
Journal of King Saud University – Computer and Information Sciences (2016) 28, 133–145
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A middle layer solution to support ACID properties

for NoSQL databases
* Corresponding author.

E-mail addresses: Eng5ayman@gmail.com (A.E. Lotfy),

aisaleh@yahoo.com (A.I. Saleh), helghareeb@mans.edu.eg

(H.A. El-Ghareeb), K_hesham71@yahoo.com (H.A. Ali).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.05.003
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Ayman E. Lotfy a,*, Ahmed I. Saleh b, Haitham A. El-Ghareeb c, Hesham A. Ali d
a Information Technology Institute, Egypt
bComputer Engineering and Systems Dept., Faculty of Engineering, Mansoura University, Egypt
c Information Systems Dept., Faculty of Computers and Information Sciences, Mansoura University, Egypt
dComputer Engineering and Systems Dept., Faculty of Engineering, Mansoura University, Egypt
Received 27 January 2015; revised 10 May 2015; accepted 26 May 2015

Available online 3 November 2015
KEYWORDS

NoSQL;

ACID;

Consistency;

BASE;

Transactions;

Concurrency
Abstract The main objective of this paper is to keep the strengths of RDBMSs as consistency and

ACID properties and at the same time providing the benefits that inspired the NoSQL movement

through a middle layer. The proposed middle layer uses a four phase commit protocol to ensure: the

use of recent data, the use of the Pessimistic technique to forbid others dealing with data while it is

used and the data updates residing in many locations to avoid the loss of data and disappointment.

This mechanism is required, especially in distributed database application NoSQL based environ-

ment, because allowing conflicting transactions to continue not only wastes constrained computing

power and decreases bandwidth, but also exacerbates conflicts. The middle layer keeps tracking all

running transactions and manages with other layers the execution of concurrent transactions. This

solution will help increase both of the scalability, and throughput. Finally, the experimental results

show that the throughput of the system improves on increasing the number of middle layers in sce-

narios and the amount of updates to read in a transaction increases. Also the data are consistent

with executing many transactions related to each other through updating the same data. The scal-

ability and availability of the system is not affected while ensuring strict consistency.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Relational Database Management Systems (RDBMs) are used
to store and manage data. RDBMSs maintain the relations
between data through the use of constraints such as primary

and foreign keys. In case the size of data is not big, the users
of the system are not many, and the requirement of data con-
sistency is mandatory, RDBMs will be the perfect solution. As

data are stored on one machine there is no challenge to man-
age relations between them. Some of today’s web applications
face a challenge of serving millions of users who are distributed

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.05.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Eng5ayman@gmail.com
mailto:aisaleh@yahoo.com
mailto:helghareeb@mans.edu.eg
mailto:K_hesham71@yahoo.com
http://dx.doi.org/10.1016/j.jksuci.2015.05.003
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.05.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


134 A.E. Lotfy et al.
all over the world and who expect the service to be always
available, reliable, and with a high degree of consistency. With
the increase in the number of users and the increase in the

amount of generated data, data have to be stored in many ser-
vers which may be distributed over different locations.
Distributing data over many servers makes it difficult to main-

tain relations between data. Web applications require the abil-
ity to scale in many servers (Orend, 2010). This challenge led to
the appearance of a new trend of DBMS called NoSQL

DBMS. NoSQL DBMSs have the ability to distribute data
over many nodes providing the needed levels of availability,
while keeping scalability within accepted levels, and ignoring
data consistency.

The problem with distributed database systems is that we
have to overcome one of the three basic properties which
are: Availability, Consistency, and Partitioning according to

the CAP theorem proved by professor Eric Brewer (Gilbert
and Lynch, 2002). The CAP theorem states that any DBMS
can provide only two of three properties: consistency (C)

which means that DBMS supplies users with the same version
of data at the same time, high Availability (A) system responds
to users with data at any moment, and tolerance to network

Partitions (P) data divided over many computers (Wei, 2012;
Gilbert and Lynch, 2002).

This paper is organized as follows: Section 2 presents Back-
ground and Basic Concepts about Traditional RDBMS, ACID

properties, NoSQL DBMS and BASE properties. Section 3
presents Previous Efforts. Section 4 describes the proposed
frame work for improving ACID properties of NOSQL

DBMS. Section 5 presents performance metrics. Section 6 pre-
sents experimental results and Section 7 is the conclusion.

2. Background and basic concepts

In this section, the basic concepts related to the traditional
RDBMs, ACID properties as well as NoSQL database and

BASE properties will be introduced. The challenges associated
with RDBMS and NoSQL are also introduced.

2.1. Traditional RDBMS and ACID properties

A relational database is a system that stores data in a collection
of relations. The data saved in relations have relations between
each other through primary and foreign keys. Relations of typ-

ical applications are called tables. Examples of such application
are Microsoft SQL Server, Oracle DBMS, and IBMDB2. SQL
language is employed to manage data in the relational database

system. The scope of SQL Language includes query data from
multiple joints, insert, delete, update, and other operations.
Because of their rich set of features such as query capabilities

and transaction management, they seemed to be fit for almost
every possible task. One of the important features of RDBMs
is to provide ACID properties in order to execute transactions

(Wei, 2012) as transactions are divided into sub-transactions.
RDBMs maintain ACID properties, which are difficult to be
maintained over distributed data.

RDBMs ensure ACID for every transaction handled such

as concurrent transactions; moreover they ensure consistency
and availability over scalability according to the CAP theorem
(Gilbert and Lynch, 2002). On the other hand, RDBMs are not

the most appropriate solution in some scenarios such as big
data and large scale web applications (Milanović and
Mijajlović, 2012; Valer, 2013). Big data require 3 Vs Volume,
Velocity and Variety (Valer, 2013). Big data entail scalability

and flexibility which are not provided by RDBMs (Valer,
2013). Particularly, it is difficult to make transactions and joint
operations in a distributed system using RDBMSs. As the

exponential growth of data the system has to scale horizontally
this means to divide data over many machines. Horizontal
scalability is difficult to obtain by RDBMs. RDBMs require

fixed table structure, which is not required by big data.
2.2. NoSQL DBMS and BASE properties

NoSQL is an umbrella term that includes a group of non-
relational DBMS. It means ‘‘Not Only SQL” (Orend, 2010).
It provides good horizontal scalability for simple read/write
database operations distributed over many servers, in contrast

to traditional RDBMs that have little or no ability to scale
horizontally (Cattell, 2010). NoSQL databases do not need a
fixed table structure and does not provide a full ACID sup-

port. It provides eventually consistency, which means that data
will be consistent over a period of time (Orend, 2010). Some of
the usually used NoSQL databases are CouchDB, Riak, Cas-

sandra, Mnesia, BerkeleyDB, HamsterDB, MongoDB, and
Redis (Muhammad, 2011).

There have been various approaches to classify NoSQL
databases, each with different categories and subcategories

(Kriha, 2011). However, the basic classification that most
would agree on is the one that is based on data models. We
can classify NoSQL databases according to the data model

to the column, document, K-value, and Graph (Kriha, 2011).
NoSQL databases are based on nonfunctional categories and
the evaluation of their feature coverage. Table 1 summarizes

these features.
In the document oriented database each database consists

of a number of collections (as table in RDBMs) each collection

contains a number of documents written in the Binary Struc-
tured Object Notation (BSON) format Cattell, 2010. Each
document has an ID by which we can access this document.
Each document is composed of key–value pairs. We can get

or update a specific key–value in a specific document in a speci-
fic collection. SimpleDB, mongoDB, and coachDB are some
examples of document oriented NoSQL database. In key/value

store data are stored on a hash (Cattell, 2010). The key is a
unique identifier and value is the respective data. Data are
structured similar to a dictionary. Insert, delete and update

operations are applied on each given key. A number of key–
value pairs can be grouped in buckets and the key has a part
that identifies the bucket. Update and get operations are done
on keys. Project Voldermort, Riak, Redis, Scalaris and Tokyo

Cabinet are some examples of key–value NoSQL database
(Franco and Nogueira., 2011). Column Store keeps data in
rows. Each row has a unique identifier called key and one or

more columns. Column is themselves key–value pairs. The col-
umn names need not be predefined so the structure is not fixed.
Columns in a row are kept in a sorted order according to their

keys (names). Examples are Google BigTable, HBase and Cas-
sandra from Facebook (Cattell, 2010).

NoSQL DBMSs provide high throughput (Kriha, 2011).

For example, the column-store Hypertable, which pursues
Google’s Bigtable approach allows the local search engine



Table 1 Database categories and features.

Data model Performance Scalability Flexibility Complexity Functionality

Key – value store High High High Low Variable (none)

Column store High High Moderate Low Minimal

Document store High Variable (high) High Low Variable (low)

Graph database Variable Variable High High Graph theory

Relational database Variable Variable Low Moderate Relational algebra

Table 2 ACID vs. BASE as Brewer Say (Gilbert and Lynch,

2002).

Item ACID BASE

Consistency Strong consistency Weak Consistency –

stale data

Concurrent

exec.

Conservative

(pessimistic) lock

Aggressive

(optimistic)

Availability Available Availability

Horizontal

Scalability

Difficult Simpler

Evolution

difficulty

Difficult evolution (e. g.

schema)

Easier evolution

Commit Focus on ‘‘commit” Approximate answers

OK

Table 3 The differences between RDBMS and NoSQL

Database.

Item RDBMS NoSQL

ACID/BASE Provide ACID

Prosperities

Provide BASE Properties

Table Structure Need Fixed

Table Structure

Does not need fixed table

structure

Scaling up Vertical Scale up Horizontal Scale up

Consistency Strong Consistency Weak Consistency

Availability Available Available

Query

capabilities

Rich Query

Capabilities

Low Query Capabilities

A middle layer solution to support ACID properties 135
Zvent to store one billion data cells per day. NoSQL DBMs
provide efficient horizontal scalability which means that data

can reside in more than one machine and if space is not enough
for data, other machines can be added easily. While in vertical-
scaling the data reside in a single machine and scaling is done

through multi-core I.E. spreading the load between the CPU
and RAM resources of that machine, with horizontal-scaling
it is often easier to scale dynamically by adding more machines

into the existing pool – Vertical-scaling is often limited to the
capacity of a single machine, scaling beyond that capacity
often involves downtime and comes with an upper limit. A
good example for horizontal scaling is Cassandra, MongoDB.

A good example for the vertical scaling is MySQL – Amazon
RDS (The cloud version of MySQL) provides an easy way to
scale vertically by switching from small to bigger machines;

this process often involves downtime (Kriha, 2011).
In distinction to RDBMs, which provides ACID properties,

NoSQL introduces what is known as BASE properties. The
BASE approach, according to Brewer, who proved the CAP
theorem forfeits the ACID properties of consistency and isola-

tion in favor of ‘‘availability, graceful degradation, and perfor-
mance”. The acronym BASE is composed of the following
characteristics: Basically Available, Soft-state, Eventual con-

sistency. Brewer contrasts ACID with BASE as illustrated in
Table 2 which summarizes the BASE properties in the follow-
ing way: an application works basically all the time (basically

available), don’t have to be consistent all the time (soft-state)
but will be in some known state eventually (eventual consis-
tency) in contrast ACID properties provide strict consistency.
Strict consistency means that all read operations must return

the same data from the latest completed write operation. Such
a strict consistency cannot be achieved together with availabil-
ity and partition tolerance according to the CAP theorem.

Eventual consistency means that all read operations may
return different data from the latest completed write operation,
but as time goes on: ‘‘In a steady state”, the system will even-

tually return the last written value. Clients therefore may face
an inconsistent state of data as updates are in progress. For
instance, in a replicated database updates may go to one node
which replicates the latest version to all other nodes that con-

tain a replica of the modified dataset so that the replica nodes
eventually will have the latest version. Table 3 summarizes the
similarities and differences between RDBMs and NoSQL.

2.3. Problems associated to NoSQL

There are many of the challenges that face NoSQL DBMS.

One of the important challenges is how to add some degree
of data consistency as well as providing ACID properties.
There are some researches in that point such as CloudTPS,

Megastore, WAS, COPS, Percolator and others. Also, as data
stored in many servers, there is a challenge on how to make a
fast search on such distributed data stored in NoSQL DBMS
and how to get business intelligence information from dis-

tributed data. ‘‘Business Intelligence and NoSQL Databases”
and ‘‘Hive: a warehousing solution over a map-reduce frame-
work and as Distributed Search on Large NoSQL Databases”

are some of articles that address the previous challenge
(DUDA, 2012; Thusoo, 2009). How to distribute data over
many nodes is one of the challenges that face NoSQL DBMS.

Articles such as ‘‘NoSQL and Hadoop Technologies On Ora-
cle Cloud” and ‘‘10 rules for scalable performance in simple
operation datastores” address such challenges (Sharma, 2013;

Stonebraker, 2011).

2.4. Distributed data and concurrency control

There are two styles of distributing data: Sharing the dis-

tributed different data across multiple servers, so each server



Table 4 Summary of the Previous Efforts.

Research Goal Performance

Metrics

Results Disadvantages

Megastore (2011)

Baker et al. (2011)

– Provides fully serializable

ACID semantics over distant

replicas with low enough

– Latencies to support interac-

tive applications

– According to

clients used

the megastore

– availability for

read and write

operations.

– average read

and write

latencies

– Provides availability (at least

five nines 99.999%)

– average write latencies of 100–

400 ms depending on the dis-

tance between data centers

and the size of the data being

written

– It requires a manual parti-

tion of data into groups

and only provide ACID

within this groups through

MVCC MultiVersion Con-

currency Control

Scalable Transactions

across Heterogeneous

NoSQL KeyValue

Data Stores (2013)

Kanwar (2013)

– Providing multi-item transac-

tions across heterogeneous

data stores, using only a min-

imal set of features from each

store

– Throughput

(transactions

per second

(TPS))

– while varying

the ratio of

reads to writes

from 90:10,

80:20, to 70:30

– using 1, 2, 4, 8,

16, 32, 64, and

128 client

threads with

10,000

– records

accessed

– The number of transactions

scales linearly up to 16 client

– threads (this gives approxi-

mately 491 transactions per

second with a 90:10 mix of

read and write transactions

respectively using a single

WAS data store container)

– With 32 threads, the number

of transactions remains

roughly the same as with 16

threads

– Depend on the assumption

that data store returns at

all the final version of data

– Depend on global ordering

of transactionsDepend on

central clock

CloudTPS (2012) Wei

(2012)

– Providing full ACID proper-

ties for multi-item transac-

tions issued by web

applications, even in the pres-

ence of server disappoint-

ments and network partitions

– CloudTPS contains number

of LTMs. Each LTM respon-

sible for a subset of data

– when web application submits

a transaction a LTM act as a

coordinator for it

– Throughput

– Run CloudTPS

over HBase

and SimpleDB

– Maximum TPS

measured while

increasing

number of

LTM from 5-

10 to 15.40

– With HBase TPS scales lin-

early against number of

LTM and reach 8000 tps with

40 LTM

– With SimpleDB TPS reaches

3000 tps with 80 LTM

– Does not address problem

of dead lock

– Manually divide data over

LTM

– Requires machine for each

LTM

– Using 2pc in a network can

delay execution of

transaction

– Dependon time stamp in dis-

tributed system provide sin-

gle point of disappointment

136 A.E. Lotfy et al.
acts as a single source for a subset of data. While the other is
the replication which copies data across multiple servers, each

bit of data can be found in multiple places. A system may use
either or both techniques. Replication comes in two forms
(Muhammad, 2011): master–slave replication, which makes

one node the authoritative copy that handles updates while
slaves synchronize with the master and may handle reads.
The other one is called multi-master replication. In contrast

to master–slave, it allows writes to any node and the nodes
coordinate to synchronize their copies of the data. Master–
Slave replication reduces the chance of update conflicts but
multi-master replication avoids loading all writes onto a single

point of disappointment.
Two operations conflict if they belong to different transac-

tions, they access the same data item and at least one of them is

a write operation. Write–Write conflicts occur when two cli-
ents try to write the same data at the same time, while read–
write conflicts occur when one client reads data in the middle

of another client update the same data. There are two
approaches to assure consistency. The first are the Pessimistic
approaches, which lock data records to prevent conflicts. The
second is the optimistic approach, which executes any
transaction even if it violates integrity rules such as serializabil-
ity and after it detects conflicts and fixes them.
3. Related work

Recently, relational databases have been challenged by the

emergence of NoSQL storage systems which typically relax
consistency guarantees in favor of more scalability and avail-
ability. Different solutions introduced for highly consistent

and providing ACID transactions based on NoSQL systems,
key–value stores. One way is to implement transaction support
in the data store itself (Baker et al., 2011). This is complicated

and is difficult to implement without compromising scalability
and availability. Another approach which is used in our pro-
posed solution is to use a middle layer which acts as the inter-
face between clients and DBMs. This layer will support ACID

properties and concurrency control. Another approach is to
define a transactional access protocol for each data store. This
protocol provides a transaction and data store abstraction API

to enable the client applications to access the data with trans-
actional semantics. Also the proposed protocol maintains the



Web Applica�on

Load 
Balancer

Server 
Detector

Scalability 
Management

Transac�on 
Executer

Transac�on 
Manager

Wai�ng 
Transac�on 

Mgr.

Key 
Status

Data 
Migrator

Memory

Middle Layer

Transac�on Layer

Scalability Layer

Data Mang. Layer

Clients

Shard 1 Shard 2 Shard 3

DBMS

Figure 1 An overview of the proposed middle layer.

A middle layer solution to support ACID properties 137
advantages of scalable and reliable access to the data store. But
this approach requires to send metadata to the API from

DBMS and client itself. Data given from clients cannot be
accurate.

Google Megastore (Baker et al., 2011) is a transactional

indexed record manager on top of Big Table. Megastore sup-
ports ACID transactions across multiple data items. However,
programmers have to manually link data items into hierarchi-

cal groups, and each transaction can only access a single
group. Spinnaker (Rao et al., 2011) uses a PAXOS protocol
to build a Scalable, Consistent, and Highly Available Data
store but it only provides a single item consistency guarantees.

COPS (Lloyd et al., 2011) is a key–value store that delivers
this consistency model across the wide-area. A key contribu-
tion of COPS is its scalability, which can enforce causal depen-

dencies between keys stored across an entire cluster, rather
than a single server. The central approach in COPS is tracking
and explicitly checking whether causal dependencies between

keys are satisfied in the local cluster before exposing writes.
COPS uses the get transactions in order to obtain a consistent
view of multiple keys without locking or blocking. It uses repli-

cation protocol optimizations to achieve greater performance
while supporting native multi-item transactions.

Granola (Cowling and Liskov., 2012) is a transaction coor-

dination infrastructure for building reliable distributed storage
applications. It provides a strong consistency model, while sig-
nificantly reducing transaction coordination overhead. Gra-

nola introduces a specific support for a new type of
independent distributed transactions, which can serialize with
no locking overhead and no aborts due to writing conflicts.
Granola uses a novel timestamp-based coordination mecha-

nism to order distributed transactions, offering low latency
and high throughput. It uses replication protocol optimiza-
tions to achieve a greater performance while supporting native

multi-item transactions.
Scalable Transactions across Heterogeneous NoSQL Key

Value Data Stores (Kanwar, 2013) defines a client API that

defines a client coordinated transaction management protocol



Figure 2 Middle layer algorithm.

138 A.E. Lotfy et al.
with a pluggable data store abstraction layer enabling it to
handle transactions across more than one data stores. It
defines a client coordinated transaction protocol to enable effi-

cient multi-item transactions across heterogeneous key–value
stores by distributed applications. It also defines a data store
implementation that provides a corresponding interface to

support multi-item transactions. But this approach depends
on a client clock which will give non accurate results and also
it defines a central layer from which all clients get there data.
This layer is a single point of disappointment. Percolator
(Peng and Dabek., 2010) implements multi-key transactions

with snapshot isolation semantics. It depends on a central
fault-tolerant timestamp service called a timestamp oracle
(TO) to generate timestamps to help coordinate transactions

and a locking protocol to implement isolation. The locking
protocol relies on a read-evaluate-write operation on records



Web 
Applica�on

Server

Middle 
Layer

Middle 
Layer

Data Servers

Figure 3 Experiment construction.

0 

2000

4000

6000

8000

1 2 3 4 

With No Layer

with Layer 90 % Read

With Layer 80% Read

Figure 5 Throughput against number of requests: one middle

layer.

A middle layer solution to support ACID properties 139
to check for a lock field associated with each record. It does

not take advantage of test-and-set operations available in the
most key value stores making this technique unsuitable for cli-
ent applications spread across relatively high-latency WANs.
No deadlock detection or avoidance is implemented further

limiting its use over these types of networks.
Cloud TPS (Wei, 2012) is a middle layer between client web

application and cloud storage. This layer related to our work

as it provides transaction ACID properties, but it does not
address the problem of dead lock. Transactions are divided
into sub transactions. Each sub transaction deals only with

one key for reading or writing. Transaction executed if it’s
all sub transactions are ready to be executed. If one or many
sub transactions are not ready the transaction is aborted and

given another time stamp and restarted again from the first.
So it can happen that a transaction will restart from the first
for many times as another transaction operates in the same
data. It does not give a schedule algorithm in order in which

transactions are executed. Also, it uses in-memory data stores
for all data in the underlying storage. Table 4 summarizes the
previous efforts that tried to solve consistency and ACID

properties of NoSQL.

4. Proposed solution

According to the CAP theorem proved by Eric Brewer any
database management system can fulfill only two of the three
properties, which are Consistency, Availability and
WClient PC

One Middle L

Figure 4 Experimen
Partitioning. Relational database provides consistency and

availability with ACID properties while NoSQL databases
provide Availability and Partitioning with BASE properties.
The goal of this paper is to improve Consistency and provide
ACID properties of NoSQL databases in concurrent transac-

tion executions.
One of the solutions is to modify the NoSQL database

engine itself, but this solution will depend on the modified

database engine so it will not be suitable for other database
engines. It also requires getting the source code which is not
available for some engines and also it will take efforts for code

understanding, like Megastore which is built for Big Table and
Windows Azure Storage and Citrus leaf.

Another solution is based on building a layer over the

NoSQL database engine that acts as an interface between the
user application such as web application and the NoSQL data-
base engine like cloud TPS. This middle layer will support
transactional properties for the clients such as ACID and con-

sistency and maintains the motives of NoSQL databases such
as availability and Partitioning provided already by the under-
lying NoSQL database engine. The middle layer will depend

only on how we can get or update data on the underlying data-
base engine. So with minor modifications, we can make it suit-
able for many NoSQL database engines. Also, we can control

the middle layer through turning it ON in situations when
transaction management is important and turning it OFF in si-
tuations when transaction management is not important.
eb Applica�on

ayer

Mongo DataBase

t 1 construction.



Web Applica�onClient PC

Middle Layer

Mongo DataBase

Middle Layer

Two Middle Layers

Figure 6 Experiment 2 construction.

1 2 3 4 

With No Layer 2000 4000 5000 7000

90 / 10 Read to Write 2500 4300 5200 7000

80/20 Read to Write 2300 3500 4500 7000

0 
2000
4000
6000
8000

Th
ro

ug
hp

ut
 

tp
s

Throughput : Two Middle Layer 

Figure 7 Experiment 2 result with two layers.

0 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 

Availab

One Layer

Figure 8 Availability of the sys

140 A.E. Lotfy et al.
4.1. Proposed middle layer

Fig. 1 shows the architecture of the whole system with the pro-
posed middle layer. Fig. 2 shows the algorithm of the main
components of the middle layer. Clients issue requests to a

web application using HTTP. The web application issues
transaction to the middle layer. There is a multiple middle
layer to avoid the center point of failure. The web application

can submit a transaction to any of the existing middle layers.
The middle layer receiving the transaction will detect the

available middle layer that will execute the transaction. The
3 4 

ility 

Two Layer

tem with one and two layers.



A middle layer solution to support ACID properties 141
detected middle layer will act as a coordinator for the transac-
tion. The coordinator (middle Layer) will collect data, execute
transaction, migrate updates and return data to the web appli-

cation. The coordinator initially loads data from NoSQL stor-
age into the layer memory. The coordinator executes
transaction in layer memory. The operation on data read or

write is kept with the data (data status). Data status is used
for concurrent transaction execution. Data updates resulting
from transactions are kept in layer memory with new versions

and these updates are replicated to other layers to prevent data
loss due to middle layer server disappointments.

The transaction submitted by the web application is exe-
cuted using 4-Phase Commit protocol. In the first phase the

coordinator collects data from other middle layer memories
with its version or from the underlying NoSQL database if
data do not exist in any of the middle layers. In the second

phase the coordinator selects another coordinator to execute
transaction in parallel with it to make results available even
in the case of the primary coordinator disappointment. In

the third phase primary and secondary coordinator executes
transactions. During The fourth phase the primary coordina-
tor sends results to the web application and to the underlying

NoSQL database engine while the secondary coordinator
detects if a disappointment occurs; disappointment happens
in the primary one or not. If it detects disappointment, the sec-
ondary coordinator returns the result to the web application

and updates the underlying NoSQL database.
A load balancer will be used to detect which layer is respon-

sible for acting as a coordinator for the transaction. The mid-

dle layer has in-memory copy of data initially loaded from
NoSQL data storage through data migrator component. Data
updates result from transactions migrated to another layer in

order to get data in the case of layer disappointment and to
NoSQL data storage and update keys-status component with
the new version of this update. As NoSQL DB is horizontally

scalable, we maintain the layer scalability manager which is
responsible for scaling the middle layer. The server detection
component responsible for detecting which node (data or
layer) is connected to the system.

When a layer acts as a coordinator for a transaction the
transaction management sends the keys in which it will operate
to the data migration component to prepare data of such keys.

Data Migration gets the last version of the key data according
to Key Status component. The Key Status component main-
tains the location of the last version of data for each key

and asks other layers to detect if any other layer operates or
has a new version of the key. If the keys are available in key
status component and no operation on it, it informs data
migration to get data from the specified location into layer-

memory and the operation (read or write) is saved with the
key in the key-status component. When another layer asks
for these keys it takes these keys with the version and opera-

tion and compares the operation, it wants with the current
operation if any one of them (current or requested) is write
operation the transaction is sent to the waiting transaction

which periodically checks the key-status component in order
to run the transaction. When the keys are available, the trans-
action is executed by the transaction executer component.

During the execution of the transaction, the keys residing in
key-status component have version and operation status which
is read or write. When the transaction execution ended, the
version of keys increases and operation set to free. Data
migration component propagates changes to other layers and
to No SQL DB.

4.2. Middle layer components

The middle layer is composed of three functional layers. The
first layer is responsible for scalability and load balance, the

second is responsible for transaction management and the
third responsible for data and data status and version. The fol-
lowing sections explain the importance of each component.

4.2.1. Server detector

The server detector component is a critical component since it
determines which middle layer and data server are currently

connected to the network. The server detector maintains the
currently connected server and periodically sends out a signal
to these servers, informing them that it is alive and running. If

the server detector does not receive any signal from a specific
server it attempts to send a signal to this server and waits for
the response. If the server detector does not receive any
response it detects a server disappointment. If the server detec-

tor receives a signal from a server that is not currently in its list
it detects a new server connected to the system.

4.2.2. Scalability manager

As NoSQL DB provides a good horizontal scalability for data
storage or for the increasing in the incoming requests. We
maintain this property in our layer by providing the scalability

management component. This layer is responsible for increas-
ing the number of layers when work load increases or layer
memory data increase. So the scalability manager can be used

to increase the size of the middle layer memory or to enter a
new layer in the system if the workload increases.

4.2.3. Load balancer

When a layer is added or removed from the network, the Load
Balancer component is invoked to rebalance the work within
the Middle layer. The rebalancing occurs only on the waiting

transactions. The rebalancing occurs on the number of the
waiting transactions. Only one layer is responsible for making
this balance.

The load balancer receives the transaction from the web
application and detects the primary coordinator for the trans-
action. It also makes a rebalance to the waiting transactions if
the system layers increase or decrease. Also it is responsible of

detecting the secondary coordinator.

4.2.4. Data migrator

The data migration component is responsible for getting data
from other middle layer memory. If data do not exist in any of
the middle layer memories the data migration component gets
it from the underlying NoSQL DB. If data are updated, the

data migration component migrates these updates to the other
middle layers and to the underlying NoSQL DB. Also, this
component is also used to accomplish the residence of data

inside the middle layer memory to make a room for other data.
The data should be removed from the middle layer memory
when there is another higher version of the same data in

another middle layer memory. Also data with a higher version
are removed from the memory when there is a need to location



142 A.E. Lotfy et al.
in memory and the updates migrated to the underlying NoSQL
database and its age exceeds the limit set by the admin. The age
of data in memory is determined from the last time it was used.

The system can modify the age of data. The removal of data
starts automatically when the data size in memory becomes
bigger than a threshold size identified by the admin. The

removal of data starts by removing the old version of data
and then by the old age data if the updates migrated to the
underlying NoSQL database.

4.2.5. Keys status

Key status component is responsible for maintaining the loca-
tion of the last version of the data and the current operation on

it. The version of data is an incremental number that increases
when any portion of this key data updated. The status of the
data indicates the current operation on data such as read write

or no operation. If a layer makes a write operation on a speci-
fic key the middle layer is stored in the key status with key and
operation write with this key.

4.2.6. Transaction management

Transaction management component is responsible of provid-
ing ACID properties for the transaction. It contains two main

components. One component that executes the transaction by
applying 4PC 4 phase commits protocol explained in the next
section while the other contains the waiting transactions.
Hence, it periodically checks the availability of transaction

running.

4.3. How the system provides ACID properties

The goal of the proposed layer is to provide the ACID prop-
erties of RDBMs in the NoSQL databases. In this section,
we discuss how the proposed layer provides atomicity, consis-

tency, isolation and durability properties in NoSQL databases
through the use of 4PC.

4.3.1. Atomicity

For multi key transactions, which consist of multiple keys we
divide such transactions into a number of sub transactions
according to the number of keys. So each sub transaction only

deals with one key for read or write. If one or more sub trans-
action failed, the whole transaction will be failed, leaving the
database without any changes. To ensure Atomicity, we per-
form 4 phase commit protocol. Tacking into consideration

the short life of a transaction, as soon as data are available
for operations in the local memory of the coordinator, the
transaction is executed without interruption.

In the first phase of the commit protocol, the coordinator
brings all data required for transaction from other transaction
managers or from the underlying NoSQL database. When the

coordinator is ready to execute the transaction, it replicates
transaction with data to other transaction manager selected
by the load balancer to act as a secondary coordinator. The

primary and secondary coordinators start to execute transac-
tion. If the primary coordinator succeeded it returns the
updated data to the web application and commits the transac-
tion in the fourth phase with replicating updated data to N

transaction managers. If there is a hardware disappointment
in the primary coordinator detected by server detection of
the secondary coordinator, the secondary coordinator executes
the transaction and returns data to the web application and
replicates data to the other layer to commit the transaction.

In the proposed protocol there is only one node (coordina-
tor) responsible for executing the whole transaction after data
are available in the first phase. We provide also a secondary

coordinator that executes the same transaction with the same
data sent to it in the second phase of the protocol. The sec-
ondary coordinator acts as an alternative for the primary coor-

dinator if disappointment occurs in the primary coordinator
while it executes the transaction. Also secondary coordinator
acts as another source of data if a hardware disappointment
occurs in the primary coordinator after the primary coordina-

tor executes the transaction and updates do not migrate to the
underlying database.

4.3.2. Consistency

Consistency means that execution of transaction brings the
database from consistent state to another consistent state. This
is done by checking the accurate data types used for declaring

variables used to hold data.

4.3.3. Isolation

For the concurrence execution of transactions, isolation means
that execution of a transaction has to use only committed data.
So if multiple transactions operate on a number of the same
key data we have to schedule (order) transactions to ensure

serializability. In our protocol the execution of transactions
in the third phase does not start unless all used keys are free
to be used.

We use a combination of locking and time stamp mecha-
nisms. When a coordinator executes a transaction, it divides
the transaction into sub transactions. Each sub transaction

makes read or write only in one key. When any coordinator
executes a transaction, it marks all keys with the operation
needed in keys status such as K1: R, K2: W and so on. When
the execution is finished the operation is removed from the

keys and the updated keys take a new version. When another
transaction wants to operate on any of the keys that are being
used by another already running transaction, if the two oper-

ations on the key are read, the second transaction is executed,
otherwise the second sub transaction takes a number N, which
is determined from the currently running coordinator. This

number is incremental, so, if another transaction wants to
run with the previous transaction status it takes another num-
ber N+ 1. When a transaction starts execution and there is no

conflict with any other running transactions, it takes number 1.
If another transaction is received on another coordinator and
there is a conflict with transaction number 1 on key K the key
K in the current transaction takes the number 2 and the whole

transaction is put in the waiting status. When the execution of
the first transaction is finished the execution of the lowest num-
ber transaction should start.

When a coordinator wants to update a key, it locks this key
by the operation writes and any other incoming transaction
wants to operate on this key, it takes a number from the coor-

dinator currently locking the key. When the coordinator cur-
rently locking the key commits the update, the coordinator
with the lowest number manages the key by starting executing

the operation and gives the other incoming transaction a new
number starting from the last number +1.



A middle layer solution to support ACID properties 143
4.3.4. Durability

Durability means that committed data have not to be undone.

In the third phase of the protocol, we commit data after data
are replicated in more than one layer and use data migration
and data evictor to migrate changes to the underlying NoSQL

database. If there is any hardware disappointment in the sec-
ond phase of our protocol, we make a secondary coordinator
that executes the transaction and through its server detection it

determines if the primary coordinator has hardware disap-
pointment or not. If there is hardware disappointment in the
primary coordinator the secondary coordinator migrates
updates to another layer and to the underlying NoSQL data-

base. We make assure that the updates migrate to multiple ser-
vers before returning data to the client.

5. Performance metrics

The performance of the middle layer can be evaluated in terms
of numbers of metrics such as throughput, availability of the

layer, consistency and scalability. In our case of the proposed
middle layer, we will measure performance in terms of Trans-
action throughput and availability of the layer.

Transaction throughput is the number of transaction exe-
cuted per second (TPS). Concurrent transactions will be sent
to the middle layer through a number of threads. The time

at which transaction completed is written in the database.
And the number of transactions executed per second is evalu-
ated. We will check transaction throughput against the number
of client requests. Each request contains a transaction. The

transaction read to write ratios is varying from 100% read
to 0 write, from 90% read to 10% write and from 80% read
to 20% write.

Availability refers to the ability of the user community to
obtain a service or good access to the system, whether to sub-
mit new work, update or alter existing work, or collect the

results of the previous work. If a user cannot access the system,
this is – from user points of view – unavailable. The term
downtime is used to refer to periods when a system is unavail-

able. Transaction throughput will be measured during failover
one of replicated servers. To increase the availability of our
system consistency layer is repeated over two servers’ Exami-
nation: We will examine the system performance in existence

of the two servers and we will examine also its performance
in existence of only one server.

The steady state availability of any component of the sys-

tem can be calculated according to the equation (Teorey and
Teck, 1998):

Ai ¼ MTTFi=ðMTTFiþMTTRiÞ
where MTTF is the mean time for the component I to fail and

MTTR is the mean time for component I to repair. This func-
tion will be applied on our layer in case of a transaction exe-
cuted and the layer failed and returned to run after repair.

The failure occurs in case the system contains one layer and
the failing occurs in this layer, and in case there are two layers
and failure occurs in one layer.

There is a short note about consistency which means that

all users will deal with the same data at the same time. In
the traditional sense, a consistency property is something that
a system either provides or fails to provide. Thus, the property

can be verified, but not measured. We verify these properties
by executing multiple transactions sent from many users in a
specific order and we obtained the correct data.

6. Experimental results

This section provides the experimental results to validate the
proposed middle layer. Experimental results show that the sys-

tem throughput approximately increases linearly against the
No. of requests and is promoted by increasing the number of
middle layers. We build the middle layer over mongo NoSQL

DB. Engine that runs on the server with web application
hosted on another server and make several requests to the mid-
dle layer through the web application. Fig. 2 shows the con-

struction of the experiment. Clients issue request to web
servers which make use of the middle layer to get data from
the underlying mongodb database. A quick description of

the procedure used in the experiment is illustrated below

� We build the underlying NoSQL database using mongodb.
� Data stored in database represent a 10,000 record of stu-

dent data in Data Server 1.
� Student data include key, fname, lname, birthdate, faculty,
choice1, choice 2, IQ, English, Email.

� These data (10,000) record is replicated to another Data ser-
ver 2.

� The data are stored in bson format as following {key:1;

fname: ‘‘ahmed”; lname: ‘‘aly”; IQ:60; English:40}.
� There are other two Middle Layer Servers each one contain-
ing the algorithm that maintains ACID properties. The
layer is programed using c#.

� There is one server that contains a web application; we will
call it web application server.

� All servers are connected using switch.

� Each server contains inter core i5 processor – 4 G Ram.
� Fig. 3 shows the logical connection between servers.

6.1. Experiment 1: Evaluating the system using one middle layer

We measured the throughput in the existence of only one mid-

dle layer. The web application can issue one request, two
requests at the same time, three requests at the same time or
four requests at the same time. Each request demands to exe-
cute many transactions approximately 3000 transactions.

Fig. 4 shows the experiment architecture.
Fig. 5 shows the experiment 1 results. The vertical axis

demonstrates the average throughput (TPS) transaction per

second and horizontal axis shows the number of requests
issued to the middle Layer. Performance measurements were
taken while varying the ratio of reading to writing in transac-

tions from 90 R: 10 W, 80 R: 20 W using 1, 2, 3and 4 requests
at the same time all operate on different keys. We increased the
ratio of writing to read each time to increase workloads as

writing takes more time than read. Also we used web applica-
tions to send one request at first. The transactions were exe-
cuted sequentially. Also as the number of requests at the
same time increases the number of the required transactions

to be executed and controls the interference between data.
The general structure of transaction includes

(update(fname where id = 1),read(fname where id = 1),

read(fname where id = 2), read(fname where id = 1), read



144 A.E. Lotfy et al.
(fname where id = 1), read(fname where id = 1), read(fname
where id = 1), read(fname where id = 1), read(fname where
id = 1), read(fname where id = 1)).

The previous transaction includes 90%R:10%W and when
we make update two statements and read 8 statements this is
80%R:20%W.

Approximately the number of transactions in all cases
scales linearly. As the number of requests increases the number
of transactions executed per second increases as all requests

operate on a different thread. With no layer the transaction
throughput is greater as no extra processing is needed in the
middle layer but data are eventually consistent. Increasing
ratio of writing makes throughput to decrease using one layer.

6.2. Experiment 2: Evaluating the system with two middle layer

In this experiment we increase the number of middle layers to

two middle layers and we measured the throughput. Fig. 6
shows the architecture of the experiment. The client can issue
one request, two requests at the same time, three requests at

the same time or four requests at the same time. Each request
demands to execute many transactions approximately 3000
transactions. The result showed that under two numbers of

requests the throughput in the first experiment is high compared
to that in the second experiment. As the amount of requests
increases the throughput in the second experiment is high com-
pared to that in the first experiment. Fig. 7 shows the result.

6.3. Experiment 3: Evaluating the system availability

The availability of the system is calculated in existence of one

and two layers. In the case of one layer the time that system
takes to complete the execution of 1, 2, 3 and 4 transactions
is calculated and in the case of the middle layer the time taken

when it fails and returns is calculated. Also the time that sys-
tem takes to execute the transaction in case there are two layers
and one of them is failed is calculated in ms. The experimental

result is shown in Fig. 8.

7. Conclusion and future work

Many applications such as bank application transactions and
real time systems require strong data consistency. This applica-
tion can get strong data consistency if it is operated over
RDBMs. But there are some limitations that RDBMs face

such as scalability. This leads us to use another type of data-
bases called NoSQL databases. NoSQL databases provide
only weak consistency which makes it not suitable for applica-

tions that require strong consistency. This paper has intro-
duced a new framework that we can use between
applications that require strict consistency and NoSQL data-

bases. This frame work can provide strict consistency without
affecting scalability and availability of NoSQL databases.

This work relies on 4PC (4 phase commit) protocol to

ensure atomicity, consistency, isolation and durability. In the
first phase we obtain data in which transaction will operate
from layers or NoSQL database. The second phase selects
the primary and secondary coordinators that are used to exe-

cute transaction. The third is the execution of the transaction.
The fourth is replicating data to other layers and updating the
underlying NoSQL database. If the primary coordinator fails
while executing transaction the secondary one continues exe-
cuting the transaction without any delays. The throughput of
the systems maintains the same when there is a failure in one

layer as there is another layer executing the same transaction
at the same time.

One of the drawbacks of the system is that, multiple layers

are used to execute the same transaction to avoid central point
of failure. This approach is the computational power of the
system. As a future work we want to improve framework to

use only one layer and when there is failure in this layer
another layer starts to execute the transactions executed by this
layer. Also the framework has to be built to be more intelligent
to be used over many different kinds of NoSQL databases.
References

Baker J., Bond C., Corbett J.C., FurmanJ., Khorlin A., Larson J.,

Leon J.-M., Li Y., Lloyd A., Yushprakh V., 2011. Megastore:

Providing Scalable, Highly Available Storage for Interactive

Services. In: Proc. Conf. Innovative Data Systems Research

(CIDR).

Cattell Rick, 2010. Scalable SQL and NoSQL Data Stores, ACM, vol.

54, No. 6.

Cowling J., Liskov B., 2012. Granola: low-overhead distributed

transaction coordination. In: USENIX ATC’12.

DUDA JERZY, 2012. Business Intelegence and NoSQL Databases,

Information Systems in Management.

Franco M., Nogueira M., 2011. Using NoSQL Database to Persist

Complex Data Objects, Conference, Instituto de Inform´atica

Universidade Federal de Goiás (UFG).

Gilbert S., Lynch N., 2002. Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-Tolerant Web Services, SIGACT

News, vol. 33, No. 2.

Kanwar Renu, Trivedi Prakriti, Singh Kuldeep, 2013. NoSQL, a

Solution for Distributed Database Management System, Interna-

tional Journal of Computer Applications (0975–8887) vol. 67,

No.2.

Kriha, Walter., 2011. NoSQL databases, course of studies. Hochschule

der Medien, Stuttgart University.

Lloyd, W., Freedmand, M.J., et al, 2011. Don’t settle for Eventual:

Scalable Causal Consistency for Wide-Area Storage with COPS.

ACM.

Milanović, A., Mijajlović, M., 2012. A Survey of Post-relational Data

Management and NOSQL movement. Department of Computer

Science, Faculty of Mathematics University of Belgrade, Serbia.

Muhammad, Yousaf, 2011. Evaluation and Implementation of

Distributed NoSQL Database for MMO Gaming Environment

Master’s thesis. Uppsala university, Department of Information

Technology.

Orend, Kai, 2010. Analysis and Classification of NoSQL Databases

and Evaluation of their Ability to Replace an Object-relational

Persistence Layer Master’s thesis. Faculty of informatics, Technol-

ogy University, Munkh.

Peng D., Dabek F. 2010. Large-scale incremental processing using

distributed transactions and notifications. In OSDI’10.

Rao J., Shekita E.J., et al., 2011. Using paxos to build a scalable,

consistent, and highly available datastore. In: Proc. VLDB Endow

Conf.

Sharma Vatika, 2013. Meenu Dave, NoSQL and Hadoop Technolo-

gies On Oracle Cloud, IJETTCS.

Stonebraker, Michael, Cattell, Rick, 2011. 10 Rules for Scalable

Performance in ’Simple Operation’ Datastores. ACM.

Toby J. Teorey, Wee Teck Ng, 1998. Dependability and Performance

Measures for the Database Practitioner. IEEE.

Thusoo, Ashish et al, 2009. Hive: A Warehousing Solution Over a

Map-Reduce Framework. ACM.

http://refhub.elsevier.com/S1319-1578(15)00104-4/h0055
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0055
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0060
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0060
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0060
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0070
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0070
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0070
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0070
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0075
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0075
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0075
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0075
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0100
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0100
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0110
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0110


A middle layer solution to support ACID properties 145
Valer, Henrique, 2013. XQuery Processing Over NoSQL Stores Master

thesis. Technical University, Kaiserslautern.

Wei Zhou, Pierre Guillaume, Chi Chi-Hung, 2012. CloudTPS:

Scalable Transactions for Web Applications in the Cloud. In:

IEEE Transactions on Services Computing.

Further reading

Calder, B. et al, 2011. Windows Azure Storage: A Highly Available

Cloud Storage Service with Strong Consistency. ACM.
Dewitt, D., Gerber, B., Graefe, G., Heytens, M., Kumar, K.,

Muralikrishna, 1986. GAMMA – A High Performance Dataflow

Database Machine. In: Proceedings of the 1986 VLDB Conference.

Furman J.J., Karlsson J.S., Leon J.M., Newman S., Lloyd A., Zeyliger

P., 2008. Megastore: A Scalable Data System for User Facing

Applications, In: Proc. SIGMOD Int’l Conf. Management of Data.

Rys Michael, 2011. Microsoft Corp. Scalable SQL, ACM, vol. 9,

No. 4.

http://refhub.elsevier.com/S1319-1578(15)00104-4/h0115
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0115
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0010
http://refhub.elsevier.com/S1319-1578(15)00104-4/h0010

	A middle layer solution to support ACID properties for NoSQL databases
	1 Introduction
	2 Background and basic concepts
	2.1 Traditional RDBMS and ACID properties
	2.2 NoSQL DBMS and BASE properties
	2.3 Problems associated to NoSQL
	2.4 Distributed data and concurrency control

	3 Related work
	4 Proposed solution
	4.1 Proposed middle layer
	4.2 Middle layer components
	4.2.1 Server detector
	4.2.2 Scalability manager
	4.2.3 Load balancer
	4.2.4 Data migrator
	4.2.5 Keys status
	4.2.6 Transaction management

	4.3 How the system provides ACID properties
	4.3.1 Atomicity
	4.3.2 Consistency
	4.3.3 Isolation
	4.3.4 Durability


	5 Performance metrics
	6 Experimental results
	6.1 Experiment 1: Evaluating the system using one middle layer
	6.2 Experiment 2: Evaluating the system with two middle layer
	6.3 Experiment 3: Evaluating the system availability

	7 Conclusion and future work
	References
	Further reading


