b y T t E e Ei i i i i i( ) ⋅ −( ) ⋅ = ( ) ⋅ −( )Σ Σ Σ .

	

Then replace W and B with alternative expressions based on T, P, and Q. Specifically, 
replace W with PT and replace B with QT. Similarly, replace wi and bi with alterna-
tive expressions based on ti, pi, and qi. Specifically, replace wi with piti and bi with 
qiti. This yields

	
1 1 1PT p t y QT q t y T t E e Ei i i i i i i i( ) ⋅ −( ) ⋅ =( ) ⋅ −( )Σ Σ Σ .

	

Then rearrange terms as follows

	
1 1 1T p P t y T q Q t y T t E e Ei i i i i i i i( ) ⋅ ( ) −( ) ⋅ ( ) = ( ) ⋅ −( )Σ Σ Σ

	

	
Σ Σ Σp P t y q Q t y t E e Ei i i i i i i i( ) − ( ) = −( ) 	

	
Σ Σt y p P q Q t E e Ei i i i i i( )−( )  = −( )

	

	
Σ Σt y t E e E p P q Qi i i i i i= −( )  −( )⋅

	

From the above expression, it is evident that

	
y E e E p P q Qi i i i= −( ) −( )  .

	

For actual calculations, E and ei would be expanded to their full expressions using 
the following substitutions

	
E P P Q Q and= ⋅ ( ) + ⋅ ( )ln ln ,1 1

	

	
e p p q qi i i i i= ⋅ ( )+ ⋅ ( )ln ln .1 1
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�Adjusting the Range to 0–1

At this point a small additional adjustment is needed. The scores for yi will yield H 
as a difference of group means thus achieving one important goal of the exercise. 
However, the scores for y will not fall in the range 0–1. They instead will fall in the 
range –Q to P as pi varies from its minimum value of 0 to its maximum value of 1. 
This is because, when pi is either 0 or 1, ei evaluates to 0 and the term E e Ei−( )  
evaluates to 1. This reduces the expression

	
y E e E p P q Qi i i i= −( ) −( )  .

	

to

	
y p P q Qi i i= ( )−( ) 1 .

	

When pi is 0, this expression becomes

	
y P Qi = ( )−( ) 1 0 1

	

which evaluates to -Q. Similarly, when pi is 1, the resulting expression is

	
y P Qi = ( )−( ) 1 1 0

	

which evaluates to P.
The range for y can therefore be set to 0–1 by incorporating the constant Q in the 

function as follows

	
y Q E e E p P q Qi i i i= + −( ) −( )  .

	

This achieves the desired solution.

�A Loose End When p P=

There is a final issue to deal with. Interestingly, the value of yi is undefined when pi 

is exactly equal to P. This is because the term ( )p P q Qi i−  will then be 0 and the 

same also will be true of the term [ E e Ei−( ) / ]. Thus the expression 
E e E p P q Qi i i−( ) −( )   will be undefined because it involves division by zero. 

As a practical matter, exact equality of pi and P is very rare in conventional empiri-
cal analyses of residential segregation in urban areas. Nevertheless, it is a logical 
possibility that it can occur in empirical studies of segregation and it is certainly 
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likely to occur in methodological analyses and simulation studies. So it is necessary 
to establish a procedure for handling this situation.

The procedure I adopt is the following: when pi is exactly P, assign a value for y 
based on the limiting values of y obtained by taking values of pi that are arbitrarily 
close to P, but are just short of reaching exactly P. For example, the value of y can 
be established in this way by averaging the two values of y obtained 
using  p Pi = −0 0000001.  and p Pi = + 0 0000001. . The two values of y will be 
exceedingly close; so close in fact that a graph of the y-p relationship will appear as 
a smooth, continuous function in which y rises monotonically as p ranges from 0 to 
1 with only an arbitrarily small “break” in the line at the exact point where p P.i =  
The procedure suggested here would simply fill in this one point on the line. I offer 
this as a reasonable, practical strategy to follow until a better alternative is 
identified.

�Appendix F: Establishing the Scaling Function y f p= ( )  Needed 
to Cast the Hutchens’ Square Root Index (R) as a Difference 
of Group Means on Scaled Pairwise Contact

In this appendix I establish the scaling function y f p= ( )  that accomplishes the goal 
of scoring residential outcomes (y) from area group proportions (p) such that the 
scores for y fall over the range 0–1 and yield the value of the Hutchens Square Root 
Index (R) as a difference of means on y for the two groups in the segregation com-
parison. The result is that, in the example of using R to assess White-Black segrega-
tion, R Y YW B= −  where YW and YB are the group means for Whites and Blacks, 
respectively, on individual residential outcomes (y) scored from the value of the 
area group proportion (p) for the areas in which the individuals reside.

The scaling function y f p= ( )  that places R in the differences of group means 
framework is developed below. Discussion of this function in the main body of this 
monograph notes that y is a nonlinear transformation of p that changes p from its 
original or “natural” metric to a new metric that exaggerates group differences on 
p  over portions of the lower and upper ranges of p (i.e., roughly p < 0 25.  and 
p > 0 75. ) and compresses group differences on p over middle portions of the range 
of p (i.e., roughly 0 30 0 70. .< <p ). The scaling function for R is very similar in 
shape and behavior to the scaling function for the Theil Entropy index (H). The 
main difference is that the nonlinearity in the scaling function for R is more pro-
nounced; that is, it departs from linearity in the same basic manner as the scaling 
function for H, but the magnitude (amplitude) of the departure from linearity is 
consistently larger.

To establish the function y f p= ( ) , start with the desired equivalence

	 Y Y RW B− = . 	
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Next replace R with an expression adapted from the formula for R given in Hutchens 
(2001, 2004).

	
Y YW B− = − ( )( )1 Σ w W b Bi i .

	

Next replace YW and YB with the terms of their computing formulas as follows

	
1 1 1W w y B b yi i i i⋅ − ⋅ = − ( )( )Σ Σ Σ w W b Bi i .

	

Then replace W and B with expressions based on T, P, and Q. Similarly, replace wi 
and bi with expressions based on ti, pi, and qi to obtain

	
1 1 1PT p t y QT q t yi i i i i i⋅ − ⋅ = − ( )( )Σ Σ Σ p t PT q t QTi i i i .

	

Then rearrange terms as follows. First, on the right side isolate ( t Ti ² / ² ) inside the 
radical

	
1 1 1 2 2PT p t y QT q t yi i i i i i⋅ − ⋅ = − ( )( )( )Σ Σ Σ t T p P q Qi i i/ / .

	

Then move ( t Ti ² / ² ) outside of the radical as (ti /T) and then restate it as ti (1/T) to 
obtain

	
1 1 1PT p t y QT q t y t Ti i i i i i i⋅ − ⋅ = − ( ) ( )( )Σ Σ Σ p P q Qi i 	

Restate p P q Qi i( )( )  as p q PQi i  to obtain

	
1 1 1 1PT p t y QT q t y t Ti i i i i i i⋅ − ⋅ = − ( )Σ Σ Σ p q PQi i .

	

On the left side move P and Q inside the summations

	
1 1 1 1T p P t y q Q t y t Ti i i i i i i⋅ ( ) − ⋅ ( ) = − ( ) ⋅Σ Σ Σ p q PQi i 	

On the right side replace 1 with the equivalent expression Σ  ti (1/T) and replace 
(ti /T) with ti (1/T)

	
1 1 1 1T p P t y T q Q t y t T t Ti i i i i i i i⋅ ( ) − ⋅ ( ) = ( )− ( ) ⋅Σ Σ Σ Σ p q PQi i .

	

Next reorganize on both sides

	
1 1 1T p P t y q Q t y t T Ti i i i i i i⋅ ( ) − ( )  = − ⋅( )Σ Σ Σ p q PQi i .
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Next multiply both sides by T as follows

	
Σ Σ Σp P t y q Q t y T t T Ti i i i i i i( ) − ( ) = ⋅ −( )



1 1 p q PQi i .

	

Then move T inside the summation on the right side to obtain

	
Σ Σ Σp P t y q Q t y ti i i i i i i( ) − ( ) = −( )1 p q PQi i .

	

Next reorganize terms on the left side.

	
Σ Σt y p P q Q ti i i i i( )−( )  = −( )1 p q PQi i .

	

Then divide both sides by [ p P q Qi i( ) − ( ) ]

	
Σ Σt y t p P q Qi i i i i= −( ) −( )1 p q PQi i .

	

From the last expression, it is clear that

	
y p P q Qi i i= −( ) −( )1 p q PQi i .

	

�Adjusting the Range to 0–1

An additional adjustment is required. Under the last expression, the scores for y will 
yield R as a difference of group means. However, the scores for y will not fall in the 
range 0-1 as desired. Instead, values of yi will range from –Q to P as pi varies from 
its minimum value of 0 to its maximum value of 1. That is, the expression

	
y p P q Qi i i= −( ) −( )1 p q PQi i 	

yields − Q when pi is 0 and P when pi is 1. Accordingly, the range for y can be set to 
0–1 by incorporating the constant Q in the function as follows

	
y Q p P q Qi i i= + −( ) −( )1 p q PQi i 	

�A Loose End When p P==

One final matter requires attention. It is that yi is undefined when pi is exactly equal 
to P because the term [(pi/P) – (qi/Q)] will then be 0. Thus the expression
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1−( ) −( )p q PQi i p P q Qi i 	

will be undefined because it will involve division by zero. As a practical matter, 
exact equality of pi and P is very rare in conventional empirical analyses of residen-
tial segregation in urban areas. Nevertheless, it is a logical possibility in empirical 
studies and it is especially likely to occur in methodological analyses and simula-
tion studies. So it is necessary to establish a procedure for handling this situation.

The option I adopt is as follows: when pi is exactly P, assign a value for y based 
on the limiting values of y obtained by taking values of pi that are arbitrarily  
close to P, but are not exactly P. For example, the value of y can be established 
in  this way by averaging the two values of y obtained using p Pi = −0 0000001.  
and  p Pi = + 0 0000001. . The two values of y will be exceedingly close; so close in 
fact that a graph of the y-p relationship will be a smooth, continuous function in 
which y rises monotonically as p ranges from 0 to 1 with only an arbitrarily small 
“break” in the line at the exact point where p Pi = . The procedure suggested here 
simply fills in this one point on the line. I offer this as a reasonable, practical strat-
egy to follow until a better solution is identified. When this approach is adopted, an 
interesting regularity is observed; the value of y always converges on 0.50 when pi 
is set arbitrarily close to P.

�An Observation

There is another interesting regularity in the y−p relationship. It is that y is always 
equal to Q when p Q.i =  The basis for this regularity is that the expression 
p q PQi i  takes the value of 1 when p Q.i =  Accordingly, the expression

	
1−( ) −( )p q PQi i p P q Qi i 	

takes the value of 0, yielding the result of y Q.=  The one exception is when Q is 
0.5. In that situation, P also is 0.5 and y is undefined as just described above. 
However, the above procedure of substituting 0.5 for y when p Pi =  also produces 
a result consistent with the regularity that y Q=  when p Q.i =
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