
5Nonlinear Problems

5.1 Introduction of Basic Concepts

5.1.1 Linear Versus Nonlinear Equations

Algebraic equations A linear, scalar, algebraic equation in x has the form

ax C b D 0;

for arbitrary real constants a and b. The unknown is a number x. All other algebraic
equations, e.g., x2 C ax C b D 0, are nonlinear. The typical feature in a nonlinear
algebraic equation is that the unknown appears in products with itself, like x2 or
ex D 1C x C 1

2
x2 C 1

3Š
x3 C : : :

We know how to solve a linear algebraic equation, x D �b=a, but there are no
general methods for finding the exact solutions of nonlinear algebraic equations,
except for very special cases (quadratic equations constitute a primary example). A
nonlinear algebraic equation may have no solution, one solution, or many solutions.
The tools for solving nonlinear algebraic equations are iterative methods, where we
construct a series of linear equations, which we know how to solve, and hope that
the solutions of the linear equations converge to a solution of the nonlinear equation
we want to solve. Typical methods for nonlinear algebraic equation equations are
Newton’s method, the Bisection method, and the Secant method.

Differential equations The unknown in a differential equation is a function and
not a number. In a linear differential equation, all terms involving the unknown
function are linear in the unknown function or its derivatives. Linear here means
that the unknown function, or a derivative of it, is multiplied by a number or a
known function. All other differential equations are non-linear.

The easiest way to see if an equation is nonlinear, is to spot nonlinear terms
where the unknown function or its derivatives are multiplied by each other. For
example, in

u0.t/ D �a.t/u.t/C b.t/;
the terms involving the unknown function u are linear: u0 contains the derivative of
the unknown function multiplied by unity, and au contains the unknown function

353© The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_5

354 5 Nonlinear Problems

multiplied by a known function. However,

u0.t/ D u.t/.1 � u.t//;

is nonlinear because of the term �u2 where the unknown function is multiplied by
itself. Also

@u

@t
C u@u

@x
D 0;

is nonlinear because of the term uux where the unknown function appears in a
product with its derivative. (Note here that we use different notations for derivatives:
u0 or du=dt for a function u.t/ of one variable, @u

@t
or ut for a function of more than

one variable.)
Another example of a nonlinear equation is

u00 C sin.u/ D 0;

because sin.u/ contains products of u, which becomes clear if we expand the func-
tion in a Taylor series:

sin.u/ D u � 1
3
u3 C : : :

Mathematical proof of linearity
To really prove mathematically that some differential equation in an unknown u
is linear, show for each term T .u/ that with u D au1Cbu2 for constants a and b,

T .au1 C bu2/ D aT .u1/C bT .u2/ :

For example, the term T .u/ D .sin2 t/u0.t/ is linear because

T .au1 C bu2/ D .sin2 t/.au1.t/C bu2.t//
D a.sin2 t/u1.t/C b.sin2 t/u2.t/
D aT .u1/C bT .u2/ :

However, T .u/ D sin u is nonlinear because

T .au1 C bu2/ D sin.au1 C bu2/ ¤ a sinu1 C b sinu2 :

5.1.2 A Simple Model Problem

A series of forthcoming examples will explain how to tackle nonlinear differential
equations with various techniques. We start with the (scaled) logistic equation as
model problem:

u0.t/ D u.t/.1 � u.t// : (5.1)

This is a nonlinear ordinary differential equation (ODE) which will be solved by
different strategies in the following. Depending on the chosen time discretization
of (5.1), the mathematical problem to be solved at every time level will either be a
linear algebraic equation or a nonlinear algebraic equation. In the former case, the

5.1 Introduction of Basic Concepts 355

time discretization method transforms the nonlinear ODE into linear subproblems
at each time level, and the solution is straightforward to find since linear algebraic
equations are easy to solve. However, when the time discretization leads to nonlin-
ear algebraic equations, we cannot (except in very rare cases) solve these without
turning to approximate, iterative solution methods.

The next subsections introduce various methods for solving nonlinear differen-
tial equations, using (5.1) as model. We shall go through the following set of cases:

� explicit time discretization methods (with no need to solve nonlinear algebraic
equations)

� implicit Backward Euler time discretization, leading to nonlinear algebraic equa-
tions solved by
– an exact analytical technique
– Picard iteration based on manual linearization
– a single Picard step
– Newton’s method

� implicit Crank-Nicolson time discretization and linearization via a geometric
mean formula

Thereafter, we compare the performance of the various approaches. Despite the
simplicity of (5.1), the conclusions reveal typical features of the various methods in
much more complicated nonlinear PDE problems.

5.1.3 Linearization by Explicit Time Discretization

Time discretization methods are divided into explicit and implicit methods. Explicit
methods lead to a closed-form formula for finding new values of the unknowns,
while implicit methods give a linear or nonlinear system of equations that couples
(all) the unknowns at a new time level. Here we shall demonstrate that explicit
methods constitute an efficient way to deal with nonlinear differential equations.

The Forward Euler method is an explicit method. When applied to (5.1), sampled
at t D tn, it results in

unC1 � un
�t

D un.1 � un/;
which is a linear algebraic equation for the unknown value unC1 that we can easily
solve:

unC1 D un C�t un.1 � un/ :
In this case, the nonlinearity in the original equation poses no difficulty in the dis-
crete algebraic equation. Any other explicit scheme in time will also give only
linear algebraic equations to solve. For example, a typical 2nd-order Runge-Kutta
method for (5.1) leads to the following formulas:

u
 D un C�tun.1 � un/;
unC1 D un C�t 1

2
.un.1 � un/C u
.1 � u
/// :

The first step is linear in the unknown u
. Then u
 is known in the next step, which
is linear in the unknown unC1 .

356 5 Nonlinear Problems

5.1.4 Exact Solution of Nonlinear Algebraic Equations

Switching to a Backward Euler scheme for (5.1),

un � un�1
�t

D un.1 � un/; (5.2)

results in a nonlinear algebraic equation for the unknown value un. The equation is
of quadratic type:

�t.un/2 C .1 ��t/un � un�1 D 0;
and may be solved exactly by the well-known formula for such equations. Be-
fore we do so, however, we will introduce a shorter, and often cleaner, notation
for nonlinear algebraic equations at a given time level. The notation is inspired by
the natural notation (i.e., variable names) used in a program, especially in more
advanced partial differential equation problems. The unknown in the algebraic
equation is denoted by u, while u.1/ is the value of the unknown at the previous
time level (in general, u.`/ is the value of the unknown ` levels back in time). The
notation will be frequently used in later sections. What is meant by u should be
evident from the context: u may either be 1) the exact solution of the ODE/PDE
problem, 2) the numerical approximation to the exact solution, or 3) the unknown
solution at a certain time level.

The quadratic equation for the unknown un in (5.2) can, with the new notation,
be written

F.u/ D �tu2 C .1 ��t/u � u.1/ D 0 : (5.3)

The solution is readily found to be

u D 1

2�t

�
�1C�t ˙

q
.1 ��t/2 � 4�tu.1/

�
: (5.4)

Now we encounter a fundamental challenge with nonlinear algebraic equations:
the equation may have more than one solution. How do we pick the right solution?
This is in general a hard problem. In the present simple case, however, we can
analyze the roots mathematically and provide an answer. The idea is to expand the
roots in a series in �t and truncate after the linear term since the Backward Euler
scheme will introduce an error proportional to �t anyway. Using sympy, we find
the following Taylor series expansions of the roots:

>>> import sympy as sym
>>> dt, u_1, u = sym.symbols(’dt u_1 u’)
>>> r1, r2 = sym.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
>>> r1
(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> r2
(dt + sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> print r1.series(dt, 0, 2) # 2 terms in dt, around dt=0
-1/dt + 1 - u_1 + dt*(u_1**2 - u_1) + O(dt**2)
>>> print r2.series(dt, 0, 2)
u_1 + dt*(-u_1**2 + u_1) + O(dt**2)

5.1 Introduction of Basic Concepts 357

We see that the r1 root, corresponding to a minus sign in front of the square root in
(5.4), behaves as 1=�t and will therefore blow up as �t ! 0! Since we know that
u takes on finite values, actually it is less than or equal to 1, only the r2 root is of
relevance in this case: as �t ! 0, u! u.1/, which is the expected result.

For those who are not well experiencedwith approximatingmathematical formu-
las by series expansion, an alternative method of investigation is simply to compute
the limits of the two roots as �t ! 0 and see if a limit appears unreasonable:

>>> print r1.limit(dt, 0)
-oo
>>> print r2.limit(dt, 0)
u_1

5.1.5 Linearization

When the time integration of an ODE results in a nonlinear algebraic equation,
we must normally find its solution by defining a sequence of linear equations and
hope that the solutions of these linear equations converge to the desired solution of
the nonlinear algebraic equation. Usually, this means solving the linear equation
repeatedly in an iterative fashion. Alternatively, the nonlinear equation can some-
times be approximated by one linear equation, and consequently there is no need
for iteration.

Constructing a linear equation from a nonlinear one requires linearization of
each nonlinear term. This can be done manually as in Picard iteration, or fully al-
gorithmically as in Newton’s method. Examples will best illustrate how to linearize
nonlinear problems.

5.1.6 Picard Iteration

Let us write (5.3) in a more compact form

F.u/ D au2 C buC c D 0;

with a D �t , b D 1 ��t , and c D �u.1/. Let u� be an available approximation
of the unknown u. Then we can linearize the term u2 simply by writing u�u. The
resulting equation, OF .u/ D 0, is now linear and hence easy to solve:

F.u/ � OF .u/ D au�uC buC c D 0 :

Since the equation OF D 0 is only approximate, the solution u does not equal the
exact solution ue of the exact equation F.ue/ D 0, but we can hope that u is closer
to ue than u� is, and hence it makes sense to repeat the procedure, i.e., set u� D u
and solve OF .u/ D 0 again. There is no guarantee that u is closer to ue than u�, but
this approach has proven to be effective in a wide range of applications.

The idea of turning a nonlinear equation into a linear one by using an approx-
imation u� of u in nonlinear terms is a widely used approach that goes under

358 5 Nonlinear Problems

many names: fixed-point iteration, the method of successive substitutions, non-
linear Richardson iteration, and Picard iteration. We will stick to the latter name.

Picard iteration for solving the nonlinear equation arising from the Backward
Euler discretization of the logistic equation can be written as

u D � c

au� C b ; u� u :

The symbols means assignment (we set u� equal to the value of u). The iteration
is started with the value of the unknown at the previous time level: u� D u.1/.

Some prefer an explicit iteration counter as superscript in the mathematical no-
tation. Let uk be the computed approximation to the solution in iteration k. In
iteration k C 1 we want to solve

aukukC1 C bukC1 C c D 0) ukC1 D � c

auk C b ; k D 0; 1; : : :

Since we need to perform the iteration at every time level, the time level counter is
often also included:

aun;kun;kC1 C bun;kC1 � un�1 D 0) un;kC1 D un

aun;k C b ; k D 0; 1; : : : ;

with the start value un;0 D un�1 and the final converged value un D un;k for suffi-
ciently large k.

However, we will normally apply a mathematical notation in our final formulas
that is as close as possible to what we aim to write in a computer code and then it
becomes natural to use u and u� instead of ukC1 and uk or un;kC1 and un;k .

Stopping criteria The iteration method can typically be terminated when the
change in the solution is smaller than a tolerance
u:

ju � u�j �
u;
or when the residual in the equation is sufficiently small (<
r),

jF.u/j D jau2 C buC cj <
r :
A single Picard iteration Instead of iterating until a stopping criterion is fulfilled,
one may iterate a specific number of times. Just one Picard iteration is popular as
this corresponds to the intuitive idea of approximating a nonlinear term like .un/2

by un�1un. This follows from the linearization u�un and the initial choice of u� D
un�1 at time level tn. In other words, a single Picard iteration corresponds to using
the solution at the previous time level to linearize nonlinear terms. The resulting
discretization becomes (using proper values for a, b, and c)

un � un�1
�t

D un.1 � un�1/; (5.5)

which is a linear algebraic equation in the unknown un, making it easy to solve for
un without any need for an alternative notation.

5.1 Introduction of Basic Concepts 359

We shall later refer to the strategy of taking one Picard step, or equivalently,
linearizing terms with use of the solution at the previous time step, as the Picard1
method. It is a widely used approach in science and technology, but with some
limitations if �t is not sufficiently small (as will be illustrated later).

Notice
Equation (5.5) does not correspond to a “pure” finite difference method where
the equation is sampled at a point and derivatives replaced by differences (be-
cause the un�1 term on the right-hand side must then be un). The best interpreta-
tion of the scheme (5.5) is a Backward Euler difference combined with a single
(perhaps insufficient) Picard iteration at each time level, with the value at the
previous time level as start for the Picard iteration.

5.1.7 Linearization by a Geometric Mean

We consider now a Crank-Nicolson discretization of (5.1). This means that the time
derivative is approximated by a centered difference,

ŒDtu D u.1 � u/�nC 1
2 ;

written out as
unC1 � un

�t
D unC 1

2 � .unC 1
2 /2 : (5.6)

The term unC
1
2 is normally approximated by an arithmetic mean,

unC
1
2 � 1

2
.un C unC1/;

such that the scheme involves the unknown function only at the time levels where
we actually intend to compute it. The same arithmetic mean applied to the nonlinear
term gives

.unC
1
2 /2 � 1

4
.un C unC1/2;

which is nonlinear in the unknown unC1. However, using a geometric mean for
.unC

1
2 /2 is a way of linearizing the nonlinear term in (5.6):

.unC
1
2 /2 � ununC1 :

Using an arithmetic mean on the linear unC
1
2 term in (5.6) and a geometric mean

for the second term, results in a linearized equation for the unknown unC1:

unC1 � un
�t

D 1

2
.un C unC1/C ununC1;

which can readily be solved:

unC1 D 1C 1
2
�t

1C�tun � 1
2
�t
un :

360 5 Nonlinear Problems

This scheme can be coded directly, and since there is no nonlinear algebraic equa-
tion to iterate over, we skip the simplified notation with u for unC1 and u.1/ for
un. The technique with using a geometric average is an example of transforming a
nonlinear algebraic equation to a linear one, without any need for iterations.

The geometric mean approximation is often very effective for linearizing
quadratic nonlinearities. Both the arithmetic and geometric mean approxima-
tions have truncation errors of order �t2 and are therefore compatible with the
truncation error O.�t2/ of the centered difference approximation for u0 in the
Crank-Nicolson method.

Applying the operator notation for the means and finite differences, the lin-
earized Crank-Nicolson scheme for the logistic equation can be compactly ex-
pressed as h

Dtu D ut C u2t;g
inC 1

2
:

Remark
If we use an arithmetic instead of a geometric mean for the nonlinear term in
(5.6), we end up with a nonlinear term .unC1/2. This term can be linearized as
u�unC1 in a Picard iteration approach and in particular as ununC1 in a Picard1
iteration approach. The latter gives a scheme almost identical to the one arising
from a geometric mean (the difference in unC1 being 1

4
�tun.unC1 � un/ �

1
4
�t2u0u, i.e., a difference of size �t2).

5.1.8 Newton’s Method

The Backward Euler scheme (5.2) for the logistic equation leads to a nonlinear
algebraic equation (5.3). Now we write any nonlinear algebraic equation in the
general and compact form

F.u/ D 0 :
Newton’s method linearizes this equation by approximating F.u/ by its Taylor se-
ries expansion around a computed value u� and keeping only the linear part:

F.u/ D F.u�/C F 0.u�/.u � u�/C 1

2
F 00.u�/.u � u�/2 C � � �

� F.u�/C F 0.u�/.u � u�/ D OF .u/ :

The linear equation OF .u/ D 0 has the solution

u D u� � F.u�/
F 0.u�/

:

Expressed with an iteration index in the unknown, Newton’s method takes on the
more familiar mathematical form

ukC1 D uk � F.uk/

F 0.uk/
; k D 0; 1; : : :

5.1 Introduction of Basic Concepts 361

It can be shown that the error in iteration k C 1 of Newton’s method is pro-
portional to the square of the error in iteration k, a result referred to as quadratic
convergence. This means that for small errors the method converges very fast, and
in particular much faster than Picard iteration and other iteration methods. (The
proof of this result is found in most textbooks on numerical analysis.) However, the
quadratic convergence appears only if uk is sufficiently close to the solution. Fur-
ther away from the solution the method can easily converge very slowly or diverge.
The reader is encouraged to do Exercise 5.3 to get a better understanding for the
behavior of the method.

Application of Newton’s method to the logistic equation discretized by the Back-
ward Euler method is straightforward as we have

F.u/ D au2 C buC c; a D �t; b D 1 ��t; c D �u.1/;
and then

F 0.u/ D 2auC b :
The iteration method becomes

u D u� C a.u�/2 C bu� C c
2au� C b ; u� u : (5.7)

At each time level, we start the iteration by setting u� D u.1/. Stopping criteria as
listed for the Picard iteration can be used also for Newton’s method.

An alternative mathematical form, where we write out a, b, and c, and use a time
level counter n and an iteration counter k, takes the form

un;kC1 D un;k C �t.un;k/2 C .1 ��t/un;k � un�1
2�tun;k C 1 ��t ; un;0 D un�1; (5.8)

for k D 0; 1; : : :. A program implementation is much closer to (5.7) than to (5.8),
but the latter is better aligned with the established mathematical notation used in
the literature.

5.1.9 Relaxation

One iteration in Newton’s method or Picard iteration consists of solving a linear
problem OF .u/ D 0. Sometimes convergence problems arise because the new solu-
tion u of OF .u/ D 0 is “too far away” from the previously computed solution u�.
A remedy is to introduce a relaxation, meaning that we first solve OF .u
/ D 0 for
a suggested value u
 and then we take u as a weighted mean of what we had, u�,
and what our linearized equation OF D 0 suggests, u
:

u D !u
 C .1 � !/u� :
The parameter ! is known as a relaxation parameter, and a choice ! < 1 may
prevent divergent iterations.

Relaxation in Newton’s method can be directly incorporated in the basic iteration
formula:

u D u� � ! F.u
�/

F 0.u�/
: (5.9)

362 5 Nonlinear Problems

5.1.10 Implementation and Experiments

The program logistic.py contains implementations of all the methods described
above. Below is an extract of the file showing how the Picard and Newton methods
are implemented for a Backward Euler discretization of the logistic equation.

def BE_logistic(u0, dt, Nt, choice=’Picard’,
eps_r=1E-3, omega=1, max_iter=1000):

if choice == ’Picard1’:
choice = ’Picard’
max_iter = 1

u = np.zeros(Nt+1)
iterations = []
u[0] = u0
for n in range(1, Nt+1):

a = dt
b = 1 - dt
c = -u[n-1]

if choice == ’Picard’:

def F(u):
return a*u**2 + b*u + c

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = omega*(-c/(a*u_ + b)) + (1-omega)*u_
k += 1

u[n] = u_
iterations.append(k)

elif choice == ’Newton’:

def F(u):
return a*u**2 + b*u + c

def dF(u):
return 2*a*u + b

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = u_ - F(u_)/dF(u_)
k += 1

u[n] = u_
iterations.append(k)

return u, iterations

The Crank-Nicolson method utilizing a linearization based on the geometric
mean gives a simpler algorithm:

http://tinyurl.com/nu656p2/nonlin/logistic.py

5.1 Introduction of Basic Concepts 363

def CN_logistic(u0, dt, Nt):
u = np.zeros(Nt+1)
u[0] = u0
for n in range(0, Nt):

u[n+1] = (1 + 0.5*dt)/(1 + dt*u[n] - 0.5*dt)*u[n]
return u

We may run experiments with the model problem (5.1) and the different strate-
gies for dealing with nonlinearities as described above. For a quite coarse time
resolution, �t D 0:9, use of a tolerance
r D 0:1 in the stopping criterion in-
troduces an iteration error, especially in the Picard iterations, that is visibly much
larger than the time discretization error due to a large�t . This is illustrated by com-
paring the upper two plots in Fig. 5.1. The one to the right has a stricter tolerance

 D 10�3, which causes all the curves corresponding to Picard and Newton iteration
to be on top of each other (and no changes can be visually observed by reducing
r
further). The reason why Newton’s method does much better than Picard iteration
in the upper left plot is that Newton’s method with one step comes far below the

r tolerance, while the Picard iteration needs on average 7 iterations to bring the
residual down to
r D 10�1, which gives insufficient accuracy in the solution of the
nonlinear equation. It is obvious that the Picard1 method gives significant errors in

Fig. 5.1 Impact of solution strategy and time step length on the solution

364 5 Nonlinear Problems

Fig. 5.2 Comparison of the number of iterations at various time levels for Picard and Newton
iteration

addition to the time discretization unless the time step is as small as in the lower
right plot.

The BE exact curve corresponds to using the exact solution of the quadratic
equation at each time level, so this curve is only affected by the Backward Euler
time discretization. TheCN gm curve corresponds to the theoretically more accurate
Crank-Nicolson discretization, combined with a geometric mean for linearization.
This curve appears more accurate, especially if we take the plot in the lower right
with a small �t and an appropriately small
r value as the exact curve.

When it comes to the need for iterations, Fig. 5.2 displays the number of iter-
ations required at each time level for Newton’s method and Picard iteration. The
smaller �t is, the better starting value we have for the iteration, and the faster the
convergence is. With �t D 0:9 Picard iteration requires on average 32 iterations
per time step, but this number is dramatically reduced as �t is reduced.

However, introducing relaxation and a parameter ! D 0:8 immediately reduces
the average of 32 to 7, indicating that for the large�t D 0:9, Picard iteration takes
too long steps. An approximately optimal value for ! in this case is 0.5, which
results in an average of only 2 iterations! An even more dramatic impact of !
appears when�t D 1: Picard iteration does not convergence in 1000 iterations, but
! D 0:5 again brings the average number of iterations down to 2.

5.1 Introduction of Basic Concepts 365

Remark The simple Crank-Nicolson method with a geometric mean for the
quadratic nonlinearity gives visually more accurate solutions than the Backward
Euler discretization. Even with a tolerance of
r D 10�3, all the methods for
treating the nonlinearities in the Backward Euler discretization give graphs that
cannot be distinguished. So for accuracy in this problem, the time discretization
is much more crucial than
r . Ideally, one should estimate the error in the time
discretization, as the solution progresses, and set
r accordingly.

5.1.11 Generalization to a General Nonlinear ODE

Let us see how the various methods in the previous sections can be applied to the
more generic model

u0 D f .u; t/; (5.10)

where f is a nonlinear function of u.

Explicit time discretization Explicit ODE methods like the Forward Euler
scheme, Runge-Kutta methods and Adams-Bashforth methods all evaluate f at
time levels where u is already computed, so nonlinearities in f do not pose any
difficulties.

Backward Euler discretization Approximating u0 by a backward difference leads
to a Backward Euler scheme, which can be written as

F.un/ D un ��t f .un; tn/� un�1 D 0;

or alternatively
F.u/ D u ��t f .u; tn/� u.1/ D 0 :

A simple Picard iteration, not knowing anything about the nonlinear structure of f ,
must approximate f .u; tn/ by f .u�; tn/:

OF .u/ D u ��t f .u�; tn/ � u.1/ :

The iteration starts with u� D u.1/ and proceeds with repeating

u
 D �t f .u�; tn/C u.1/; u D !u
 C .1 � !/u�; u� u;

until a stopping criterion is fulfilled.

Explicit vs implicit treatment of nonlinear terms
Evaluating f for a known u� is referred to as explicit treatment of f , while
if f .u; t/ has some structure, say f .u; t/ D u3, parts of f can involve the
unknown u, as in the manual linearization .u�/2u, and then the treatment of
f is “more implicit” and “less explicit”. This terminology is inspired by time
discretization of u0 D f .u; t/, where evaluating f for known u values gives
explicit schemes, while treating f or parts of f implicitly, makes f contribute
to the unknown terms in the equation at the new time level.

366 5 Nonlinear Problems

Explicit treatment of f usually means stricter conditions on �t to achieve
stability of time discretization schemes. The same applies to iteration techniques
for nonlinear algebraic equations: the “less” we linearize f (i.e., the more we
keep of u in the original formula), the faster the convergence may be.

We may say that f .u; t/ D u3 is treated explicitly if we evaluate f as .u�/3,
partially implicit if we linearize as .u�/2u and fully implicit if we represent f
by u3. (Of course, the fully implicit representation will require further lineariza-
tion, but with f .u; t/ D u2 a fully implicit treatment is possible if the resulting
quadratic equation is solved with a formula.)

For the ODE u0 D �u3 with f .u; t/ D �u3 and coarse time resolution
�t D 0:4, Picard iteration with .u�/2u requires 8 iterations with
r D 10�3 for
the first time step, while .u�/3 leads to 22 iterations. After about 10 time steps
both approaches are down to about 2 iterations per time step, but this example
shows a potential of treating f more implicitly.

A trick to treat f implicitly in Picard iteration is to evaluate it as f .u�; t/u=u�.
For a polynomial f , f .u; t/ D um, this corresponds to .u�/mu=u� D
.u�/m�1u. Sometimes this more implicit treatment has no effect, as with
f .u; t/ D exp.�u/ and f .u; t/ D ln.1C u/, but with f .u; t/ D sin.2.uC 1//,
the f .u�; t/u=u� trick leads to 7, 9, and 11 iterations during the first three steps,
while f .u�; t/ demands 17, 21, and 20 iterations. (Experiments can be done
with the code ODE_Picard_tricks.py.)

Newton’s method applied to a Backward Euler discretization of u0 D f .u; t/

requires computation of the derivative

F 0.u/ D 1 ��t @f
@u
.u; tn/ :

Starting with the solution at the previous time level, u� D u.1/, we can just use the
standard formula

u D u� � ! F.u
�/

F 0.u�/
D u� � !u

� ��t f .u�; tn/ � u.1/
1 ��t @

@u
f .u�; tn/

: (5.11)

Crank-Nicolson discretization The standard Crank-Nicolson scheme with arith-
metic mean approximation of f takes the form

unC1 � un
�t

D 1

2

�
f .unC1; tnC1/C f .un; tn/

�
:

We can write the scheme as a nonlinear algebraic equation

F.u/ D u � u.1/ ��t 1
2
f .u; tnC1/ ��t 1

2
f .u.1/; tn/ D 0 : (5.12)

A Picard iteration scheme must in general employ the linearization

OF .u/ D u � u.1/ ��t 1
2
f .u�; tnC1/ ��t 1

2
f .u.1/; tn/;

http://tinyurl.com/nu656p2/nonlin/ODE_Picard_tricks.py

5.1 Introduction of Basic Concepts 367

while Newton’s method can apply the general formula (5.11) with F.u/ given in
(5.12) and

F 0.u/ D 1 � 1
2
�t
@f

@u
.u; tnC1/ :

5.1.12 Systems of ODEs

We may write a system of ODEs

d

dt
u0.t/ D f0.u0.t/; u1.t/; : : : ; uN .t/; t/;

d

dt
u1.t/ D f1.u0.t/; u1.t/; : : : ; uN .t/; t/;

:::

d

dt
um.t/ D fm.u0.t/; u1.t/; : : : ; uN .t/; t/;

as
u0 D f .u; t/; u.0/ D U0; (5.13)

if we interpret u as a vector u D .u0.t/; u1.t/; : : : ; uN .t// and f as a vector func-
tion with components .f0.u; t/; f1.u; t/; : : : ; fN .u; t//.

Most solution methods for scalar ODEs, including the Forward and Backward
Euler schemes and the Crank-Nicolson method, generalize in a straightforward way
to systems of ODEs simply by using vector arithmetics instead of scalar arithmetics,
which corresponds to applying the scalar scheme to each component of the system.
For example, here is a backward difference scheme applied to each component,

un0 � un�10

�t
D f0.un; tn/;

un1 � un�11

�t
D f1.un; tn/;
:::

unN � un�1N

�t
D fN .un; tn/;

which can be written more compactly in vector form as

un � un�1
�t

D f .un; tn/ :

This is a system of algebraic equations,

un ��t f .un; tn/ � un�1 D 0;

368 5 Nonlinear Problems

or written out
un0 ��t f0.un; tn/� un�10 D 0;

:::

unN ��t fN .un; tn/� un�1N D 0 :

Example We shall address the 2 � 2 ODE system for oscillations of a pendulum
subject to gravity and air drag. The system can be written as

P! D � sin � � ˇ!j!j; (5.14)

P� D !; (5.15)

where ˇ is a dimensionless parameter (this is the scaled, dimensionless version of
the original, physical model). The unknown components of the system are the angle
�.t/ and the angular velocity !.t/. We introduce u0 D ! and u1 D � , which leads
to

u00 D f0.u; t/ D � sin u1 � ˇu0ju0j;
u01 D f1.u; t/ D u0 :

A Crank-Nicolson scheme reads

unC10 � un0
�t

D � sin u
nC 1

2

1 � ˇunC 1
2

0 junC 1
2

0 j

� � sin

�
1

2
.unC11 C u1n/

�
� ˇ1

4
.unC10 C un0/junC10 C un0 j; (5.16)

unC11 � un1
�t

D unC 1
2

0 � 1

2
.unC10 C un0/ : (5.17)

This is a coupled system of two nonlinear algebraic equations in two unknowns
unC10 and unC11 .

Using the notation u0 and u1 for the unknowns unC10 and unC11 in this system,

writing u.1/0 and u.1/1 for the previous values un0 and un1 , multiplying by �t and
moving the terms to the left-hand sides, gives

u0 � u.1/0 C�t sin
�
1

2
.u1 C u.1/1 /

�
C 1

4
�tˇ.u0 C u.1/0 /ju0 C u.1/0 j D 0; (5.18)

u1 � u.1/1 �
1

2
�t.u0 C u.1/0 / D 0 : (5.19)

Obviously, we have a need for solving systems of nonlinear algebraic equations,
which is the topic of the next section.

5.2 Systems of Nonlinear Algebraic Equations

Implicit time discretization methods for a system of ODEs, or a PDE, lead to sys-
tems of nonlinear algebraic equations, written compactly as

F.u/ D 0;

5.2 Systems of Nonlinear Algebraic Equations 369

where u is a vector of unknowns u D .u0; : : : ; uN /, and F is a vector function:
F D .F0; : : : ; FN /. The system at the end of Sect. 5.1.12 fits this notation with
N D 1, F0.u/ given by the left-hand side of (5.18), while F1.u/ is the left-hand
side of (5.19).

Sometimes the equation system has a special structure because of the underlying
problem, e.g.,

A.u/u D b.u/;
with A.u/ as an .N C 1/� .N C 1/matrix function of u and b as a vector function:
b D .b0; : : : ; bN /.

We shall next explain how Picard iteration and Newton’s method can be applied
to systems like F.u/ D 0 and A.u/u D b.u/. The exposition has a focus on
ideas and practical computations. More theoretical considerations, including quite
general results on convergence properties of these methods, can be found in Kelley
[8].

5.2.1 Picard Iteration

We cannot apply Picard iteration to nonlinear equations unless there is some spe-
cial structure. For the commonly arising case A.u/u D b.u/ we can linearize the
product A.u/u to A.u�/u and b.u/ as b.u�/. That is, we use the most previously
computed approximation in A and b to arrive at a linear system for u:

A.u�/u D b.u�/ :
A relaxed iteration takes the form

A.u�/u
 D b.u�/; u D !u
 C .1 � !/u� :

In other words, we solve a system of nonlinear algebraic equations as a sequence of
linear systems.

Algorithm for relaxed Picard iteration
Given A.u/u D b.u/ and an initial guess u�, iterate until convergence:

1. solve A.u�/u
 D b.u�/ with respect to u

2. u D !u
 C .1 � !/u�
3. u� u

“Until convergence” means that the iteration is stopped when the change in
the unknown, jju � u�jj, or the residual jjA.u/u � bjj, is sufficiently small, see
Sect. 5.2.3 for more details.

5.2.2 Newton’s Method

The natural starting point for Newton’s method is the general nonlinear vector equa-
tion F.u/ D 0. As for a scalar equation, the idea is to approximate F around a

370 5 Nonlinear Problems

known value u� by a linear function OF , calculated from the first two terms of a
Taylor expansion of F . In the multi-variate case these two terms become

F.u�/C J.u�/ � .u � u�/;

where J is the Jacobian of F , defined by

Ji;j D @Fi

@uj
:

So, the original nonlinear system is approximated by

OF .u/ D F.u�/C J.u�/ � .u � u�/ D 0;

which is linear in u and can be solved in a two-step procedure: first solve J ıu D
�F.u�/ with respect to the vector ıu and then update u D u� C ıu. A relaxation
parameter can easily be incorporated:

u D !.u� C ıu/C .1 � !/u� D u� C !ıu :

Algorithm for Newton’smethod
Given F.u/ D 0 and an initial guess u�, iterate until convergence:

1. solve J ıu D �F.u�/ with respect to ıu
2. u D u� C !ıu
3. u� u

For the special system with structure A.u/u D b.u/,

Fi D
X
k

Ai;k.u/uk � bi .u/;

one gets

Ji;j D
X
k

@Ai;k

@uj
uk C Ai;j � @bi

@uj
: (5.20)

We realize that the Jacobian needed in Newton’s method consists ofA.u�/ as in the
Picard iteration plus two additional terms arising from the differentiation. Using the
notation A0.u/ for @A=@u (a quantity with three indices: @Ai;k=@uj), and b0.u/ for
@b=@u (a quantity with two indices: @bi=@uj), we can write the linear system to be
solved as

.AC A0uC b0/ıu D �AuC b;
or

.A.u�/C A0.u�/u� C b0.u�//ıu D �A.u�/u� C b.u�/ :
Rearranging the terms demonstrates the difference from the system solved in each
Picard iteration:

A.u�/.u� C ıu/ � b.u�/„ ƒ‚ …
Picard system

C
.A0.u�/u� C b0.u�//ıu D 0 :

5.2 Systems of Nonlinear Algebraic Equations 371

Here we have inserted a parameter
 such that
 D 0 gives the Picard system and

 D 1 gives the Newton system. Such a parameter can be handy in software to
easily switch between the methods.

Combined algorithm for Picard and Newton iteration
Given A.u/, b.u/, and an initial guess u�, iterate until convergence:

1. solve .AC
.A0.u�/u� C b0.u�///ıu D �A.u�/u� C b.u�/ with respect
to ıu

2. u D u� C !ıu
3. u� u

 D 1 gives a Newton method while
 D 0 corresponds to Picard iteration.

5.2.3 Stopping Criteria

Let jj � jj be the standard Euclidean vector norm. Four termination criteria are much
in use:

� Absolute change in solution: jju � u�jj �
u
� Relative change in solution: jju � u�jj �
ujju0jj, where u0 denotes the start

value of u� in the iteration
� Absolute residual: jjF.u/jj �
r
� Relative residual: jjF.u/jj �
r jjF.u0/jj
To prevent divergent iterations to run forever, one terminates the iterations when the
current number of iterations k exceeds a maximum value kmax.

The relative criteria are most used since they are not sensitive to the characteristic
size of u. Nevertheless, the relative criteria can be misleading when the initial start
value for the iteration is very close to the solution, since an unnecessary reduction
in the error measure is enforced. In such cases the absolute criteria work better. It is
common to combine the absolute and relative measures of the size of the residual,
as in

jjF.u/jj �
rr jjF.u0/jj C
ra; (5.21)

where
rr is the tolerance in the relative criterion and
ra is the tolerance in the
absolute criterion. With a very good initial guess for the iteration (typically the
solution of a differential equation at the previous time level), the term jjF.u0/jj is
small and
ra is the dominating tolerance. Otherwise,
rr jjF.u0/jj and the relative
criterion dominates.

With the change in solution as criterion we can formulate a combined absolute
and relative measure of the change in the solution:

jjıujj �
ur jju0jj C
ua : (5.22)

The ultimate termination criterion, combining the residual and the change in
solution with a test on the maximum number of iterations, can be expressed as

jjF.u/jj �
rr jjF.u0/jj C
ra or jjıujj �
ur jju0jj C
ua or k > kmax :

(5.23)

372 5 Nonlinear Problems

5.2.4 Example: A Nonlinear ODEModel from Epidemiology

A very simple model for the spreading of a disease, such as a flu, takes the form of
a 2 � 2 ODE system

S 0 D �ˇSI; (5.24)

I 0 D ˇSI � �I; (5.25)

where S.t/ is the number of people who can get ill (susceptibles) and I.t/ is the
number of people who are ill (infected). The constants ˇ > 0 and � > 0 must be
given along with initial conditions S.0/ and I.0/.

Implicit time discretization A Crank-Nicolson scheme leads to a 2� 2 system of
nonlinear algebraic equations in the unknowns SnC1 and I nC1:

SnC1 � Sn
�t

D �ˇŒSI �nC 1
2 � �ˇ

2
.SnI n C SnC1I nC1/; (5.26)

I nC1 � I n
�t

D ˇŒSI �nC 1
2 � �InC 1

2 � ˇ

2
.SnI n C SnC1I nC1/� �

2
.I n C I nC1/ :

(5.27)

Introducing S for SnC1, S.1/ for Sn, I for I nC1 and I .1/ for I n, we can rewrite the
system as

FS.S; I / D S � S.1/ C 1

2
�tˇ.S.1/I .1/ C SI/ D 0; (5.28)

FI .S; I / D I � I .1/ � 1
2
�tˇ.S.1/I .1/ C SI/C 1

2
�t�.I .1/ C I / D 0 : (5.29)

A Picard iteration We assume that we have approximations S� and I� to S and
I , respectively. A way of linearizing the only nonlinear term SI is to write I�S in
the FS D 0 equation and S�I in the FI D 0 equation, which also decouples the
equations. Solving the resulting linear equations with respect to the unknowns S
and I gives

S D S.1/ � 1
2
�tˇS.1/I .1/

1C 1
2
�tˇI�

;

I D I .1/ C 1
2
�tˇS.1/I .1/ � 1

2
�t�I .1/

1 � 1
2
�tˇS� C 1

2
�t�

:

Before a new iteration, we must update S� S and I� I .

Newton’s method The nonlinear system (5.28)–(5.29) can be written as F.u/ D 0
with F D .FS ; FI / and u D .S; I /. The Jacobian becomes

J D

@
@S
FS

@
@I
FS

@
@S
FI

@
@I
FI

!
D

1C 1

2
�tˇI 1

2
�tˇS

� 1
2
�tˇI 1 � 1

2
�tˇS C 1

2
�t�

!
:

5.3 Linearization at the Differential Equation Level 373

The Newton system J.u�/ıu D �F.u�/ to be solved in each iteration is then

1C 1

2
�tˇI� 1

2
�tˇS�

� 1
2
�tˇI� 1 � 1

2
�tˇS� C 1

2
�t�

!
ıS

ıI

!

D

S� � S.1/ C 1
2
�tˇ.S.1/I .1/ C S�I�/

I� � I .1/ � 1
2
�tˇ.S.1/I .1/ C S�I�/C 1

2
�t�.I .1/ C I�/

!
:

Remark For this particular system of ODEs, explicit time integration methods
work very well. Even a Forward Euler scheme is fine, but (as also experienced more
generally) the 4-th order Runge-Kutta method is an excellent balance between high
accuracy, high efficiency, and simplicity.

5.3 Linearization at the Differential Equation Level

The attention is now turned to nonlinear partial differential equations (PDEs) and
application of the techniques explained above for ODEs. The model problem is a
nonlinear diffusion equation for u.x; t/:

@u

@t
D r � .˛.u/ru/C f .u/; x 2 ˝; t 2 .0; T �; (5.30)

�˛.u/@u
@n
D g; x 2 @˝N ; t 2 .0; T �; (5.31)

u D u0; x 2 @˝D; t 2 .0; T � : (5.32)

In the present section, our aim is to discretize this problem in time and then
present techniques for linearizing the time-discrete PDE problem “at the PDE level”
such that we transform the nonlinear stationary PDE problem at each time level
into a sequence of linear PDE problems, which can be solved using any method
for linear PDEs. This strategy avoids the solution of systems of nonlinear algebraic
equations. In Sect. 5.4 we shall take the opposite (and more common) approach:
discretize the nonlinear problem in time and space first, and then solve the resulting
nonlinear algebraic equations at each time level by the methods of Sect. 5.2. Very
often, the two approaches are mathematically identical, so there is no preference
from a computational efficiency point of view. The details of the ideas sketched
above will hopefully become clear through the forthcoming examples.

5.3.1 Explicit Time Integration

The nonlinearities in the PDE are trivial to deal with if we choose an explicit time
integration method for (5.30), such as the Forward Euler method:

ŒDCt u D r � .˛.u/ru/C f .u/�n;
or written out,

unC1 � un
�t

D r � .˛.un/run/C f .un/;

374 5 Nonlinear Problems

which is a linear equation in the unknown unC1 with solution

unC1 D un C�tr � .˛.un/run/C�tf .un/ :

The disadvantage with this discretization is the strict stability criterion �t �
h2=.6max˛/ for the case f D 0 and a standard 2nd-order finite difference dis-
cretization in 3D space with mesh cell sizes h D �x D �y D �z.

5.3.2 Backward Euler Scheme and Picard Iteration

A Backward Euler scheme for (5.30) reads

ŒD�t u D r � .˛.u/ru/C f .u/�n :

Written out,
un � un�1

�t
D r � .˛.un/run/C f .un/ : (5.33)

This is a nonlinear PDE for the unknown function un.x/. Such a PDE can be
viewed as a time-independent PDE where un�1.x/ is a known function.

We introduce a Picard iteration with k as iteration counter. A typical linearization
of the r � .˛.un/run/ term in iteration kC1 is to use the previously computed un;k

approximation in the diffusion coefficient: ˛.un;k/. The nonlinear source term is
treated similarly: f .un;k/. The unknown function un;kC1 then fulfills the linear
PDE

un;kC1 � un�1
�t

D r � �˛.un;k/run;kC1�C f .un;k/ : (5.34)

The initial guess for the Picard iteration at this time level can be taken as the solution
at the previous time level: un;0 D un�1.

We can alternatively apply the implementation-friendly notation where u corre-
sponds to the unknown we want to solve for, i.e., un;kC1 above, and u� is the most
recently computed value, un;k above. Moreover, u.1/ denotes the unknown function
at the previous time level, un�1 above. The PDE to be solved in a Picard iteration
then looks like

u � u.1/
�t

D r � .˛.u�/ru/C f .u�/ : (5.35)

At the beginning of the iteration we start with the value from the previous time
level: u� D u.1/, and after each iteration, u� is updated to u.

Remark on notation
The previous derivations of the numerical scheme for time discretizations of
PDEs have, strictly speaking, a somewhat sloppy notation, but it is much used
and convenient to read. A more precise notation must distinguish clearly be-
tween the exact solution of the PDE problem, here denoted ue.x; t/, and the
exact solution of the spatial problem, arising after time discretization at each time
level, where (5.33) is an example. The latter is here represented as un.x/ and is
an approximation to ue.x; tn/. Then we have another approximation un;k.x/ to

5.3 Linearization at the Differential Equation Level 375

un.x/ when solving the nonlinear PDE problem for un by iteration methods, as
in (5.34).

In our notation, u is a synonym for un;kC1 and u.1/ is a synonym for un�1,
inspired by what are natural variable names in a code. We will usually state
the PDE problem in terms of u and quickly redefine the symbol u to mean the
numerical approximation, while ue is not explicitly introduced unless we need
to talk about the exact solution and the approximate solution at the same time.

5.3.3 Backward Euler Scheme and Newton’sMethod

At time level n, we have to solve the stationary PDE (5.33). In the previous section,
we saw how this can be done with Picard iterations. Another alternative is to apply
the idea of Newton’s method in a clever way. Normally, Newton’s method is defined
for systems of algebraic equations, but the idea of the method can be applied at the
PDE level too.

Linearization via Taylor expansions Let un;k be an approximation to the un-
known un. We seek a better approximation on the form

un D un;k C ıu : (5.36)

The idea is to insert (5.36) in (5.33), Taylor expand the nonlinearities and keep
only the terms that are linear in ıu (which makes (5.36) an approximation for un).
Then we can solve a linear PDE for the correction ıu and use (5.36) to find a new
approximation

un;kC1 D un;k C ıu
to un. Repeating this procedure gives a sequence un;kC1, k D 0; 1; : : : that hopefully
converges to the goal un.

Let us carry out all the mathematical details for the nonlinear diffusion PDE
discretized by the Backward Euler method. Inserting (5.36) in (5.33) gives

un;k C ıu � un�1
�t

D r � .˛.un;k C ıu/r.un;k C ıu//C f .un;k C ıu/ : (5.37)

We can Taylor expand ˛.un;k C ıu/ and f .un;k C ıu/:

˛.un;k C ıu/ D ˛.un;k/C d˛

du
.un;k/ıuCO.ıu2/ � ˛.un;k/C ˛0.un;k/ıu;

f .un;k C ıu/ D f .un;k/C df

du
.un;k/ıuCO.ıu2/ � f .un;k/C f 0.un;k/ıu :

Inserting the linear approximations of ˛ and f in (5.37) results in

un;k C ıu � un�1
�t

D r � .˛.un;k/run;k/C f .un;k/
C r � .˛.un;k/rıu/C r � .˛0.un;k/ıurun;k/
C r � .˛0.un;k/ıurıu/C f 0.un;k/ıu : (5.38)

376 5 Nonlinear Problems

The term ˛0.un;k/ıurıu is of order ıu2 and therefore omitted since we expect the
correction ıu to be small (ıu � ıu2). Reorganizing the equation gives a PDE for
ıu that we can write in short form as

ıF.ıuIun;k/ D �F.un;k/;
where

F.un;k/ D un;k � un�1
�t

�r � .˛.un;k/run;k/C f .un;k/; (5.39)

ıF.ıuIun;k/ D � 1

�t
ıuCr � .˛.un;k/rıu/

C r � .˛0.un;k/ıurun;k/C f 0.un;k/ıu : (5.40)

Note that ıF is a linear function of ıu, and F contains only terms that are known,
such that the PDE for ıu is indeed linear.

Observations
The notational form ıF D �F resembles the Newton system J ıu D �F for
systems of algebraic equations, with ıF as J ıu. The unknown vector in a linear
system of algebraic equations enters the system as a linear operator in terms of a
matrix-vector product (J ıu), while at the PDE level we have a linear differential
operator instead (ıF).

Similarity with Picard iteration We can rewrite the PDE for ıu in a slightly dif-
ferent way too if we define un;k C ıu as un;kC1.

un;kC1 � un�1
�t

D r � .˛.un;k/run;kC1/C f .un;k/
C r � .˛0.un;k/ıurun;k/C f 0.un;k/ıu : (5.41)

Note that the first line is the same PDE as arises in the Picard iteration, while the
remaining terms arise from the differentiations that are an inherent ingredient in
Newton’s method.

Implementation For coding we want to introduce u for un, u� for un;k and u.1/

for un�1. The formulas for F and ıF are then more clearly written as

F.u�/ D u� � u.1/
�t

�r � .˛.u�/ru�/C f .u�/; (5.42)

ıF.ıuIu�/ D � 1

�t
ıuCr � .˛.u�/rıu/

Cr � .˛0.u�/ıuru�/C f 0.u�/ıu : (5.43)

The form that orders the PDE as the Picard iteration terms plus the Newton method’s
derivative terms becomes

u � u.1/
�t

D r � .˛.u�/ru/C f .u�/
C
.r � .˛0.u�/.u � u�/ru�/C f 0.u�/.u � u�// : (5.44)

The Picard and full Newton versions correspond to
 D 0 and
 D 1, respectively.

5.3 Linearization at the Differential Equation Level 377

Derivation with alternative notation Some may prefer to derive the linearized
PDE for ıu using the more compact notation. We start with inserting un D u�Cıu
to get

u� C ıu � un�1
�t

D r � .˛.u� C ıu/r.u� C ıu//C f .u� C ıu/ :
Taylor expanding,

˛.u� C ıu/ � ˛.u�/C ˛0.u�/ıu;
f .u� C ıu/ � f .u�/C f 0.u�/ıu;

and inserting these expressions gives a less cluttered PDE for ıu:

u� C ıu � un�1
�t

D r � .˛.u�/ru�/C f .u�/
Cr � .˛.u�/rıu/Cr � .˛0.u�/ıuru�/
Cr � .˛0.u�/ıurıu/C f 0.u�/ıu :

5.3.4 Crank-NicolsonDiscretization

A Crank-Nicolson discretization of (5.30) applies a centered difference at tnC 1
2
:

ŒDtu D r � .˛.u/ru/C f .u/�nC 1
2 :

The standard technique is to apply an arithmetic average for quantities defined be-
tween two mesh points, e.g.,

unC
1
2 � 1

2
.un C unC1/ :

However, with nonlinear terms we have many choices of formulating an arithmetic
mean:

Œf .u/�nC
1
2 � f

�
1

2
.un C unC1/

�
D Œf .ut /�nC 1

2 ; (5.45)

Œf .u/�nC
1
2 � 1

2
.f .un/C f .unC1// D

h
f .u/

t
inC 1

2
; (5.46)

Œ˛.u/ru�nC 1
2 � ˛

�
1

2
.un C unC1/

�
r
�
1

2
.un C unC1/

�
D
˛.ut /rut �nC 1

2 ;

(5.47)

Œ˛.u/ru�nC 1
2 � 1

2
.˛.un/C ˛.unC1//r

�
1

2
.un C unC1/

�
D
h
˛.u/

trut
inC 1

2
;

(5.48)

Œ˛.u/ru�nC 1
2 � 1

2
.˛.un/run C ˛.unC1/runC1/ D

h
˛.u/rut

inC 1
2
: (5.49)

A big question is whether there are significant differences in accuracy between
taking the products of arithmetic means or taking the arithmetic mean of products.
Exercise 5.6 investigates this question, and the answer is that the approximation is
O.�t2/ in both cases.

378 5 Nonlinear Problems

5.4 1D Stationary Nonlinear Differential Equations

Section 5.3 presented methods for linearizing time-discrete PDEs directly prior to
discretization in space. We can alternatively carry out the discretization in space of
the time-discrete nonlinear PDE problem and get a system of nonlinear algebraic
equations, which can be solved by Picard iteration or Newton’s method as presented
in Sect. 5.2. This latter approach will now be described in detail.

We shall work with the 1D problem

� .˛.u/u0/0 C au D f .u/; x 2 .0; L/; ˛.u.0//u0.0/ D C; u.L/ D D :

(5.50)
The problem (5.50) arises from the stationary limit of a diffusion equation,

@u

@t
D @

@x

�
˛.u/

@u

@x

�
� auC f .u/; (5.51)

as t ! 1 and @u=@t ! 0. Alternatively, the problem (5.50) arises at each time
level from implicit time discretization of (5.51). For example, a Backward Euler
scheme for (5.51) leads to

un � un�1
�t

D d

dx

�
˛.un/

dun

dx

�
� aun C f .un/ : (5.52)

Introducing u.x/ for un.x/, u.1/ for un�1, and defining f .u/ in (5.50) to be f .u/ in
(5.52) plus un�1=�t , gives (5.50) with a D 1=�t .

5.4.1 Finite Difference Discretization

The nonlinearity in the differential equation (5.50) poses no more difficulty than a
variable coefficient, as in the term .˛.x/u0/0. We can therefore use a standard finite
difference approach when discretizing the Laplace term with a variable coefficient:

Œ�Dx˛DxuC au D f �i :

Writing this out for a uniform mesh with points xi D i�x, i D 0; : : : ; Nx , leads to

� 1

�x2

�
˛iC 1

2
.uiC1 � ui/ � ˛i� 12 .ui � ui�1/

�
C aui D f .ui / : (5.53)

This equation is valid at all the mesh points i D 0; 1; : : : ; Nx � 1. At i D Nx
we have the Dirichlet condition ui D 0. The only difference from the case with
.˛.x/u0/0 and f .x/ is that now ˛ and f are functions of u and not only of x:
.˛.u.x//u0/0 and f .u.x//.

The quantity ˛iC 1
2
, evaluated between two mesh points, needs a comment. Since

˛ depends on u and u is only known at the mesh points, we need to express ˛iC 1
2

in terms of ui and uiC1. For this purpose we use an arithmetic mean, although a

5.4 1D Stationary Nonlinear Differential Equations 379

harmonic mean is also common in this context if ˛ features large jumps. There are
two choices of arithmetic means:

˛iC 1
2
� ˛

�
1

2
.ui C uiC1/

�
D Œ˛.ux/�iC 1

2 ; (5.54)

˛iC 1
2
� 1

2
.˛.ui /C ˛.uiC1// D

h
˛.u/

x
iiC 1

2
: (5.55)

Equation (5.53) with the latter approximation then looks like

� 1

2�x2
..˛.ui /C ˛.uiC1//.uiC1 � ui / � .˛.ui�1/C ˛.ui//.ui � ui�1//

C aui D f .ui /;
(5.56)

or written more compactly,

Œ�Dx˛
xDxuC au D f �i :

At mesh point i D 0 we have the boundary condition ˛.u/u0 D C , which is
discretized by

Œ˛.u/D2xu D C �0;
meaning

˛.u0/
u1 � u�1
2�x

D C : (5.57)

The fictitious value u�1 can be eliminated with the aid of (5.56) for i D 0. Formally,
(5.56) should be solved with respect to ui�1 and that value (for i D 0) should be
inserted in (5.57), but it is algebraically much easier to do it the other way around.
Alternatively, one can use a ghost cell Œ��x; 0� and update the u�1 value in the
ghost cell according to (5.57) after every Picard or Newton iteration. Such an ap-
proach means that we use a known u�1 value in (5.56) from the previous iteration.

5.4.2 Solution of Algebraic Equations

The structure of the equation system The nonlinear algebraic equations (5.56)
are of the form A.u/u D b.u/ with

Ai;i D 1

2�x2
.˛.ui�1/C 2˛.ui /˛.uiC1//C a;

Ai;i�1 D � 1

2�x2
.˛.ui�1/C ˛.ui//;

Ai;iC1 D � 1

2�x2
.˛.ui /C ˛.uiC1//;

bi D f .ui / :

The matrix A.u/ is tridiagonal: Ai;j D 0 for j > i C 1 and j < i � 1.

380 5 Nonlinear Problems

The above expressions are valid for internal mesh points 1 � i � Nx � 1. For
i D 0 we need to express ui�1 D u�1 in terms of u1 using (5.57):

u�1 D u1 � 2�x

˛.u0/
C : (5.58)

This value must be inserted in A0;0. The expression for Ai;iC1 applies for i D 0,
and Ai;i�1 does not enter the system when i D 0.

Regarding the last equation, its form depends on whether we include the Dirich-
let condition u.L/ D D, meaning uNx D D, in the nonlinear algebraic equation
system or not. Suppose we choose .u0; u1; : : : ; uNx�1/ as unknowns, later re-
ferred to as systems without Dirichlet conditions. The last equation corresponds
to i D Nx�1. It involves the boundary value uNx , which is substituted byD. If the
unknown vector includes the boundary value, .u0; u1; : : : ; uNx /, later referred to as
system including Dirichlet conditions, the equation for i D Nx � 1 just involves the
unknown uNx , and the final equation becomes uNx D D, corresponding to Ai;i D 1
and bi D D for i D Nx .

Picard iteration The obvious Picard iteration scheme is to use previously com-
puted values of ui in A.u/ and b.u/, as described more in detail in Sect. 5.2.
With the notation u� for the most recently computed value of u, we have the
system F.u/ � OF .u/ D A.u�/u � b.u�/, with F D .F0; F1; : : : ; Fm/, u D
.u0; u1; : : : ; um/. The index m is Nx if the system includes the Dirichlet condition
as a separate equation and Nx � 1 otherwise. The matrix A.u�/ is tridiagonal, so
the solution procedure is to fill a tridiagonal matrix data structure and the right-
hand side vector with the right numbers and call a Gaussian elimination routine for
tridiagonal linear systems.

Mesh with two cells It helps on the understanding of the details to write out all the
mathematics in a specific case with a small mesh, say just two cells (Nx D 2). We
use u�i for the i-th component in u�.

The starting point is the basic expressions for the nonlinear equations at mesh
point i D 0 and i D 1:

A0;�1u�1 C A0;0u0 C A0;1u1 D b0; (5.59)

A1;0u0 C A1;1u1 C A1;2u2 D b1 : (5.60)

Equation (5.59) written out reads

1

2�x2

�
� .˛.u�1/C ˛.u0//u�1

C .˛.u�1/C 2˛.u0/C ˛.u1//u0

� .˛.u0/C ˛.u1//
�
u1 C au0 D f .u0/ :

5.4 1D Stationary Nonlinear Differential Equations 381

We must then replace u�1 by (5.58). With Picard iteration we get

1

2�x2

�
� .˛.u��1/C 2˛.u�0 /C ˛.u�1 //u1

C .˛.u��1/C 2˛.u�0 /C ˛.u�1 //
�
u0 C au0

D f .u�0 / �
1

˛.u�0 /�x
.˛.u��1/C ˛.u�0 //C;

where

u��1 D u�1 �
2�x

˛.u�0 /
C :

Equation (5.60) contains the unknown u2 for which we have a Dirichlet con-
dition. In case we omit the condition as a separate equation, (5.60) with Picard
iteration becomes

1

2�x2

�
� .˛.u�0 /C ˛.u�1 //u0

C .˛.u�0 /C 2˛.u�1 /C ˛.u�2 //u1

� .˛.u�1 /C ˛.u�2 //
�
u2 C au1 D f .u�1 / :

We must now move the u2 term to the right-hand side and replace all occurrences
of u2 by D:

1

2�x2

�
� .˛.u�0 /C ˛.u�1 //u0

C .˛.u�0 /C 2˛.u�1 /C ˛.D//
�
u1 C au1

D f .u�1 /C
1

2�x2
.˛.u�1 /C ˛.D//D :

The two equations can be written as a 2 � 2 system:

B0;0 B0;1

B1;0 B1;1

!
u0

u1

!
D

d0

d1

!
;

where

B0;0 D 1

2�x2
.˛.u��1/C 2˛.u�0 /C ˛.u�1 //C a; (5.61)

B0;1 D � 1

2�x2
.˛.u��1/C 2˛.u�0 /C ˛.u�1 //; (5.62)

B1;0 D � 1

2�x2
.˛.u�0 /C ˛.u�1 //; (5.63)

B1;1 D 1

2�x2
.˛.u�0 /C 2˛.u�1 /C ˛.D//C a; (5.64)

382 5 Nonlinear Problems

d0 D f .u�0 / �
1

˛.u�0 /�x
.˛.u��1/C ˛.u�0 //C; (5.65)

d1 D f .u�1 /C
1

2�x2
.˛.u�1 /C ˛.D//D : (5.66)

The system with the Dirichlet condition becomes

0
B@
B0;0 B0;1 0

B1;0 B1;1 B1;2

0 0 1

1
CA
0
B@
u0

u1

u2

1
CA D

0
B@
d0

d1

D

1
CA ;

with

B1;1 D 1

2�x2
.˛.u�0 /C 2˛.u�1 /C ˛.u2//C a; (5.67)

B1;2 D � 1

2�x2
.˛.u�1 /C ˛.u2///; (5.68)

d1 D f .u�1 / : (5.69)

Other entries are as in the 2 � 2 system.

Newton’s method The Jacobian must be derived in order to use Newton’s method.
Here it means that we need to differentiate F.u/ D A.u/u � b.u/ with respect to
the unknown parameters u0; u1; : : : ; um (m D Nx or m D Nx � 1, depending on
whether the Dirichlet condition is included in the nonlinear system F.u/ D 0 or
not). Nonlinear equation number i has the structure

Fi D Ai;i�1.ui�1; ui /ui�1CAi;i .ui�1; ui ; uiC1/uiCAi;iC1.ui ; uiC1/uiC1�bi .ui / :

Computing the Jacobian requires careful differentiation. For example,

@

@ui
.Ai;i .ui�1; ui ; uiC1/ui / D @Ai;i

@ui
ui C Ai;i @ui

@ui

D @

@ui

�
1

2�x2
.˛.ui�1/C 2˛.ui/C ˛.uiC1//C a

�
ui

C 1

2�x2
.˛.ui�1/C 2˛.ui /C ˛.uiC1//C a

D 1

2�x2
.2˛0.ui /ui C ˛.ui�1/C 2˛.ui /C ˛.uiC1//

C a :

5.4 1D Stationary Nonlinear Differential Equations 383

The complete Jacobian becomes

Ji;i D @Fi

@ui
D @Ai;i�1

@ui
ui�1 C @Ai;i

@ui
ui C Ai;i C @Ai;iC1

@ui
uiC1 � @bi

@ui

D 1

2�x2
.�˛0.ui /ui�1 C 2˛0.ui /ui C ˛.ui�1/C 2˛.ui/C ˛.uiC1//

C a � 1

2�x2
˛0.ui /uiC1 � b0.ui /;

Ji;i�1 D @Fi

@ui�1
D @Ai;i�1

@ui�1
ui�1 C Ai�1;i C @Ai;i

@ui�1
ui � @bi

@ui�1

D 1

2�x2
.�˛0.ui�1/ui�1 � .˛.ui�1/C ˛.ui//C ˛0.ui�1/ui /;

Ji;iC1 D @Ai;iC1
@ui�1

uiC1 C AiC1;i C @Ai;i

@uiC1
ui � @bi

@uiC1

D 1

2�x2
.�˛0.uiC1/uiC1 � .˛.ui/C ˛.uiC1//C ˛0.uiC1/ui / :

The explicit expression for nonlinear equation number i , Fi .u0; u1; : : :/, arises from
moving the f .ui / term in (5.56) to the left-hand side:

Fi D � 1

2�x2
..˛.ui /C ˛.uiC1//.uiC1 � ui/ � .˛.ui�1/C ˛.ui//.ui � ui�1//

C aui � f .ui / D 0 :
(5.70)

At the boundary point i D 0, u�1 must be replaced using the formula (5.58).
When the Dirichlet condition at i D Nx is not a part of the equation system, the
last equation Fm D 0 for m D Nx � 1 involves the quantity uNx�1 which must
be replaced by D. If uNx is treated as an unknown in the system, the last equation
Fm D 0 has m D Nx and reads

FNx.u0; : : : ; uNx / D uNx �D D 0 :

Similar replacement of u�1 and uNx must be done in the Jacobian for the first and
last row. When uNx is included as an unknown, the last row in the Jacobian must
help implement the condition ıuNx D 0, since we assume that u contains the right
Dirichlet value at the beginning of the iteration (uNx D D), and then the Newton
update should be zero for i D 0, i.e., ıuNx D 0. This also forces the right-hand side
to be bi D 0, i D Nx.

We have seen, and can see from the present example, that the linear system in
Newton’s method contains all the terms present in the system that arises in the
Picard iteration method. The extra terms in Newton’s method can be multiplied by
a factor such that it is easy to program one linear system and set this factor to 0 or
1 to generate the Picard or Newton system.

384 5 Nonlinear Problems

5.5 Multi-Dimensional Nonlinear PDE Problems

The fundamental ideas in the derivation of Fi and Ji;j in the 1D model problem are
easily generalized to multi-dimensional problems. Nevertheless, the expressions
involved are slightly different, with derivatives in x replaced by r, so we present
some examples below in detail.

5.5.1 Finite Difference Discretization

A typical diffusion equation

ut D r � .˛.u/ru/C f .u/;

can be discretized by (e.g.) a Backward Euler scheme, which in 2D can be written

h
D�t u D Dx˛.u/

x
DxuCDy˛.u/

y
DyuC f .u/

in
i;j
:

We do not dive into the details of handling boundary conditions now. Dirichlet and
Neumann conditions are handled as in corresponding linear, variable-coefficient
diffusion problems.

Writing the scheme out, putting the unknown values on the left-hand side and
known values on the right-hand side, and introducing�x D �y D h to save some
writing, one gets

uni;j �
�t

h2

1

2
.˛.uni;j /C ˛.uniC1;j //.uniC1;j � uni;j /

� 1
2
.˛.uni�1;j /C ˛.uni;j //.uni;j � uni�1;j /

C 1

2
.˛.uni;j /C ˛.uni;jC1//.uni;jC1 � uni;j /

� 1
2
.˛.uni;j�1/C ˛.uni;j //.uni;j � uni�1;j�1/

!
��tf .uni;j / D un�1i;j :

This defines a nonlinear algebraic system on the form A.u/u D b.u/.

Picard iteration The most recently computed values u� of un can be used in ˛
and f for a Picard iteration, or equivalently, we solve A.u�/u D b.u�/. The result
is a linear system of the same type as arising from ut D r � .˛.x/ru/C f .x; t/.

The Picard iteration scheme can also be expressed in operator notation:

h
D�t u D Dx˛.u�/

x
DxuCDy˛.u�/

y
DyuC f .u�/

in
i;j
:

5.5 Multi-Dimensional Nonlinear PDE Problems 385

Newton’s method As always, Newton’s method is technically more involved than
Picard iteration. We first define the nonlinear algebraic equations to be solved, drop
the superscript n (use u for un), and introduce u.1/ for un�1:

Fi;j D ui;j � �t
h2

1

2
.˛.ui;j /C ˛.uiC1;j //.uiC1;j � ui;j /

� 1
2
.˛.ui�1;j /C ˛.ui;j //.ui;j � ui�1;j /

C 1

2
.˛.ui;j /C ˛.ui;jC1//.ui;jC1 � ui;j /

� 1
2
.˛.ui;j�1/C ˛.ui;j //.ui;j � ui�1;j�1/

!

��t f .ui;j /� u.1/i;j D 0 :
It is convenient to work with two indices i and j in 2D finite difference discretiza-
tions, but it complicates the derivation of the Jacobian, which then gets four indices.
(Make sure you really understand the 1D version of this problem as treated in
Sect. 5.4.1.) The left-hand expression of an equation Fi;j D 0 is to be differen-
tiated with respect to each of the unknowns ur;s (recall that this is short notation for
unr;s), r 2 Ix , s 2 Iy :

Ji;j;r;s D @Fi;j

@ur;s
:

The Newton system to be solved in each iteration can be written as

X
r2Ix

X
s2Iy

Ji;j;r;sıur;s D �Fi;j ; i 2 Ix; j 2 Iy :

Given i and j , only a few r and s indices give nonzero contribution to the Jaco-
bian since Fi;j contains ui˙1;j , ui;j˙1, and ui;j . This means that Ji;j;r;s has nonzero
contributions only if r D i ˙ 1, s D j ˙ 1, as well as r D i and s D j . The
corresponding terms in Ji;j;r;s are Ji;j;i�1;j , Ji;j;iC1;j , Ji;j;i;j�1, Ji;j;i;jC1 and Ji;j;i;j .
Therefore, the left-hand side of the Newton system,

P
r

P
s Ji;j;r;sıur;s collapses to

Ji;j;r;sıur;s D Ji;j;i;j ıui;j C Ji;j;i�1;j ıui�1;j C Ji;j;iC1;j ıuiC1;j C Ji;j;i;j�1ıui;j�1
C Ji;j;i;jC1ıui;jC1 :

The specific derivatives become

Ji;j;i�1;j D @Fi;j

@ui�1;j

D �t

h2
.˛0.ui�1;j /.ui;j � ui�1;j /C ˛.ui�1;j /.�1//;

Ji;j;iC1;j D @Fi;j

@uiC1;j

D �t

h2
.�˛0.uiC1;j /.uiC1;j � ui;j / � ˛.ui�1;j //;

386 5 Nonlinear Problems

Ji;j;i;j�1 D @Fi;j

@ui;j�1

D �t

h2
.˛0.ui;j�1/.ui;j � ui;j�1/C ˛.ui;j�1/.�1//;

Ji;j;i;jC1 D @Fi;j

@ui;jC1

D �t

h2
.�˛0.ui;jC1/.ui;jC1 � ui;j / � ˛.ui;j�1// :

The Ji;j;i;j entry has a few more terms and is left as an exercise. Inserting the
most recent approximation u� for u in the J and F formulas and then forming
J ıu D �F gives the linear system to be solved in each Newton iteration. Boundary
conditions will affect the formulas when any of the indices coincide with a boundary
value of an index.

5.5.2 ContinuationMethods

Picard iteration or Newton’s method may diverge when solving PDEs with severe
nonlinearities. Relaxation with ! < 1 may help, but in highly nonlinear problems
it can be necessary to introduce a continuation parameter � in the problem: � D 0
gives a version of the problem that is easy to solve, while � D 1 is the target
problem. The idea is then to increase � in steps, �0 D 0;�1 < � � � < �n D 1, and
use the solution from the problem with �i�1 as initial guess for the iterations in the
problem corresponding to �i .

The continuation method is easiest to understand through an example. Suppose
we intend to solve

�r � .jjrujjqru/ D f;
which is an equation modeling the flow of a non-Newtonian fluid through a channel
or pipe. For q D 0 we have the Poisson equation (corresponding to a Newtonian
fluid) and the problem is linear. A typical value for pseudo-plastic fluids may be
qn D �0:8. We can introduce the continuation parameter � 2 Œ0; 1� such that
q D qn�. Let f�`gn`D0 be the sequence of � values in Œ0; 1�, with corresponding q
values fq`gn`D0. We can then solve a sequence of problems

�r � �jjru`jjq`ru`� D f; ` D 0; : : : ; n;

where the initial guess for iterating on u` is the previously computed solution u`�1.
If a particular �` leads to convergence problems, one may try a smaller increase
in �: �
 D 1

2
.�`�1 C �`/, and repeat halving the step in � until convergence is

reestablished.

5.6 Operator Splitting Methods 387

5.6 Operator Splitting Methods

Operator splitting is a natural and old idea. When a PDE or system of PDEs contains
different terms expressing different physics, it is natural to use different numerical
methods for different physical processes. This can optimize and simplify the overall
solution process. The idea was especially popularized in the context of the Navier-
Stokes equations and reaction-diffusion PDEs. Common names for the technique
are operator splitting, fractional step methods, and split-step methods. We shall
stick to the former name. In the context of nonlinear differential equations, operator
splitting can be used to isolate nonlinear terms and simplify the solution methods.

A related technique, often known as dimensional splitting or alternating direction
implicit (ADI) methods, is to split the spatial dimensions and solve a 2D or 3D
problem as two or three consecutive 1D problems, but this type of splitting is not to
be further considered here.

5.6.1 Ordinary Operator Splitting for ODEs

Consider first an ODE where the right-hand side is split into two terms:

u0 D f0.u/C f1.u/ : (5.71)

In case f0 and f1 are linear functions of u, f0 D au and f1 D bu, we have
u.t/ D Ie.aCb/t , if u.0/ D I . When going one time step of length �t from tn to
tnC1, we have

u.tnC1/ D u.tn/e.aCb/�t :
This expression can be also be written as

u.tnC1/ D u.tn/ea�t eb�t ;

or

u
 D u.tn/ea�t ; (5.72)

u.tnC1/ D u
eb�t : (5.73)

The first step (5.72) means solving u0 D f0 over a time interval �t with u.tn/ as
start value. The second step (5.73) means solving u0 D f1 over a time interval �t
with the value at the end of the first step as start value. That is, we progress the
solution in two steps and solve two ODEs u0 D f0 and u0 D f1. The order of the
equations is not important. From the derivation above we see that solving u0 D f1
prior to u0 D f0 can equally well be done.

The technique is exact if the ODEs are linear. For nonlinear ODEs it is only an
approximate method with error �t . The technique can be extended to an arbitrary
number of steps; i.e., we may split the PDE system into any number of subsystems.
Examples will illuminate this principle.

388 5 Nonlinear Problems

5.6.2 Strang Splitting for ODEs

The accuracy of the splitting method in Sect. 5.6.1 can be improved from O.�t/
to O.�t2/ using so-called Strang splitting, where we take half a step with the f0
operator, a full step with the f1 operator, and finally half another step with the f0
operator. During a time interval �t the algorithm can be written as follows.

du

dt
D f0.u
/; u
.tn/ D u.tn/; t 2

�
tn; tn C 1

2
�t

	
;

du

dt
D f1.u

/; u

.tn/ D u

�
tnC 1

2

�
; t 2 Œtn; tn C�t�;

du

dt
D f0.u

/; u

�
tnC 1

2

�
D u

.tnC1/; t 2

�
tn C 1

2
�t; tn C�t

	
:

The global solution is set as u.tnC1/ D u

.tnC1/.
There is no use in combining higher-order methods with ordinary splitting since

the error due to splitting is O.�t/, but for Strang splitting it makes sense to use
schemes of order O.�t2/.

With the notation introduced for Strang splitting, we may express ordinary first-
order splitting as

du

dt
D f0.u
/; u
.tn/ D u.tn/; t 2 Œtn; tn C�t�;

du

dt
D f1.u

/; u

.tn/ D u
.tnC1/; t 2 Œtn; tn C�t�;

with global solution set as u.tnC1/ D u

.tnC1/.

5.6.3 Example: Logistic Growth

Let us split the (scaled) logistic equation

u0 D u.1 � u/; u.0/ D 0:1;
with solution u D .9e�t C 1/�1, into

u0 D u � u2 D f0.u/C f1.u/; f0.u/ D u; f1.u/ D �u2 :
We solve u0 D f0.u/ and u0 D f1.u/ by a Forward Euler step. In addition, we add
a method where we solve u0 D f0.u/ analytically, since the equation is actually
u0 D u with solution et . The software that accompanies the following methods is
the file split_logistic.py.

Splitting techniques Ordinary splitting takes a Forward Euler step for each of the
ODEs according to

u
;nC1 � u
;n
�t

D f0.u
;n/; u
;n D u.tn/; t 2 Œtn; tn C�t�; (5.74)

u

;nC1 � u

;n
�t

D f1.u

;n/; u

;n D u
;nC1; t 2 Œtn; tn C�t�; (5.75)

with u.tnC1/ D u

;nC1.

http://tinyurl.com/nu656p2/nonlin/split_logistic.py

