
Journal of King Saud University – Computer and Information Sciences (2016) 28, 125–132
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Reformulating XQuery queries using GLAV

mapping and complex unification
* Corresponding author.

E-mail addresses: sbharz@yahoo.fr (S. Benharzallah), bennoui@

gmail.com (H. Bennoui), kazarokba@yahoo.fr (O. Kazar).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.06.001
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Saber Benharzallah *, Hammadi Bennoui, Okba Kazar
Smart Computer Science Laboratory, Biskra University 07000, Algeria
Received 16 March 2014; revised 18 December 2014; accepted 3 June 2015

Available online 21 October 2015
KEYWORDS

Data integration;

Mediator;

XML;

XQuery;

GLAV mapping
Abstract This paper describes an algorithm for reformulation of XQuery queries. The mediation is

based on an essential component called mediator. Its main role is to reformulate a user query,

written in terms of global schema, into queries written in terms of source schemas. Our algorithm

is based on the principle of logical equivalence, simple and complex unification, to obtain a better

reformulation. It takes XQuery query, global schema (written in XMLSchema), and mappings

GLAV as input parameters and provides resultant query written in terms of source schemas. The

results of implementation show the proper functioning of the algorithm.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Now the Web is presented as the most favored means to
disseminate information. Many companies and organizations,
whatever their field of activity (e-commerce, education,

geographical or historical applications, etc.), make this choice
for disseminating information.

The diversity of distributed information sources and their

heterogeneity are one of the main difficulties encountered by
users of the Web. It requires the user to respect the access
methodology for each data source, implying to know the
location of the base, the description of their content, the
possibilities of interrogation and the format of results, in order

to receive the expected response (Hacid and Reynaud, 1998).
The mediator-based systems offer interesting solutions for

the integration of heterogeneous data. Accordingly, most
recent works have taken this approach including the

Internet-Oriented Systems (Moussa, 2002; Elazami et al.,
2007; Mustafa and Rahman, 2013). The mediator acts as an
interface between users and data sources. It is composed of a

global schema, which provides a unified view of data sources
and a set of views describing the content of sources. Queries
are then expressed on the global schema, giving users the

illusion of querying a single database. Based on information
provided by the views, the mediator analyzes and reformulates
the queries into sub-queries that would be executed by data

sources. Before being sent to the target data source, each
sub-query is translated into the native language of the source
by the corresponding wrapper. The mediator uses the schema
mappings to reformulate queries. Schema mappings establish a

correspondence between data stored in two databases, called
source and target respectively. Query processing under schema
mappings has been investigated extensively in the two cases

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.06.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sbharz@yahoo.fr
mailto:bennoui@gmail.com
mailto:bennoui@gmail.com
mailto:kazarokba@yahoo.fr
http://dx.doi.org/10.1016/j.jksuci.2015.06.001
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.06.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

126 S. Benharzallah et al.
where each target atom is mapped to a query over the source
(called GAV, Global-As-View), and where each source atom
is mapped to a query over the target (called LAV, Local-As-

View). The general case, called GLAV, in which queries over
the source are mapped to queries over the target, has recently
attracted a lot of attention (Calvanese et al., 2012). The medi-

ator approach has the advantage of being able to build a query
data sources system without touching the data remaining in
their original sources.

XML is an extremely versatile markup language, capable of
labeling the information content of diverse data sources
including structured and semi-structured documents, relational
databases, and object repositories (XQuery 1.0, 2007). A query

language which uses the structure of the XML can intelligently
express queries in all types of data that are physically stored in
XML or viewed as XML via middleware. Because the query

languages were traditionally designed for specific data types,
the majority of existing proposals for the XML query lan-
guages are robust for some types of data sources, but weak

for others. The specification of XQuery (XQuery 1.0, 2007)
describes a new query language, which is conceived to be lar-
gely applicable to all types of XML data sources.

Most query reformulation algorithms (Koch, 2002; Arenas
et al., 2004; Libkin and Sirangelo, 2008) using GLAV mapping
approach exploit conjunctive queries; and consequently are
not expressive or are applied in the fields of data exchange.

In this paper we describe a reformulation algorithm of
XQuery queries for mediator based systems. The main role of
the mediator is to reformulate a user query, written in terms

of global schema, into queries written in terms of source
schemas. Our algorithm is based on the principle of logical
equivalence and simple/complex unification to obtain a better

reformulation. The algorithm avoids the shorts reformulations.
It takes XQuery query, global schema (written in XMLSchema),
and expressive mappings GLAV (written in XQuery language)

and provides resultant query written in terms of source schemas.
The results of implementation show the proper functioning of
the algorithm.

The rest of this paper is organized as follows: Section 2

presents the related work, some solutions presented in the
literature and the characteristics of our solution. Section 3
outlines some concepts used in this paper. Section 4 presents

the proposed architecture of our system of mediation and
describes the reformulation algorithm. The programming
environment and implementation are presented in Section 5.

Finally, Section 6 concludes and prospects the paper.
2. Related work

The two main problems posed by the construction of a medi-
ator are (Rousset et al., 2002): (i) the choice of both the lan-
guage used to model the global schema, and the languages
used to model, according to this schema, the views on the

sources to be integrated as well as queries of users. And, (ii)
the choice of query reformulation algorithm in terms of views
in order to get all the answers to a query.

Studies have focused on the languages for modeling the glo-
bal schema to represent the views of the sources to integrate
and those used to express queries from human users or com-

puting entities (Reynaud and Safar, 2008; Goasdoue et al.,
2000). Others have focused on the design and implementation
of algorithms for query rewriting in terms of views on relevant
data sources and, more recently, some research focus on
designing intelligent interfaces assisting the user in Query for-

mulation (Maiz et al., 2006; Charlet et al., 2003).
Most of research (Calvanese et al., 2012; Halevy et al.,

2006) on query processing under schema mappings in data

integration distinguish three approaches to establish mappings
between the global schema and source schemas. In GAV map-
pings, for each relationship used in the global schema, we

define a view written using source schemas. The main advan-
tage of this approach is its simplicity of reformulation. Never-
theless, it lacks the flexibility with respect to the addition,
deletion and modification of the sources to the data integration

system. This is due to the fact that each modification of a local
source schema results in a modification of the global one. The
projects TSIMMIS (Garcia-Molina et al., 1997), INFORMIX

(Leone et al., 2005) follow the GAV approach.
In LAV mappings, every relationship of a source schema is

defined as a view on the global schema. In this approach, each

source is independently specified, which permits to provide
more flexibility with respect to the addition/deletion of data
sources to integrate. It has no effect on the global schema, only

views should be added (or deleted). On the other hand, the
price to pay for this flexibility is the complexity of the con-
struction of answers to a query in the designed mediator.
The projects STYX (Amann et al., 2002), Agora (Manolescu

et al., 2001), follow the LAV approach.
GLAV mappings (Reynaud and Safar, 2008; Djema et al.,

2007) overcome the limitations of both GAV and LAV

(Friedman et al., 1999). In the query reformulation of the
GLAV approach, each mapping rule is represented by a con-
junctive query written in the global schema associated with a

conjunctive one written in source schemas. These queries are
virtual views that do not represent the results stored on sources,
rather than LAV approach where each source may be regarded

as it contains a response to a query written in the global schema;
and consequently, the sources represent materialized answers to
written queries on the global schema. Thus, inGLAV approach,
the rules allow to reformulate the query more efficiently. Addi-

tionally, it reaches the limits of the expressive power of a data
source description language. And also the query reformulation
is a co-NP-hard in the size of the data in the sources. Query

reformulation in this approach is shown to be no harder than
that of the LAV approach. In fact, most of the research on query
processing under schema mappings in data integration concen-

trate on GAV and LAV mappings (see, for instance the surveys
in Calvanese et al. (2012) and Halevy et al. (2006)).

In data integration, GLAVmappings were specifically taken
into account in Cal (2004), but only in the case of relational

databases. It was mainly studied in the exchange of informa-
tion. In particular, the focus of Friedman et al. (1999) and
Levy et al. (2000) is put on providing foundation for exchange

of information based on schemamappings; whereas in Florescu
(1996), Arenas et al. (2010) and Fagin et al. (2009), the goal is to
study operators on schema mappings relevant to model man-

agement, notably, composition, merge, and inverse
(Calvanese et al., 2012). A more general form of GLAV that
accounts for XML like structures, and which we will use here,

has been used to give semantics for mappings between XML
schemas and to generate the data transformation scripts (in
SQL, XQuery or XSLT) that implement the desired data
exchange (Libkin and Sirangelo, 2008; Yu and Popa, 2004).

 Mapping
rule

Invalid

query

User Interface

Query analyzer

Query reformulation

User query (Xquery)

query

Valid query

Reformulated
query

Figure 1 General architecture of our system.

Reformulating XQuery Queries Using GLAV mapping and Complex Unification 127
In our solution, we adopt GLAV approach to define map-
ping rules by using the XQuery language. The solution pro-
vided in this paper is characterized by the following features:

– The use of common expressive query language XQuery to
express queries from human users or computing entities.

– The use of the XMLSchema model as a common data
model to represent the global schema as well as the views
of the sources to integrate.

– Backward integration approach and adaptation of GLAV
mapping rules.

– The reformulation algorithm is based on the principle of
logical equivalence and simple and complex unification to

obtain a better reformulation. The GLAV mappings rules
take into account the resolution of semantic conflicts.

3. Preliminaries

This section outlines briefly some basic concepts on which we

will rely throughout the paper.

– Substitution: A substitution of a set of variables X ¼
ðx1; x2; . . . ; xnÞ is the finite set of the form:
fx1=y1; x2=y2; . . . ; xn=yng where each yi is a variable different
to xi but it has the same type as xi.

– Instance: Let the substitution h = fx1=y1; x2=y2; . . . ; xn=yng
and Q a query. Consider the following queries:
Q1;Q2; . . . ;Qnwhere: Q0 ¼ Q and Qi are obtained
fromQi�1by yi. Qn is called the instance of Q by the

substitution and is denoted by Qh.
– Logical equivalence: Two queries Q1, Q2 are logically
equivalent if and only if they give the same results (have

the same canonical form) (Florescu, 1996).
– Simple form: A query is in a simple form if all the predicates
in the Where clause are in conjunctive normal form. There

are no imbrications in a For clause.
– Mapping rules: They are defined for the correspondence
between the global and source schemas.
The rules are of the form: Ri : qg ! qs, where:
qg: is an XQuery query relating to elements of the global

schema. qs: is an XQuery query relating to elements of
source schemas.

4. The proposed architecture

4.1. General architecture of the system

Our mediator uses a common expressive query language
XQuery to express queries from human users. Besides the

GLAV mapping rules, it uses a XMLSchema model as a com-
mon data model to represent the global schema as well as the
views of the sources to integrate. In order to obtain a better

reformulation, the algorithm exploits the principle of logical
equivalence and simple/complex unification. The mediator is
composed of three modules (Fig. 1): user interface, query
analyzer and query reformulation.

- User interface: The interface presents the only mean that
allows direct interaction between the system and the user.
- Query analyzer This analyzer allows a lexical and syntactic

analysis of the query to verify its validity.
- Query reformulation: This module decomposes a query Q
written in global schema into a recomposition query and
sub-queries. Each sub-query qiis written in terms of a

source schema.

The global schema offers the illusion that the user asks a
centralized system. In general, when the user puts his query
(in terms of the global schema) via the user interface, the anal-

ysis module checks its lexical and syntactic validity (the query
must be expressed in terms of the global schema and respects
the adopted syntax). If all goes well, the reformulation module

tries to find a reformulation for the query. First, it must
transform the query to a simpler form (the canonical form);
next it exploits the available mapping rules to reformulate
the query. If the query is reformulated successfully, then the

module identifies the participant sources in the execution of Q.

4.1.1. Query analyzer

This module analyzes the query, knowing that it is written in a
restriction of the XQuery language. This restriction is gener-
ated by the following grammar (Yu and Popa, 2004):

Q: = For $x1 in C1,. . .,$xn in Cm

Where B
Return R
R: = [A1: = R1,. . .,Ak = Rk] | E | Q
E: = S | $x | E/L
Ci: = E | Q
$x: is a variable
S: is the root of schema
L: is a label
E/L: recording of projection

In fact, this grammar is the heart of XQuery (Yu and Popa,
2004). The analyzer decomposes the user query into an internal

structure that can be easily manipulated by the various compo-
nents of the mediator. It also checks whether the query is valid,
both syntactically and in relation to the surveyed data types.

4.1.2. Query reformulation module

For each relation in the global schema, we will define a view
consisting of the terms of source schemas relations. The

Figure 2 Relations between different schemas.

128 S. Benharzallah et al.
reformulation (Algorithm 1) consists itself of two sub compo-
nents (Florescu, 1996): simple and complex unification.

a - Simple unification

Two queries Q1 and Q2 are unifiable if Q1 is an instance of
by the substitution h; this means that: Q1 ¼ Q2h. We say in this
case that Q1 is logically equivalent to Q2h.

We adapt the algorithm defined in Florescu (1996) which
allows verifying the unification of two OQL queries.

The unification is simply divided into three main stages:

� The unification of collections (Ci).
� The unification of predicates.
� The unification of projections (return).

If all goes well, the unification succeeds and returns the sub-
stitution h. The substitution h is calculated iteratively and we

obtain a h such that: Q1 ¼ Q2h.
b - Complex unification
If two queries Q1 and Q2 are not unifiable by the simple uni-

fication, then it may be possible that there exists a query Q3

which is logically equivalent to Q2 and it contains Q1h as a
sub query.

We say that Q3 is written in terms of Q1h which is unified by
the substitution h. Thus, Q3 is the reformulation of Q2 by using
Q1. We adapt the algorithm defined in Florescu (1996) which
allows verifying from two queries Q1 and Q2, if it’s possible

to reformulate Q2 in a query Q3 containing Q1h such as a
sub query.

The complex unification is divided into three main stages:

- The unification of collections.
- The unification of predicates.

- The construction of the new query Q3 and the
substitution h.

Algorithm 1 Reformulation
Input: Q (written in XQuery), M // where
M ¼ fr1; r2; . . . ; rng and ri : qgi ! qsi .

Output: E1
{
E1 ¼ fQg/* Q is in simple form */
While not exist reformulated query in E1

AND E1 not empty do

{
E2 ¼ fg;
For each q 2 E1 and ri 2 Mf
ifUnificationSimple (q, qgi)==true then

replace q by qgih/
h is the substitution/

Else: If UnificationComplexe(qgi ,q)==true

/* successful with the substitution h and
the query q0 */then

Replace q by q0 (as q0 contains qgih like sub

query).
Add the result to E2

}
E1 ¼ E2 � E1

}
}

4.1.2.1. Process of reformulation. We describe in our solution
the decomposition process of a query Q written in global
schema into a recomposition query and sub-queries. Each

sub-query qi is written in a source schema Si.
Our process of reformulation is accomplished in four

stages: transformation of the query Q into a more simple form

to be processed, reformulation, identification of sources
involved in the execution of the query and the generation of
sub-queries.

� Stage 1: The transformation of the query is to write it in the
canonical form or approximate it to the canonical form.

� Stage 2: The reformulation of a query Q (Algorithm1): our

algorithm consists to reformulate a query Q (using mapping
rules M) into a query logically equivalent to Q and written
in terms of qgih. There are three cases: the case in which

there exists a rule ri : qgi ! qsi such that Q ¼ qgih; the case

where Qis in terms of qgih; and the case where there doesn’t

exist a reformulation of the query because of the lack of
mapping rules. In this last case, the algorithm gives failure

as a result. We propose that the mapping rules follow an
order of priority to ensure proper reformulation and also
allow to take into account the constraints on the sources

that are defined in the mapping rules. So the algorithm
should avoid short reformulations.

� Stage 3: The identification of data sources involved in the
execution of the query (Algorithm 2) is performed using

the mapping defined in the mapping rules between qgi et qsi .

Table 1 Mapping rules.

r1 qg1 for $zincollection(‘‘GlobalSchema”)/Dept

where $z/Dnom= $a

return $z

qs1 for $zin(for $t in collection(‘‘LocalSchema-Source1”)/

Department

where return

[DeptKey = $t/DepartmentKey, Dnom= $t/Dname,

Budget = $t/bdg])

where $z/Dnom= $a

return $z

union

for $zin(for $t in collection(‘‘LocalSchema-Source2”)/

Depart

where return

[DeptKey = $t/DeparKey, Dnom= $t/DN,

Budget = $t/budg])

where $z/Dnom= $a

return $z

r2 qg2 for $zincollection(‘‘GlobalSchema”)/Emp

where $z/Salaried = $a

return [A1 = $z/Enom, A2 = $z/DeptKeyEtr]

qs2 for $zincollection(‘‘LocalSchema-Source3”)/Employ

where $z/wages = $a

return [A1 = $z/Ename, A2 = $z/DKeyEtr]

Reformulating XQuery Queries Using GLAV mapping and Complex Unification 129
Algorithm 2 Identification Sources Participating
Table 2 Sub queries sent to S1, S2, and S3.

Sub query Sent

to

for $x in (for $t in collection(‘‘LocalScheam-source1”)/

Department

where return [DeptKey = $t/DepartmentKey,

Dnom= $t/Dname, Budget = $t/bdg])

where $x/Dnom= ‘‘department1”

return $x

S1

for $x in (for $t in collection(‘‘LocalScheam-source2”)/

Depart

where return [DeptKey = $t/DeparKey, Dnom= $t/

DN, Budget = $t/budg])

where $x/Dnom= ‘‘department1”

return $x

S2

for $x in collection(‘‘LocalScheam-source3”)/Employ

where $x/wages = ‘‘20000,00DA”

return [A1 = $x/Ename, A2 = $x/DCléEtr]

S3
Input: a reformulated Q;
M ¼ fr1; r2; . . . ; rng and ri : qgi ! qsi ;

Output: Q in term of source schemas;
{
For each ri 2 M {
If qgi appears in Q then replace qgi by qsi in Q;

}
returnQ
}

� Stage 4: The generation of sub-queries from the query Q.
We distinguish between two cases: – if the query Q has
the form qsih (special case) then Q is the union of sub-

queries, each of which is written on the elements of a source
schema; – If the query Q is written in terms of qsih then, in

this case, the query Q is considered as recombining a query
and qsih are considered as sub-queries, each of which can

contain unions of sub-queries. The sub-queries for each

source involved in the execution of Q are grouped alto-
gether to be sent to these sources.

4.2. Experimental results

We have implemented our prototype using the environment
C++ Builder. We present the following case study to demon-

strate the operation of the algorithm. We have the global
schema GS and source schemas S1, S2 et S3 representing data-
bases ûDepartment, Employersý. The global schema is as

follows:
Global Schema:
Dept(DeptKey, Dnom, Budget);

Emp(EmpClé, Enom, DeptKeyEtr, Salaried);

The Global Schema is written in XMLSchema and interrogated

by XQuery.

Source schemas are:

Local schema of the source S1:

Department(DepartmentKey, Dname, Bdg);

Local schema of the source S2 :

Depart(DepartKey, DN, Budg);

Local schema of the source S3:

Employ(EmployKey, Ename, DKeyEtr, wages);

Fig. 2 presents relations between the different schemas. In our
case study, we used the subset of GLAV mapping rules repre-

sented in Table 1.

For example, consider the following user query Q:
Q= for $x in collection (‘‘GlobalSchema”)/Dept, $y in collection

(‘‘GlobalSchema”)/Emp

Where $x/DeptKey = $y/DeptKeyEtrand $x/

Dnom= ‘‘department1” and

$y/Salaried = ‘‘20000,00 DA”

return [Name = $y/Enom]

The user wants to know the names of employers in departmen-

t1 who have wages equal to 20000,00 DA.
To decompose Q into sub-queries in our mediator, we

apply the following steps:

- Simplification of the query: Q is in a simple form.
- Reformulation: we apply our algorithm of query reformu-
lation. The query is reformulated using qg1 and qg2 .

Q = for $x0 in q h, $x01 in q h0
g1 g2

where $x0/DeptClé = $x01/A2

return [Nom = $x01/A1]

where: h ¼ f$ z=$ x; $ a=\department1"g and

h0 ¼ f$ z=$ x; $ a=\20000; 00DA"g.

Figure 3 The result of compilation.

Figure 4 The result of reformulation.

130 S. Benharzallah et al.

the queries sent to sources.

Reformulating XQuery Queries Using GLAV mapping and Complex Unification 131
- The identification of sources involved in the execution of
the queryQ: qg1 corresponds to qs1 (so the sources A1 and

A2 are involved in the execution of Q) and qg2 corresponds
toqs2 (so the source A3 participates in the execution of Q).
Therefore the three sources take part in the execution of
the query.

- After the identification of the sources participating in the
execution of the query Q, our mediator sends, using Algo-

rithm 2, the sub-queries that will be executed at the sources
(Table 2). Finally, the mediator recomposes the results.

Figs. 3–5 present the results of our system. Fig. 3 presents
the compilation of a user query which has been passed success-
fully and it displays the steps of lexical and syntactic verifica-

tion. Fig. 4 presents the query reformulated in terms of qgi
and it also displays the two substitutions where they helped
to reformulate the request of the user to the correct way. In
this case, the reformulation is of a complex type, since the

algorithm could not find a direct reformulation of Q. Fig. 5
also shows the reformulated query with sub queries to be sent
to data sources.

Figure 5 The result of
5. Conclusion

A mediation system is a powerful means allowing an easy
access to various information collected from data sources that
can be quite disparate. It must integrate diverse data in order

to provide to the user a centralized and uniform view of data
by hiding the features specific to their location, access method
and formats. We presented in this paper a reformulation algo-

rithm of XQuery queries for mediation systems using GLAV
mappings and unification.

The implementation of the prototype illustrates the opera-
tion of the algorithm. We tested the algorithm (the prototype)

on a case study across multiple queries, and we showed in this
paper an example of algorithm execution through a query.
This example shows in detail the running of the algorithm

on a real case. Through our experimentation, we advise that
the GLAV mapping rules follow an order of priority to ensure
proper reformulation and also allow to take into account the

constraints on the sources that are defined in the mapping
rules. So the algorithm should avoid short reformulations. In
fact, the efficiency of the algorithm is related to the efficiency

132 S. Benharzallah et al.
of the mapping rules and their order of priority. These priori-
ties are defined by the administrator.

GLAV mapping combines the expressive power of GAV

and LAV, and the query reformulation is a co-NP-hard in
the size of the data in the sources. Query reformulation in
our approach is no harder than that of the LAV approach.

As a prospect, our mediation system will be improved by
taking into account the following points: the use of all possibil-
ities of XQuery language and the construction of adapters to

resolve structural conflicts of heterogeneous sources (XML
schema model, relational model, ... etc).

References

Amann, B., Beeri, C., Fundulaki, I., Scholl, M., 2002. Querying xml

sources using an ontology-based mediator. In: CoopIS/DOA/

ODBASE, pp. 429–448.

Arenas, M., Barcelo, P., Fagin, R., Libkin, L., 2004. Locally consistent

transformations and query answering in data exchange. In: Proc. of

the 23rd ACM Symp. on Principles of Database Systems (PODS

2004), pp. 229–240.

Arenas, M., Fagin, R., Nash, A., 2010. Composition with target

constraints. In: Proc. of the 13th Int. Conf. on Database Theory

(ICDT 2010), pp. 129–142.

Cal, A., 2004. Query answering by rewriting in GLAV data integration

systems under constraints. In: Proc. of the 2nd Int. Workshop on

Semantic Web and Databases (SWDB 2004), Volume 3372 of

Lecture Notes in Computer Science. Springer, pp. 167–184.

Calvanese, Diego. et al, 2012. Query processing under GLAV

mappings for relational and graph databases. In: Proceedings of

the VLDB Endowment, vol. 6, no. 2.

Charlet, J., Laublet, P., Reynaud, C., 2003. Rapport final Web

sémantique, Action spécifique 32 CNRS/STIC.

Djema, L., Boumghar, F., Debiane, S., 2007. L’imagerie Médicale

Dans une Base De Données Distribuée Multimédia Sous Oracle 9i,

4th International Conference: Sciences of Electronic, Technologies

of Information and Telecommunications, March 25–29, Tunisi, pp.

3–5.

Elazami, I., Doukkali, D., Cherkaoui, O., 2007. Approche à base de

Patterns pour la Médiation entre les Systèmes d’Information

Hospitaliers, Département de Mathématiques et Informatique

Faculté des Sciences, Séminaire SIM 07, Dhar EL Mahraz Fès,

Maroc. FMP de Fès, 02 juin 2007, pp. 1–8.

Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C., 2009. Reverse data

exchange: coping with nulls. In: Proc. of the 28th ACM Symp. on

Principles of Database Systems (PODS 2009), pp. 23–32.

Florescu, D., 1996. Espaces de Recherche pour l’Optimisation de

Requêtes Objet (thèse de doctorat). Université de Paris VI, France.

Friedman, M., Levy, A., Millstein, T., 1999. Navigational plans for

data integration. In: Proc. of the National Conf. on Artificial

Intelligence (AAAI), pp. 67–73.
Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A.,

Sagiv, Y., Ullman, J.D., Vassalos, V., Widom, J., 1997. The

TSIMMIS approach to mediation: data models and languages. J.

Intell. Inf. Syst. 8 (2), 117–132.

Goasdoue, François, Lattes, V., Rousset, M.-C.H., 2000. The use of

the Carin language and algorithms for Integration Information: the

PICSEL system. Int. J. Cooperative Inf. Syst. 9 (4), 383–401.

Hacid, M.S., Reynaud, C., 1998. L’intégration de sources de données

(thèse de doctorat), Université Claude Bernard Lyon 1, France.

Halevy, A.Y., Rajaraman, A., Ordille, J., 2006. Data integration: the

teenage years. In: Proc. of the 32nd Int. Conf. on Very Large Data

Bases VLDB2006.

Koch, C., 2002. Query rewriting with symmetric constraints. In: Proc.

of the 2nd Int. Symp. on Foundations of Information and

Knowledge Systems (FoIKS 2002), Volume 2284 of Lecture Notes

in Computer Science. Springer, pp. 130–147.

Leone, N. et al, 2005. The INFOMIX system for advanced integration

of incomplete and inconsistent data. In: Proc. of the ACM

SIGMOD Int. Conf. on Management of Data, pp. 915–917.

Levy, A.Y., 2000. Logic-based techniques in data integration (PhD).

Department of Computer Science and Engineering, University of

Washington.

Libkin, L., Sirangelo, C., 2008. Data exchange and schema mappings

in open and closed worlds. In: Proc. of the 27th ACM Symposium

Principles of Database Systems (PODS 2008), pp. 139–148.

Maiz, N., Boussaid, O., Bentayeb, F., 2006. Un système de médiation

basé sur les ontologiesý, Laboratoire ERIC Université Lumière

Lyon 2, 17 Janvier 2006 Lille, France.

Manolescu, I., Florescu, D., Kossmann, D., 2001. Answering XML

queries over heterogeneous data sources. In: Proc. of the 27th Int.

Conf. on Very Large Data Bases (VLDB 2001).

Moussa, L.O., 2002. Dataweb basés sur XML: modélisation et

recherche d’informations pertinentes (Thèse de Doctorat d’Infor-

matique), Université de Pau et des Pays de l’Adour, France, 17

décembre 2002.

Mustafa, Rashed, Rahman, Hasan Hafizur, 2013. Mediator based

architecture to address data heterogeneity. Daffodil Int. Univ. J.

Sci. Technol. 8 (2), 30–40.

Reynaud, C., Safar, B., 2008. Construction automatique d’adaptateurs

guidée par une ontologie pour l’intégration de sources et de

données XML, inria-00432426, version 1, Univ. Paris-Sud, France,

juin 2008.

Rousset, C., Bidault, Froidevaux, C., Gagliardi, H., Goasdoué, F.,

Reynaud, C., Safar, B., 2002. Construction de Médiateurs pour

intégré des sources d’information multiples et hétérogènes le projet

PICSEL, Université Paris_Sud, Information-Interaction-Intelli-

gence, vol. 2, no. 1, France.

XQuery 1.0, 2007. An XML Query Language, W3C working Draft.

Yu, C., Popa, L., 2004. Constraint based XML Query Rewriting for

data integration, SICMOD 2004, juin 2004, Paris, France, pp. 371–

382.

http://refhub.elsevier.com/S1319-1578(15)00077-4/h0005
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0005
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0005
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0010
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0010
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0010
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0010
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0015
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0015
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0015
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0020
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0020
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0020
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0020
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0025
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0025
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0025
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0045
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0045
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0045
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0050
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0050
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0055
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0055
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0055
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0060
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0060
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0060
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0060
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0075
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0075
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0075
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0080
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0080
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0080
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0080
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0085
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0085
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0085
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0090
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0090
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0090
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0095
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0095
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0095
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0105
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0105
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0105
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0115
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0115
http://refhub.elsevier.com/S1319-1578(15)00077-4/h0115

	Reformulating XQuery queries using GLAV mapping and complex unification
	1 Introduction
	2 Related work
	3 Preliminaries
	4 The proposed architecture
	4.1 General architecture of the system
	4.1.1 Query analyzer
	4.1.2 Query reformulation module
	4.1.2.1 Process of reformulation

	4.2 Experimental results

	5 Conclusion
	References

