
Journal of King Saud University – Computer and Information Sciences (2016) 28, 13–26
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A model transformation framework to increase

OCL usability
* Corresponding author. Tel.: +60 7 5531008; fax: +60 7 5530160.

E-mail address: aselamat@utm.my (A. Selamat).
1 Tel.: +60 7 5531008; fax: +60 7 5530160.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.04.002
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Samin Salemi a,1, Ali Selamat a,*, Marek Penhaker b
aUTM-IRDA Digital Media Centre and Faculty of Computing, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
bFaculty of Electrical Engineering and Computer Science, VSB Technical University of Ostrava, Czech Republic
Received 28 June 2014; revised 23 March 2015; accepted 19 April 2015
Available online 2 November 2015
KEYWORDS

Model-Driven Architecture;

Model transformation;

OCL generation;

Usability improvement
Abstract The usability of a modeling language has a direct relationship with several factors of

models constructed with the modeling language, such as time required and accuracy. Object Con-

straint Language (OCL) is the most prevalent language to document system constraints that are

annotated in the Unified Modeling Language (UML). OCL is reputed as a modeling language with

difficult syntax, and prior knowledge of OCL is needed to use the language. These obstacles result in

the low usability of OCL. Therefore, the current research proposes a model to automatically trans-

form system constraints formed in English sentences to OCL specifications. The proposed model is

based on the Model-Driven Architecture (MDA) approach. The Linear Temporal Logic (LTL)

properties of the proposed model are verified by the Maude model checker. To validate the pro-

posed model and compare it with the existing work, the En2OCL (English2OCL) application is

developed. This application is tested by three evaluation metrics: precision, recall, and f-measure.

The En2OCL application is further compared with the NL2OCLviaSBVR application, which is

the existing work on OCL generation from English sentences. The comparison shows a considerable

improvement in precision, recall, and f-measure.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Software designers use modeling languages to document sys-
tem requirements and constraints. One of the significant char-
acteristics of a modeling language is usability. There is a
usability definition made by ISO: ‘‘The extent to which a pro-
duct can be used by specified users to achieve specified goals with

effectiveness, efficiency, and satisfaction in a specified context of
use.”. As the ISO definition, usability is composed of three fac-
tors involving: effectiveness, efficiency, and satisfaction. Effec-

tiveness is the ability of users to complete tasks using the
system, and the quality of the output of those tasks. Efficiency
is the level of resource consumed in performing tasks. Satisfac-
tion is the subjective reaction of users to using the system.

OCL is the most prevalent modeling language to document
system constraints that a software designer is not able to show
by Unified Modeling Language (UML). The low usability of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.04.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aselamat@utm.my
http://dx.doi.org/10.1016/j.jksuci.2015.04.002
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.04.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

14 S. Salemi et al.
OCL due to its difficult syntax causes the gap between system
constraints written in natural languages and OCL specifica-
tions to be bigger and bigger. Thus, the low usability of

OCL increases time and effort spent on design phase of soft-
ware development significantly then influences on overall
development costs. In this research, a Model Driven Architec-

ture (MDA)-based framework is proposed in order to increase
OCL usability. The philosophy of MDA is to describe each
artifact as a model and to transform the models to each other

(Jilani and Usman, 2010). MDA provides a more efficient
approach for software development, if the model transforma-
tions are done according to their specifications. This paper is
structured as follows: in Section 2, two categories of the exist-

ing works are studied. The first category includes the existing
MDA-based works, whose source models are a natural lan-
guage. The second category includes the existing works for

OCL generation. In Section 3, the contribution of the current
study is presented. In Section 4, three metamodels for source,
intermediate, and target models are presented. In Section 5, the

proposed model is elaborated. In Section 6, the proposed
model is evaluated.

2. Related works

There are some existing MDA-based works, whose source
model is a natural language. For example, NIBA (Natural

Language Based Requirements Analysis in German) presented
by Fliedla et al. (2007) is an approach to analyze requirement
descriptions linguistically and to translate them to a CS (Con-
ceptual Schema). Amdouni et al. (2011) presented a tool to

translate requirements formed in text documents to UML
Class diagrams using NLP rules. Wang (2013) proposed
EBD (Environment Based Design), which is a methodology

to represent a natural language in conceptual models such as
UML Use Case, Domain, and FBS (Function–Behavior–Stat
e) models. NL2OCLviaSBVR developed by Bajwa (2012) is

a tool, which is the only existing MDA-based work that sup-
ports OCL. The tool translates system constraints formed in
English sentences to OCL specifications. On the other hand,

there are some existing works to generate OCL specifications.
For example, Wahler (2008) introduced an approach, which
takes an unconstrained Class diagram and gives OCL specifi-
cations based on OCL patterns. The proposed approach ana-

lyzes the input Class models to elicit potentially missing
constraints. There is a library of OCL constraint patterns,
which allows developers to write OCL specifications according

to the results elicited from the previous step. As OCL can be
used as a model query language with a reputation as having
a complex syntax, Störrle (2013) proposed an approach to

identify the most important model query elements for ad hoc
domain model querying. The model query elements are trans-
lated to OCL specifications in a library of query-predicates
called OQAPI (OCL Query API). NL2OCLviaSBVR also

can be categorized in OCL generators. However, the tool has
some limitations. For example, it does not support some
OCL elements such as collect, reject, enumeration, tuple data

type, and XOR relations. The tool used SiTra (Simple Trans-
formation), which has been developed by Akehurst et al.
(2006) for implementing mapping rules. SiTra has some limita-

tions, which are considered as the NL2OCLviaSBVR limita-
tions. For example, one of the major limitations of SiTra
regards a situation in which there is more than one rule that
should map to the same target object. There is no way to deter-
mine, using SiTra, which of the rules should construct the tar-

get object.

2.1. Synthesis and evaluation of the related work

Some criteria are specified to evaluate the existing research
works generating OCL specifications. These evaluation criteria
are OCL application, input data, being pattern-based or not,

level of automation, advantages, and limitations. OCL can
query or constrain the state of a system. In other words,
OCL can be used as a query language or as a constraint lan-

guage. Thus, OCL has two applications involving: constrain-
ing and querying. The OCL application is an evaluation
criterion that is considered in the existing works. The type of
input data in the existing works is another evaluation criterion

that is considered. OCL developers can write OCL specifica-
tions manually or can use OCL constraint patterns. An OCL
constraint pattern is a library that allows developers to write

OCL specifications based on the results elicited from the previ-
ous step. It must be specified if the OCL existing works are on
the basis of patterns or not. Thus, pattern-based is another

evaluation criterion. As there are different automation levels,
automation level is another criterion for evaluation. Features,
advantages, and drawbacks are some general evaluation crite-
ria that are considered for the existing works. Table 1 presents

the existing works evaluated using the criteria.

3. Contribution

Table 1 shows that there are only two existing works to gener-
ate OCL as constraint specifications. The first one is COPA-
CABANA, which is a pattern-based tool and the second one

is NL2OCLviaSBVR, which is an MDA-based tool. Table 2
presents some differences between the existing works and the
proposed model. These differences show some limitations of

the existing works solved by the proposed model.

4. Metamodels

4.1. English metamodel

Metamodel is the abstract syntax of a modeling language
expressed as a model. The metamodel defines the structure
of the model in terms of classes and relationships. Fig. 1 illus-

trates the classes of the English metamodel. The metamodel is
created in the current research. PossessiveDeterminer is
a sub-phrase of determiners that modify a noun by attributing
possession to someone or something. For example, ‘‘’s” in

‘‘customer’s card” is a possessive determiner. Univer-

salQuantifier, which expresses that some statements are
true for everything or everybody, include ‘‘all”, ‘‘each”, and

‘‘every”. ExistentialQuantifier, which expresses that
some statements are true for something or somebody, include
‘‘a”, ‘‘an”, and ‘‘s (plural)”. TransitiveVerb is a verb that

takes one or more objects. CopularVerb is a verb that links a
subject to a complement that refers to the subject. Neces-
sityVerb is a modal verb showing a necessary action that
must be performed. IsEqualTo includes ‘‘is”, ‘‘are”, ‘‘equals

Table 1 Evaluation summary of the existing works generating OCL specifications.

Researcher Wahler (2008) Störrle (2013) Bajwa (2012)

OCL

application

Constraint language Model query language Constraint language

Input Unconstrained class model English descriptions UML Class model and English

descriptions

pattern-based Yes No No

Automation Semi-automatic Manual Automatic

Tool/Library COPACABANA OQAPI NL2OCLviaSBVR

Focus on

usability

No Yes Yes

Feature work Developing consistent constraint

specifications based on constraint

patterns

Identifying the most important model

query elements for ad hoc domain

model querying and translates them into

OCL predicates

Converting natural language

expressions to the equivalent OCL

statements

Advantages � Supporting users in detecting anti-

patterns

� Simplifying OCL constraint

generation

� Improving the user-friendliness of

OCL for ad hoc querying

� Simplifying the process of OCL

statements generation

� OCL usability improvement

Limitations � Manual extraction of information

from NL constraints

� Manual selection of patterns

� Low accuracy (69%)

� Cannot using of return values of

methods as parameter values in

patterns

� Required to substantial effort for

adding new constraint patterns

� Not representative with any degree

of certainty

� Not easy to use for some people

� Limitations of SiTra

� One input English sentence at a

time

� No support of collect

� No support of reject

� No support of enumeration

� No support of tuple data-type

� No support of XOR relations

� No support of OperationCall

Table 2 Differences between En2OCL and the existing tools.

Property COPACABANA NL2OCLviaSBVR En2OCL

Transformation language implementing mapping rules – SiTra ATL

NavigationCall No Yes Yes

Logical expression Yes Yes Yes

Relational expression Yes Yes Yes

Enumeration Yes No Yes

includesAll() No Yes Yes

Select() No Yes Yes

XOR relations No No Yes

isUnique() No Yes Yes

Tuple data-type No No No

collect() Yes No Yes

reject() Yes No Yes

OperationCall Yes No No

Limited to process one English sentence at a time – Yes No

Model transformation framework to increase OCL usability 15
to”, ‘‘equal to”, ‘‘is equal to”, or ‘‘are equal to”.
ValuedRangeQuantifier is a sub-phrase that determines

a quantity by this syntax: ‘‘between quantity1 and quantity2”
such as ‘‘between 3 and 5” and ‘‘between the number of customer
cards and their owners”. PrefixElement is a semantic ele-

ment placed immediately before another semantic element.
For example, ‘‘valid” is a prefix element in ‘‘valid customer
card”, because ‘‘valid” is an attribute and ‘‘customer card” is

a class. PrepositionConjunction is a preposition, such
as ‘‘in” and ‘‘with”, describing a relationship between two
sub-phrases in a sentence. NegationElement is ‘‘not”.
IsPropertyOfSign is a sub-phrase that links two semantic
elements using ‘‘of”. For example, ‘‘age of customer” is
IsPropertyOfSign. SignIntegratedWithAnd is a

sub-phrase presenting a multiplication, division, addition, or
subtraction of two quantitative things. For example, ‘‘the mul-
tiplication of the customer’s age and the service’s point” is a

SignIntegratedWithAnd phrase. SumOf is a SignInte-

gratedWithAnd that adds two quantitative things. Subtrac-
tionOf is a SignIntegratedWithAnd that subtracts two

quantitative things. MultiplicationOf is a SignInte-

gratedWithAnd that multiplies two quantitative things.
DivisionOf is a SignIntegratedWithAnd that divides
two quantitative things.

Figure 1 English metamodel.

16 S. Salemi et al.
4.2. Semantic Business Vocabulary and Rules

SBVR (Semantic Business Vocabulary and Rules) is a stan-
dard to develop semantic models of business vocabularies
and business rules (OMG, 2013). The SBVR standard pro-
posed by OMG is an integral part of MDA for formal descrip-

tion of a natural language (OMG, 2013). As natural languages
such as English are informal descriptions, their translation to
formal languages is so hard. The foundation of SBVR is on

a formal logic (Bajwa, 2012), so translation of SBVR to other
formal languages is easy. In the current research, SBVR is cho-
sen as an intermediate representation. Thus, the elements of

the English metamodel must be mapped into the elements of
the SBVR metamodel and then the elements of the SBVR
metamodel must be mapped into the elements of the OCL

metamodel. SBVR provides business rules as a set of logical
formulations to analyze semantics of natural languages. These
business rules are written in natural languages. SBVR is a set
of concepts and logical formulations (Njonko and El Abed,

2012). Formal vocabularies and rules produced by SBVR for
a particular business domain can be used by computer systems.
These vocabularies and rules help in robust semantic analysis

of natural language texts. Concepts and Fact Types are two
major elements of business vocabulary. A concept is a business
entity in a particular domain and a fact type is a relationship

between concepts in a business rule. SBVR proposes use of
SBVR rules to represent particular business logic in a specific
context. SBVR proposes a set of semantic formulations that

semantically formulate the SBVR rules. Fig. 2 presents the
classes of the SBVR metamodel. All the specific definitions
of business concepts used by an organization or community
are gathered in a SBVR business vocabulary. SBVR concepts
are object type and fact type. Object type is a general concept

that is classified based on its characteristics. Fact type identifies
a relationship among one or more object type. The object type
in a fact type is called fact type role. Unary fact type (charac-

teristic) has one fact type role and binary fact type has two fact
type roles. SBVR logical formulations are modal formulations,
atomic formulation, logical operation, quantification, and

objectification. Modal formulations used to formulate modal-
ity are divided into necessity and possibility. Necessity formu-
lation is represented using the keywords ‘‘It is necessary” or ‘‘It
is obligatory”. Possibility formulation is represented using ‘‘It

is possible” keyword. Atomic formulation specifies a fact type
in a rule. Binary atomic formulation specifies a binary fact type
in a rule. Quantification is a set of quantifications supported in

SBVR and consists of universal quantification, at least n quan-
tification, at most n quantification, etc. Objectification is a log-
ical formulation that involves a bindable target. Logical

operations are divided into logical negation and binary logical
negation. Logical negation is a logical operation having one
logical operand. Binary logical negation, such as conjunction,
disjunction, and implication, is a logical operation having two

logical operands.

4.3. Object Constraint Language

Although, UML is the most common graphical modeling lan-
guage, requirement constraints cannot be represented by it.
Thus, a language, such as OCL that is the most common lan-

Figure 2 SBVR metamodel (OMG, 2013).

Model transformation framework to increase OCL usability 17
guage, is needed to document requirement constraints to
improve the precision. In a system, requirement constraints
specify how the system must operate or how it must be built.

OCL specifications are annotated in UML. Model-Driven
Engineering (MDE) is categorized OCL in the PIM level. An
OCL specification is a Boolean expression that sets a condition

on an entity such as a class, attribute, data-type, and operation
in UML models. It means that the condition must be true for
all instances of the entity. An OCL specification includes two
main parts: context and expression body. The context of an

OCL specification presents the entity restricted by the OCL
specification and the expression body of an OCL specification
displays a Boolean condition. The entity, which is restricted by
an OCL specification, is identified as a context variable of the

OCL specification. Fig. 3 shows the OCL metamodel.
The context of an OCL specification is specified in the

expression body using the self-keyword. An OCL context has

a stereotype that can be one of these items: invariant, defini-
tion, initial, derivation, pre and post-condition, and body.
An OCL invariant expression specifies conditions on attributes
and operations of a class in a Class diagram in form of arith-

metic and logical operations. An attribute or association can

Figure 3 OCL metamodel (OMG, 2012).

18 S. Salemi et al.

Model transformation framework to increase OCL usability 19
be added to a Class diagram by OCL definitions. The initial
value of attributes or associations can be specified by OCL ini-
tials. A derived value of an attribute or association end can be

indicated by an OCL derivation. A pre-condition expression
for an operation must be true before the operation execution
and a post-condition expression for an operation must be true

after the operation execution. OCL bodies are used to express
query operation. The expression body of an OCL specification
includes one or more of expressions such as let, if, literal, call,

and unary operation. A let expression can define a new vari-
able that has an initial value. An if expression defines a condi-
tion and two alternative expressions that after evaluating the
condition, one of the alternative expressions is selected as the

result of the if expression. A literal expression does not have
any argument to produce a value. This kind of expression
results in an expression symbol, such as an integer (12) and a

string (‘‘hello”). A call expression refers to an attribute, an
operation, or an iterator for a collection, which is a collection
of some values. An attribute call expression is a reference to a

class’s attribute in a UML model. A navigation call expression
is a reference to a relationship in a UML model. An operation
call expression is used, when we want to refer to an operation

of a classifier. There are some unary operations, such as
notEmpty, isEmpty, oclIsTypeOf, to perform functions on a
value. The notEmpty operation on a collection returns true
when the collection has at least one element. The isEmpty on

a collection returns true when the collection has no element.
The oclIsTypeOf operation on a value determines if a value
is of the type given to the operation as a parameter. When

we want to construct a loop over a collection, a loop expres-
sion is used. The forAll operation takes an expression as a
parameter and results to true if the expression is evaluated to

true for all elements in the collection. The exists operation
on a collection specifies a Boolean expression that must be true
for at least one element of the collection. The select operation

on a set takes a parameter expression and results to a sub-set
of the set, when the parameter expression is true for all ele-
ments of the resulting sub-set. The reject operation on a set
takes a parameter expression and results to a sub-set of the

set, when the parameter expression is false for all elements of
the resulting sub-set. The collect operation on a collection
gives the set of all values for a certain attribute of all objects

in the collection.

4.4. Royal and Loyal system as a case study

Warmer and Kleppe (1999) originally introduced the Royal &
Loyal model. Afterward, the model was used in various publi-
cations. ‘‘Royal and Loyal (R&L) models the computer system
of a fictional company. It handles loyalty programs for compa-

nies that offer their customers various kinds of bonuses. Often,
the extras take the form of bonus points or air miles, but other
bonuses are possible as well: reduced rates, a larger rental car

for the same price as a standard rental car, extra or better ser-
vice on an airline, and so on. Anything a company is willing to
offer can be a service rendered in a loyalty program” Warmer

and Kleppe (2003). The model of this system is illustrated in
Fig. 4.

In the current study, the proposed model is implemented in

an application. The application is demonstrated by applying it
to the Royal and Loyal model as a case study. The case study
examines how the application works. The strengths and weak-
nesses of the proposed model are identified using the case
study. A set of test cases, which presents constraints of the

famous model in form of English sentences, are provided then
we try to transform the English sentences into OCL
specifications.

5. Proposed model

The proposed MDA-based model automatically transforms

system constraints formed in English sentences into OCL spec-
ifications. The model takes an English sentence and an UML
Class model and gives an OCL specification. The proposed

model uses SBVR to bridge English elements to OCL elements.
The input English sentence is analyzed to extract English ele-
ments, which can be transformed to business vocabulary and

rules. Then the business vocabulary and rules are translated
to OCL expressions. Two set of mapping rules presented in
Tables 3a–3c are generated for transforming English elements
into SBVR elements and SBVR elements into OCL elements.

This model presented in Fig. 5 contains three major analyses
involving: lexical, syntactic, and semantic analysis.
5.1. Phase 1: Lexical analysis

The lexical analysis includes six steps. In the first step, some
parts of the Input English sentence are changed. For example,

modal phrases are removed and ‘‘not more than” is changed to
‘‘at most”. In the two next steps, the changed sentence is tok-
enized and tagged by the Stanford Tokenizer and POS tagger.
In the fourth step, the English sentence is split into single-

sentences using the POS tags. In addition, duplicate single-
sentences and single-sentences from which no business rule
can be extracted are removed in this step. In the fifth next

steps, nouns, adjectives, ValuedRangeQuantifiers,
SignIntegratedWithAnds, strings, and numeral elements
are extracted from each single-sentence. At the last step, the

extracted elements are lemmatized. Lemmatization is a natural
language processing task for grouping related elements and
analyzing the related elements as a single item.

5.2. Phase 2: Syntactic analysis

The syntactic analysis of the Input English sentence contains
nine steps. In the first step, the elements of the UML Class

model, such as classes, attributes, ends, dataType, and
enumElement, are extracted. In the second step, the nouns
and adjective extracted from the English sentence are mapped

to the element extracted from the UML Class model.
ValuedRangeQuantifiers, SignInte-

gratedWithAnds, strings, and numeral elements extracted

from the lexical analysis and mapped elements are saved in
an array named elementArray. In the third step, English
sub-parts, such as IsPropertyOfSign, Posses-

siveDeterminer, and PrefixElement, are identified. In
the fourth step, some elements are selected as main entities.
If an element is not a datatype, right hand side of IsProp-
ertyOfSign, left hand side of PossessiveDeterminer,

and left hand side of PrefixElement, the element is a main
entity. In the fifth step, the splicer between the main elements is

Figure 4 The Royal and Loyal model.

Table 3a Mapping rules.

Rule English element English example SBVR element OCL element OCL example

Rule1 NecessityVerb Must Necessity Constraint context . . . inv:

Rule2 IsPropertyOfSign Name of customer AtomicFormulation AttributeCallExp customer.name

Cards of customer NavigationCallExp customer.cards

Cards of customer Collect customer->collect(c|c.cards)

Rule3 PossessiveDeterminer Customer’s name AtomicFormulation AttributeCallExp customer.name

Customer’s cards NavigationCallExp customer.cards

Customer’s cards Collect customer->collect(c|c.cards)

Rule4 PrefixElement Valid

customerCard

AtomicFormulation AttributeCallExp customerCard.valid

Valid

customerCard

Select customerCard->select(s|

s.valid)

Rule5 PrefixElement Silver

cardColor

Equivalence EqualBool cardColor =color::silver

Silver

cardColor

Select cardColor ->select(s|s

=color::silver)

Rule6 TransitiveVerb/

CopularVerb

Customer has

names

AtomicFormulation AttributeCallExp customer.name

Customer has

names

Collect customer->collect(c|c.name)

Rule7 PrepositionConjunction Transaction with

points

AtomicFormulation AttributeCallExp transaction.point

Transaction with

points

Collect transaction->collect(c|c.point)

20 S. Salemi et al.
specified. If a single-sentence has one main entity, there is no
need to specify any splicer. But if a single-sentence has two
main entities, the splicer between these two main entities is
specified. In addition, it must be determined that the splicer
between these two main entities is a relationship or a
restrictorRelationship. Relationship splices two enti-
ties using a normal verb like ‘‘each service has a service level”.
RestrictorRelationship splices two entities using a

Table 3b Mapping rules.

Rule English element English example SBVR element OCL element OCL example

Rule8 Numeral 28 Number NumericLiteralExp 28

Rule9 Noun (mapped to

enumElement/enumName)

Silver Objectification Variable color::silver

Color color

Rule10 Noun (mapped to attribute/

end)

Points Atomic

Formulation

AttributeCallExp transaction.points

Owner NavigationCallExp customerCard. owner

Rule11 Noun (mapped to Class) Service ObjectType UMLElement (Class) service

Burning OclIsTypeOf transaction.OclIsTypeOf(burning)

Burning Select transaction->select(s|s.OclIsTypeOf(burning))

Service Size service->size()

Rule12 SignIntegratedWithAnd – Quantity SignOpr –

Rule13 SumOf The sum of the points of a loyaltyAccount and the

loyaltyAccount’s number

Quantity Addition loyaltyAccount. points

+loyaltyAccount.number

Rule14 SubtractionOf The subtraction of the points of a loyaltyAccount and

the loyaltyAccount’s number

Quantity Subtraction loyaltyAccount. points-

loyaltyAccount.number

Rule15 MultiplicationOf The multiplication of the points of a loyaltyAccount

and the loyaltyAccount’s number

Quantity Multiply loyaltyAccount.points*loyaltyAccount.

number

Rule16 DivisionOf The division of the points of a loyaltyAccount and the

loyaltyAccount’s number

Quantity Division loyaltyAccount.points/loyaltyAccount.

number

Rule17 Sign – Quantity RelationalOpr –

Rule18 IsLessThan Age is less than 28 Quantity Less age<28

Rule19 IsMoreThan Age is more than 28 Quantity More age>28

Rule20 IsAtLeast Age is at least 28 Quantity AtLeast age>=28

Rule21 IsAtMost Age is at most 28 Quantity AtMost age<=28

Rule22 Str ‘samin’ Text StringLiteralExp ‘samin’

Rule23 ExistentialQuantifier

(conditional)

Customer has a name Existential notEmpty customer.name->notEmpty()

Rule24 UniversalQuantifier All customerCard that is valid Universal ForAll customerCard->forAll(f|f.valid)

Rule25 IsOrEqualOrEquals Age is 28 Quantity EqualNum age=28

Name is ‘Samin’ Equivalence EqualBool name=’Samin’

Name is ‘Samin’ Equivalence Select name->select(s|s=’samin’)

Age is 28 Quantity Select age->select(s|s=28)

Rule26 AtMostN loyaltyAccount has at most three points AtMostN AtMost loyaltyAccount.points<=3

Rule27 AtMostOne loyaltyAccount has at most one points AtMostOne AtMost loyaltyAccount.points<=1

Rule28 AtLeastN loyaltyAccount has at least three points AtLeastN AtLeast loyaltyAccount.points>=3

(continued on next page)

M
o
d
el

tra
n
sfo

rm
a
tio

n
fra

m
ew

o
rk

to
in
crea

se
O
C
L
u
sa
b
ility

2
1

Table 3b (continued)

Rule English element English example SBVR element OCL element OCL example

Rule29 AtLeastOne loyaltyAccount has at least one points Existential notEmpty loyaltyAccount.points->notEmpty()

Rule30 MoreThanN loyaltyAccount has more than three points Quantity More loyaltyAccount.points>3

Rule31 LessThanN loyaltyAccount has less than three points Quantity Less loyaltyAccount.points<3

Table 3c Mapping rules.

Rule English element English example SBVR element OCL element OCL example

Rule32 ExactlyN loyaltyAccount has exactly three points ExactlyN EqualNum loyaltyAccount.points=3

Rule33 ExactlyOne loyaltyAccount has exactly one points ExactlyOne EqualNum loyaltyAccount.points=1

Rule34 ValuedRangeQuantifier Point is between 3 and 5 NumericRange And points>3 and points<5

Rule35 NegationElement Service1 is not service2 LogicalNegation Not not (service1= service2)

Memberships must not have any account IsEmpty membership.account->isEmpty()

The customerCard which does not include

membership’s cards

Excludes customerCard ->excludes

(memebrship.card)

Rule36 BinaryLogicalOperation – BinaryLogicalOperation LogicalOpr –

Rule37 And A loyaltyProgram and customer can have a name Conjunction And loyaltyProgram.name ->notEmpty()

and customer.name ->notEmpty()

Rule38 Or A loyaltyProgram or customer can have a name Disjunction Or loyaltyProgram.nam->notEmpty() or

customer.name ->notEmpty()

Rule39 Conditional If a customer’s age is less than 18, the

customerCard doesn’t have any customerCard

Implication Implies customer.age<18 implies customer.

customerCard ->isEmpty()

2
2

S
.
S
a
lem

i
et

a
l.

Figure 5 En2OCL model.

Model transformation framework to increase OCL usability 23
coordinating conjunction (CC), preposition conjunction (IN),

past participle verb (VBN), wh-determiner (WDT), wh-
pronoun (WP), possessive wh-pronoun (WP$), or wh-adverb
(WRB) like ‘‘exactly one service which is owned by a program

partner”. In the sixth step, the mapping rules presented in
Tables 3a–3c are used to generate SBVR vocabulary from
the elements saved in elementArray and the splicers. In

the seventh step, the type dependencies between the extract ele-
ments are identified using the Stanford typed dependency par-
ser. In the eighth step, LHS, and RHS elements are identifies
using the type dependencies. Left/right hand side element is

the element placed in the left/right hand side of a verb or
PrepositionConjunction. In the ninth step, it is deter-
mined that the splicer is active or passive. If the splicer is an

active verb or PrepositionConjunction, the splicer has
an active voice. But if the splicer is a passive verb, the splicer
has a passive voice.

5.3. Phase 3: Semantic analysis

The semantic analysis section contains seven steps. In the first

step, role of characteristic fact type is specified. According to
the Tables 3a–3c, IsPropertyOfSigns and Posses-

siveDeterminers are mapped to characteristic fact type.
The role of the characteristic fact type mapped from an

IsPropertyOfSign is the right element of the IsProp-

ertyOfSign. The role of the characteristic fact type mapped
from a PossessiveDeterminer is the left element of the

PossessiveDeterminer. In addition, this step specifies
the state of each binary fact type. There are three possible
states for each binary fact type involving: a relationship with-

out any related restrictorRelationship like ‘‘each ser-
vice has a servicelevel”, a relationship with a related
restrictorRelationship like ‘‘exactly one service which
is owned by a program partner has a service level”, and a

restrictorRelationship without any related relation-
ship like ‘‘There must be at least one transaction for a customer
card”. In this step, the state of each binary fact type is speci-

fied. Role1 and Role2 of the binary fact types are specified. In
the second step, determiners, negation, and binary logical ele-
ments of each single-sentence are identified. In the third step,

the extracted elements are mapped to SBVR elements using
mapping rules presented in Tables 3a–3c. As the Tables 3a–
3c shows, existential determiners are mapped to existential
quantification conditionally. The condition is this: ‘‘a”,

‘‘an”, ‘‘the”, ‘‘s (plural)”, ‘‘any” (when the splicer is a negated
verb) are translated to existential quantification, if the object
of the determiner is role2 of a binary fact type or the object

of the determiner is role of an unaryFactType. In this step,
business rules are generated for the semantic formulations
involving: atomic formulations, quantifications, logical nega-

tions, and binary logical operations. In the fourth step, the
business vocabulary and rules are translated to OCL sub-
expressions using the mapping rules presented in Tables 3a–

3c. In the fifth step, the OCL sub-expressions are integrated
into one final expression. In the sixth step, it is determined
that which class of the UML class model is being constrained
using the final OCL expression. This class is specified as the

constrained element and added to the final expression as its
context element. The final expression and the context element
is generate an OCL statement. In the seventh step, the OCL

statement is revised.

6. Evaluation

Model validation checks the accuracy of the model’s represen-
tation of a real system. To validate the model, a Java applica-
tion called En2OCL is developed for representation of the

Figure 6 En2OCL application framework.

Table 4 Accuracy results.

Sentence type Sample size Correct outputs Incorrect outputs Accuracy

En2OCL NL2OCLviaSBVR En2OCL NL2OCLviaSBVR En2OCL NL2OCLviaSBVR

Very simple 36 34 17 2 19 94.44 47.22

Simple 47 36 10 11 37 76.60 21.28

Medium 52 45 3 7 49 86.54 05.77

Complex 51 40 1 11 50 78.43 01.96

Total average 186 155 12 31 147 83.33 06.45

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

00 94

very

94.44

ery sim

44

47

simple

47.22

le

.22

En

76.

En2O

 sim

76.6

2OCL

simple

21.2

L

le

1.28

NLNL2O

86

2OCL

86.54

LviaS

 me

.54

5

iaSBV

edium

5.77

BVR

ium

77

78.4

com

8.43

comple

1.9

plex

1.96

Figure 7 Accuracy comparison.

24 S. Salemi et al.
model in a real system. The En2OCL application takes two
inputs: an English sentence and a UML Class model. The
application then generates business vocabulary and rules from

the English sentence using the first set of mapping rules. The
application then generates an OCL specification from the busi-
ness vocabulary and rules using the second mapping rules.

Fig. 6 illustrates the application’s framework. The input Eng-
lish sentences are the test cases extracted from the Royal and
Loyal model. The test cases present constraints of the Royal
and Loyal system. The English sentences are categorized in

four groups involving: very simple, simple, medium, and
complex.
Table 5 Users responses (manually).

User type Sample size Effort-saving Time saving

Medium 20 2.45 1.95

Expert 20 2.95 2.85

Average 2.70 2.40
6.1. Accuracy comparison

The accuracy of the application is measured and compared
with NL2OCLviaSBVR, which is the only existing work gen-
erating OCL as constraint specifications from English sen-

tences. These two applications are tested using 186 correct
English sentences. Table 4 presents the test results. The com-
parison presented in Fig. 7 shows an improvement in the accu-

racy measure by En2OCL.

6.2. Usability measurement

ISO 9241-11 suggests that measures of usability should cover
three factors involving: effectiveness, efficiency, and satisfac-
tion. In this research, the efficiency factor is measured using

effort-saving and time-saving items. The effectiveness factor
is measured using writability and confidence items. The satis-
faction factor is measured using ease-of-use and comfort items
(Bajwa, 2012; Störrle 2013). These three usability factors are

measured using a survey. We divided users into two categories:
twenty medium users who have medium knowledge about
OCL and twenty expert users who are expert in OCL. Ten

English sentences and their corresponding OCL specifications
were prepared to be used by the users. The users try to generate
OCL statements in the three states: manually, using NL2OCL-

viaSBVR, and using En2OCL. Tables 5–7 present the users’
responses in the three states. The comparison shows that there
Writability Confidence Ease-of-use Comfort

2.80 2.80 2.40 1.55

2.10 2.50 3.65 3.45

2.45 2.65 3.03 2.50

Table 6 Users responses (using NL2OCLviaSBVR).

User type Sample size Effort-saving Time saving Writability Confidence Ease-of-use Comfort

Medium 20 3.75 3.95 3.00 3.20 4.10 4.25

Expert 20 3.65 3.70 2.80 3.00 4.10 4.10

Average 3.70 3.83 2.90 3.10 4.10 4.18

Table 7 Users responses (using En2OCL).

User type Sample size Effort-saving Time saving Writability Confidence Ease-of-use Comfort

Medium 20 4.15 4.20 4.00 4.60 3.95 4.40

Expert 20 3.75 3.75 3.90 4.20 4.05 3.95

Average 3.95 3.98 3.95 4.40 4 4.18

Figure 8: Usability comparison in total users

2.7 2.4 2.45 2.65
3.03

2.5

3.7 3.83
2.9 3.1

4.1
4.183.95 3.98 3.95

4.4
4

4.18

0

1

2

3

4

5

Total users

Manually using NL2OCLviaSBVR using En2OCL

effort-saving time-saving writability confidence ease-of-use comfort

Figure 8 Usability comparison in total users.

Model transformation framework to increase OCL usability 25
are improvements in the six items using En2OCL than writing
manually. The comparison also shows improvements in
writability, confidence, effort-saving, and time-saving using

En2OCL than usingNL2OCLviaSBVR. There is not any com-
fort improvement using En2OCL than using NL2OCL-
viaSBVR. Ease-of-use is reduced using En2OCL than using

NL2OCLviaSBVR. Fig. 8 shows the usability comparison
for total users.

7. Conclusion

It is common knowledge that OCL is reputed to be hard. The
research shows that many modelers struggle with OCL, both in

industry and academia, because prior knowledge of OCL is
needed to use the language. These obstacles result in the low
usability of OCL and thereafter the low adoption of OCL in

industry. There are some existing MDA-based works, whose
source model is a natural language. However, only one of these
existing works supports OCL. On the other hand, there are a
few existing works for OCL generation. Only two of the exist-

ing works generate OCL as constraint specifications. The first
one is COPACABANA, which is a pattern-based OCL gener-
ator tool and the second one is NL2OCLviaSBVR, which is an

MDA-based OCL generators tool. These two tools have some
limitations presented in Table 2. Thus, this research proposed
an MDA-based model for transforming system constraints

formed in English sentences into OCL specifications automat-
ically. For validating the proposed model, the proposed model
was implemented in an application called En2OCL, and then
En2OCL was compared with NL2OCLviaSBVR, which is

the only existing MDA-based work on OCL generation from
English sentences. The comparison showed there is an accu-
racy improvement by En2OCL. Furthermore, the measure of

OCL usability is measured using a survey in three states
involving: writing manually, using NL2OCLviaSBVR, and
using En2OCL. The usability measurement showed there is a

usability improvement by En2OCL than writing OCL specifi-
cations manually. Effectiveness and efficiency, which are two
usability factors are improved by En2OCL than
NL2OCLviaSBVR.

Acknowledgements

The Universiti Teknologi Malaysia (UTM) and Ministry of
Education Malaysia under research university grants 00M19
and 01G72 are hereby acknowledged for some of the facilities

that were utilized during the course of this research work.
Also, this paper has been elaborated in the framework of the
project ‘‘Support research and development in the Moravian-

Silesian Region 2014 DT 1 - Research Teams”
(RRC/07/2014). Financed from the budget of the Moravian-
Silesian Region.

References

Akehurst, D.H., Boardbar, B., Evans, M., Howells, W.G.J., and

McDonald-Maier, K.D., 2006. SiTra: simple transformations in

Java. In: 9th International Conference on Model Driven Engineer-

ing Languages and Systems (LNCS), 351–364.

Amdouni, S., Karaa, W.B.A., and Bouabid, S., 2011. Semantic

annotation of requirements for automatic UML Class diagram

generation. The Computing Research Repository (CoRR). abs/

1107.3297.

Bajwa, I.S., 2012. A Natural Language Processing Approach to

Generate SBVR and OCL. University of Birmingham.

Fliedla, G., Kopa, C., Mayra, H.C., Salbrechtera, A., Vöhringera, J.,

Webera, G., et al, 2007. Deriving static and dynamic concepts from

software requirements using sophisticated tagging. Data Knowled.

Eng. 61 (3), 433–448.

Jilani, A.A.A., and Usman, M., 2010. Model transformations in model

driven architecture: a survey. In: IEEE 2nd International Confer-

ence on Education Technology and Computer (ICETC), Shanghai,

China.

http://refhub.elsevier.com/S1319-1578(15)00085-3/h0015
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0015
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0025
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0025
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0025
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0025

26 S. Salemi et al.
Njonko, P.B.F., and El Abed, W., 2012. From natural language

business requirements to executable models via SBVR. In: Pro-

ceeding of the International Conference on Systems and Informat-

ics (ICSAI 2012). 19–20 May. Yantai 2453–2457.

OMG, 2012. OMG Object Constraint Language (OCL). OMG

Document Number: formal/2012-01-01.

OMG, (2013). Semantics of Business Vocabulary and Business Rules

(SBVR), v1.2.

Störrle, H., 2013. Improving the usability of OCL as an ad-hoc model

querying language. In: 13th International Workshop on OCL,

Model Constraint and Query Languages (OCL@MoDELS).

CEUR-WS.org, United States, Miami, Florida, pp. 83–92.
Wahler, M., 2008. Using patterns to develop consistent design

constraints (Ph.D. thesis). ETH Zurich, Switzerland.

Wang, M., 2013. Requirements Modeling: From Natural Language to

Conceptual Models Using Recursive Object Model (ROM) Anal-

ysis. Concordia University, Montreal, Quebec, Canada.

Warmer, J., Kleppe, A., 1999. Object Constraint Language: Precise

Modeling with UML. Addison Wesley.

Warmer, J., Kleppe, A., 2003. The Object Constraint Language:

Getting Your Models Ready for MDA. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

http://refhub.elsevier.com/S1319-1578(15)00085-3/h0055
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0055
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0055
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0055
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0065
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0065
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0065
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0070
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0070
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0075
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0075
http://refhub.elsevier.com/S1319-1578(15)00085-3/h0075

	A model transformation framework to increase OCL usability
	1 Introduction
	2 Related works
	2.1 Synthesis and evaluation of the related work

	3 Contribution
	4 Metamodels
	4.1 English metamodel
	4.2 Semantic Business Vocabulary and Rules
	4.3 Object Constraint Language
	4.4 Royal and Loyal system as a case study

	5 Proposed model
	5.1 Phase 1: Lexical analysis
	5.2 Phase 2: Syntactic analysis
	5.3 Phase 3: Semantic analysis

	6 Evaluation
	6.1 Accuracy comparison
	6.2 Usability measurement

	7 Conclusion
	Acknowledgements
	References

