
Journal of King Saud University – Computer and Information Sciences (2016) 28, 55–67
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A novel algorithm for reducing energy-consumption

in cloud computing environment: Web service

computing approach
* Corresponding author.

E-mail addresses: rengannsj77@gmail.com (N. Moganarangan), r.g.babukarthik@gmail.com (R.G. Babukarthik), booni_67@yaho

(S. Bhuvaneswari), m.s.saleembasha@gmail.com (M.S. Saleem Basha), dhavachelvan@gmail.com (P. Dhavachelvan).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2014.04.007
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
N. Moganarangan a, R.G. Babukarthik b,*, S. Bhuvaneswari b, M.S. Saleem Basha b,

P. Dhavachelvan b
aDepartment of Computer Science and Engineering, Manonmaniam Sundaranar University, Tamil Nadu, India
bDepartment of Computer Science, Pondicherry University, Puducherry, India
Received 11 October 2013; revised 8 March 2014; accepted 3 April 2014
Available online 17 November 2015
KEYWORDS

ACO ant colony optimiza-

tion;

CS cuckoo search;

VSF voltage scaling factor;

EcPSO extended compact

particle swarm optimization
Abstract Cloud computing slowly gained an important role in scientific application, on-demand

facility of virtualized resources is provided as a service with the help of virtualization without

any additional waiting time. Energy consumption is reduced for job scheduling problems based

on makespan constraint which in turn leads to significant decrease in the energy cost. Additionally,

there is an increase in complexity for scheduling problems mainly because the application is not

based on makespan constraint. In this paper we propose a new Hybrid algorithm combining the

benefits of ACO and cuckoo search algorithm. It is focused on the voltage scaling factor for reduc-

tion of energy consumption. Performance of the Hybrid algorithm is considerably increased from

45 tasks onward when compared to ACO. Energy consumed by Hybrid algorithm is measured

and energy improvement is evaluated up to 35 tasks. Energy consumption is the same as ACO algo-

rithm because as the number of tasks increases (45 to 70) there is a considerable decrease in the

energy consumption rate. Makespan of Hybrid algorithm based on number of tasks is compared

with ACO algorithm. Further we have analyzed the energy consumption for a number of processors

and its improvement rate – up to 6 processors, energy consumption is considerably reduced and the

energy consumption tends to be in steady state with further increase in the number of processors.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
o.co.in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.04.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rengannsj77@gmail.com
mailto:r.g.babukarthik@gmail.com
mailto:booni_67@yahoo.co.in
mailto:m.s.saleembasha@gmail.com
mailto:dhavachelvan@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2014.04.007
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.04.007
http://creativecommons.org/licenses/by-nc-nd/4.0/

56 N. Moganarangan et al.
1. Introduction

Cloud computing is becoming one of the predominant
approaches in rendering IT services by reducing cost for the

consumers. The approach not only influenced techniques
used in computing but in turn processes, technology used for
constructing and managing IT within the service provider

and the enterprise. By offering a secure computing paradigm,
cloud computing is becoming an important platform for
scientific application. On-demand facility of virtualized
resources as service is offered using virtualization in cloud

computing without any delay (Venkatesan et al., 2013;
Rajeswari et al., 2014).

Cloud computing technologies offer major benefits to the

IT industries such as elasticity and rapid provisioning which
includes increasing or decreasing the infrastructure facilities
for a particular time based upon the required needs. Pay-as-

you-go-model deals with the organization that requires any
services and pay for the exact amount of resources they utilized
in terms of infrastructure, platform and software as services.

Capital cost is reduced as organizations do not need to have
an inbuilt infrastructure, thereby resulting in the reduction of
infrastructure. Access to unlimited resources in cloud comput-
ing means that the cloud provider has been able to deploy hun-

dreds of server instances simultaneously; thereby it is possible
to access unlimited resources. Flexibility means that deploying
cloud instances by means of varying hardware configuration,

various operating systems and different software packages
(Dhavachelvan et al., 2006; Dhavachelvan and Uma, 2005).
Some benefits of the cloud include fault tolerance and high

availability. Since the cluster worker nodes are spread around
the cloud sites, in the event of cloud down time or failure, clus-
ter operations will not be interrupted at any cost of time as the

worker nodes will take care of it. Infrastructure cost reduction:
the pricing models among the cloud providers may vary con-
siderably; the cluster node will change the location from one
provider to another one thus reducing the overall infrastruc-

ture cost.
The main reason behind focusing on energy efficiency is due

to the increase in energy cost spent on data center. The server

machine is the vital component for increase in electrical cost.
The electrical cost of the server machine is due to direct power
consumption and cooling equipment used in it. In the data

center 75% of energy cost is due to direct power consumed
by server machine and indirect power used for cooling
equipment. Additionally, due to the use of high performance
multi-core processors in server machine, there exists power

hunger and dissipation of considerable heat.
The following work is contributed:

� Proposal of a new Hybrid algorithm using ACO and
cuckoo search.

� Analysis of job creation time, task creation time,

destruction time, result retrieval time and total time
for Hybrid algorithm.

� Performance comparison of a new Hybrid algorithm

and ACO algorithm.
� Makespan improvement comparison of a new Hybrid

algorithm with ACO algorithm.
� Energy comparison of a new Hybrid algorithm and

ACO algorithm.
� Studied energy and makespan based on the number of

tasks for Hybrid algorithm.

The remainder of this paper is structured as follows: Sec-

tion 2 deals with previous work that has been carried for
scheduling job in cloud computing for minimization of energy,
makespan and resources. In Section 3 we propose a new
Hybrid algorithm for scheduling job using ACO and cuckoo

search, Procedure for Hybrid algorithm and pictorial represen-
tation of Hybrid algorithm using flow charts. Section 4
describes the implementation details of Hybrid algorithm

and its performance, energy, makespan which has been com-
pared with ACO algorithm. Section 5 states the conclusion
and direction for future research.

2. Related work

Parallel bi-objective genetic algorithm is based on Energy-

conscious scheduling heuristic. It minimizes the energy con-
sumption and the make span. The major drawback is that it
consumes more resources (Mezmaz et al., 2011). Without

detailed information of participating node or centralized node,
Community-Aware Scheduling Algorithm (CASA) increases
both average job waiting time and job slowdown radically
(Huang et al., 2013). Elastic cluster architecture supports exe-

cution of heterogeneous application domain, which dynami-
cally partitions cluster capacity and adapts to variable
demands (Montero et al., 2011). Performance of cloud com-

puting services is analyzed for scientific computing workloads
based on loosely coupled applications (losup, 2011). Based on
network-flow-theory is modeled an algorithm for data center

to reduce energy and virtual machines migration thereby
reducing the overhead of virtual machines (SiYuan, 2013).
For achieving optimal growth in various cloud infrastructure
mathematical models are proposed stating that the response

time of the slowest nodes is not more than three times of fastest
node (Yeo and Lee, 2011). The algorithms depict how to
achieve predictability and feasibility (Duan et al., 2007). On

the basis of the Berger model, job scheduling algorithm is pro-
posed, generally user tasks is classified by the model based on
resource fairness justice function and QoS preferences to judge

fairness of resource allocation (Xu et al., 2011). Across various
multiple data centers near-optimal scheduling policies are
achieved by cloud provider based on factors of energy effi-

ciency such as carbon emission rate, energy cost, CPU power
efficiency, and workload, (Garg et al., 2011). In case of
dynamic-urgent cloud environment a good support is provided
by layered and historical queuing performance model. It pro-

vides guidelines for parameterizing the models at a lower over-
head (Bacigalupo et al., 2011). The workload that measured
hybrid configuration compared to local setup reveals

performance-cost ratio from analyzing the cost of multi-
cloud (Moreno-Vozmediano et al., 2011). Gross cost is
reduced in life time of entire application in elastic cloud com-

puting by determining optimal number of computing resources
per charge unit using partitioned balanced time scheduling
(Byun et al., 2011). Inter-arrival time, status, parallel runtime,
user, request time and application are features of failed job

(YulaiYuan, 2012). Traditional formulation of scheduling
problem is covered by algorithm such as trust dynamic level
scheduling, for enabling cloud environment execution time

Figure 1 Task graph.

A novel algorithm for reducing energy-consumption in cloud computing environment 57
and reliability of applications is considered simultaneously. It
reduces failure probability of task assignments and assured
secured environment execution of tasks (Wang et al., 2012).

For job shop scheduling problem it states the approach on
basis of ant colony optimization (ACO) and particle swarm
optimization (PSO). Every machine is provided with an objec-

tive to find possible solution to reduce waiting time and com-
pletion time (Sumathi, 2010).

Heuristic of ant colony optimization (ACO) states clearly

for given model of target architecture and applications, it exe-
cutes mapping and scheduling and for optimizing application
performance. Exploring various solutions for mapping and
scheduling tasks execution time is reduced by using ACO.

Maintaining the best correlation among problems and reduc-
tion of execution time of exploration is carried out by multi
stage decision process (Ferrandi et al., 2010). Analysis of fault

recovery and grid service reliability modeling is studied in grid
systems using Local Node Fault Recovery (LNFR) mecha-
nism. Its’ main use is that it allows life time for number of

recovery carried and grid sub task, exact fault recovery strate-
gies based on local situations is chosen by resource provider.
The drawback is that link and node satisfy poison processes,

hence in all cases it is not true. (Guo et al., 2011). The schedul-
ing model consists of two agents and set of processing machine
whose jobs sizes are not alike is taken into consideration. Par-
eto optimal solutions are derived by using improved ACO

algorithm. Makespan is reduced using two agents; in batch
processing priority is given for jobs from same agent. To select
next jobs to add in the current batch processing, state transi-

tion probability is used (Tan et al., 2011). Particle swarm dis-
tribution algorithm is estimated using novel framework.
Applying selection to local best solutions, optimal solution is

obtained. From selected solutions probabilistic model is con-
structed. From PSO particle moving mechanism and EDA’s
model sampling method a new individuals are created by

stochastic combination. Combining advantage of extended
compact genetic algorithm with binary PSO developed
extended compact particle swarm optimization (Tavakkoli-
Moghaddam et al., 2011). Based on evolutionary algorithm

and fuzzy system improved Wang-Mendel model based on
PSO is proposed. Modified particle swarm optimization algo-
rithm is adopted for optimizing fuzzy rule, extrapolating com-

plete fuzzy rule is derived (Ahn et al., 2010). Intelligent
Dynamic Swarm uses Rough Set theory and feature selection
based on PSO, vagueness and uncertainty are handled by a

mathematical tool using K-means algorithm (Yang et al.,
2010). For multi-objective job scheduling problem a new
PSO algorithm is created to solve unceasing optimization
problems. Particle position representation, particle velocity

and particle movement are modified to solve scheduling prob-
lems of discrete solution space (Bae et al., 2010). Grid work-
flow trustworthy scheduling is solved using rotary chaotic

particle swarm optimization. Scheduling performance is opti-
mized in multi-dimensional complex space. Some optimization
methods are canceling history velocity, detecting precise time,

double perturbation of gBest and pBest, and dimension of
double perturbation is proposed thereby helping particles to
escape from local optimum (Sha and Lin, 2010). Continuous

optimization problems can be solved by focusing on endless
variable sampling act and hence it acts as key extending
ACO for transforming discrete to continuous optimization.
SamACO algorithm uses candidate variable for selection,
pheromone cooperation and Ant solution constructed (Tao
et al., 2011). Convergence and qualities solution is improved
using local search procedure on the basis of neighborhood of

JSSP (Hu et al., 2010). Novel framework is proposed on the
basis of receding horizon control using ant colony system for
solving it (Zhang et al., 2010).

Several methods are proposed for reduction of energy con-
sumption using various parameters, but a very few concen-
trated on reduction of energy consumption using scheduling

algorithms. Using scheduling algorithms energy can be
reduced dramatically only if jobs are scheduled within the allo-
cated time interval. Moreover jobs need to be scheduled within
the available resources so that jobs need not to be waiting for

resources n number of times. A new scheduling algorithm is
proposed for reduction of energy consumption and completion
time, where resources are allocated to the jobs with the given

time interval.

3. Problem modeling

This section describes the application model, energy model and
makespan model.

3.1. Application model

Using direct acyclic graph parallel programs are represented in
Fig. 1. Graph G = (n,e) contains a set of ‘n’ nodes and ‘e’

edges. A Task graph is one in which nodes denote tasks and
it is partitioned from an application and the preference con-
straint is denoted by edges. An edge (i, j) e e between the task
ni and task nj denotes inter-task communication. Entry task: it

is a task which does not contain any predecessor’s nentry. Exit
task: a task which does not have any successor’s nexit.Most sig-
nificant parent: within the predecessor of task ni, predecessor

which completes its communication at modern time is called
as Most Significant Parent (MSP). It is denoted by MSP ni.
Critical path: the longest path in a task graph is called critical

path. Insertion of task: between two consecutive tasks which is
already assigned to processor if there exists an ideal time slot
and a new task can be added to the scheduler such that there

is no violation of constraint. By doing so, insertion schemes
will try to increase processor utilization time.

58 N. Moganarangan et al.
3.2. Energy model

The energy model is a derivative of the power consumption
model from complementary metal oxide semi-conductor of
logic circuits. Microprocessor based on CMOS is defined as

sum of the leakage power short-circuit and capacitive power.
Output voltage, input rise time, input voltage level, output
loading, and power-dissipation capacitance are the factors
affecting power consumption in CMOS.

CMOS Power consumption states are,

(1) Static power consumption.

(2) Dynamic power consumption.

Static power consumption: power consumption in CMOS

generally occurs whenever all the input is detained at a certain
valid logic level, hence circuit is not in charging states because
of this low static power consumption is carried by CMOS

devices. This is due to consequences of leakage current. Static
power consumption is a product of leakage current Lc and sup-
ply voltage Sv (Mezmaz et al., 2011).

Ps ¼
X
ðLc � SvÞ ð1Þ

Dynamic power consumption: it takes place whenever
CMOS requires shifting to high frequency. Dynamic power
consumption Pd donates the overall power consumption and

it is the sum of transient power consumption Pt and
capacitive-load power consumption Pcl (Mezmaz et al., 2011).

Pd ¼ ðPt þ PclÞ ð2Þ
Transient power consumption Pt is stated whenever current

flows when transistors devices are switching from logic state to
another state. It leads to current required for charging internal
nodes (switching current) and current flowing from VCC to

GND. Pt is calculated using equation (Mezmaz et al., 2011):

Pt ¼ ðCpd � V2
cc � fi �NswÞ ð3Þ

Transient power consumption Pt, Vcc represents supply
voltage, fi is frequency input signal, Nsw denotes number of bits

to be switched, dynamic power-dissipation Cpd of capacitance.
If the output has the same load and at same output frequency
if they are switching then Capacitive load power consumption

Pcl can be estimated using the following equation (Mezmaz
et al., 2011),

Pcl ¼ ðCl � V2
cc � f0 �NswÞ ð4Þ

where, capacitive load power consumption Pcl, f0 is signal fre-
quency output, Cl is load capacitance, number of outputs
switching Nsw. Energy consumption of application during par-
allel execution is stated by Mezmaz et al. (2011),

Eapp ¼
Xn
i¼1
ðACv2i f � wiÞ ð5Þ
Eapp ¼
Xn
i¼1
ðav2i � wiÞ ð6Þ

ni states number of tasks that needs to be executed, supply
voltage vi, wi is total time taken for ni task to execute.
3.2.1. Heuristic for energy-conscious scheduling

Whenever the energy consumption in task scheduling is con-

sidered the complexity of the problem increases dramatically.
Applications are not based on the deadline-constrains. Hence
focusing on energy consumption, task scheduling needs more

attention and it has to be calculated on the basis of quality
schedule. A new heuristic for energy conscious scheduling is
relative superiority (RS). For ready task relative superiority

value for all processors is evaluated using processor and supply
voltage of task. The maximum value of RS is attained based
upon the processor. Thus it is clear that energy conscious
scheduling decision is confined to local optimum.

3.2.2. Machine energy estimation

Cores are wrapped in processors and processors are grouped in

a computing machine while estimating machine energy. Each
core is accomplished with active voltage frequency scaling
(VFS). Based on supply voltage each core can function with
varying speed on the basis of performances (clock frequencies).

VFS tend to exploit U-shaped relationship among core supply
voltage (speed of execution) and energy consumption. Various
cores belonging to same processor are expected to operate at

various voltage/frequency points. Generally applications need
to specify the voltage/frequency when considering the Energy-
efficiency using VFS. The assumption of environment in cloud

computing cannot be made because of GNU/Linux manage-
ment tools of kernel power. Kernel version 2.6.35 – 25 tells
that VFS is dynamic and self-regulated. A sampling rate of

10 ms (time period of VFS change) is the default value for
on-demand governor. Instructions are on the basis of CPU
utilization when there is a local decision making based on a
global one and it is controlled by kernel. In this case, using

‘cpu-freq’ tools power is coped by operating systems in
on-demand governor. Since on-demand governor implemented
‘race-to-idle’ policy voltage/frequency is fixed to maximum

value whenever CPU is needed. When CPU utilization
decreases radically, based on load voltage/frequency is chosen.
A jitter will occur whenever there exists a spontaneous adjust-

ment of CPU frequency, in large-scale system this will in turn
cause delayed communication. There exist several components
apart from processor consuming energy. Our main aim is to
focus on total energy consumption and there remain various

components that need to be included. Power model is specified
by a relation (Mezmaz et al., 2011),

Pm ¼ ðPconst þ PhighÞ ð7Þ
where, Pm is total power of machine, Pconst is power constant,
Phigh is max power for core machine. Energy is considered to

be the product of power and time, in some cases energy repli-
cates to ‘race-to-idle’ policy.

Total energy can be stated as sum of maximum time
taken by the core machine and the completion time of tasks

assigned to all core machines and its power (Mezmaz et al.,
2011).

Emach ¼ Pconst þ Ctmax þ Phigh �
Xcores
c

Ctc

 !
ð8Þ

Emach is the energy of machines, ctc states completion time

of task assigned to core machines, Ctmax denotes maximum
time of core machine. If currently no task is running then
the machine is considered to be switched off (see Table 1).

Table 1 Energy parameters.

Sl. No. Index Value range

Energy parameters

1 Completion time 15–30 [time unit]

2 Maximum rate Contention 30–60%

3 Time limit 0–30%

4 Power constant 15–25 W

5 High Power 0.1–2.0 W

6 Α 0.7–1.2

A novel algorithm for reducing energy-consumption in cloud computing environment 59
3.3. Makespan model

Job scheduling is a combinatorial optimization problem in
the field of computer science, where the ideal jobs are
assigned to the required resource at a particular instant of

time. The description is as follows. Makespan or completion
time is the total time taken to process a set of jobs for its
complete execution. Minimization of makespan can be done

by assigning the set of Ji jobs to set of virtual machines
vm, the order of execution of the jobs in virtual machines
does not matter.

3.3.1. Notations

Let Ji represent the job and Pj denotes the processing time of
jobs, and thus processing time of job set B (Mezmaz et al.,

2011), can be defined as

PðBÞ ¼
X

Ji2B � Pj ð9Þ
If p is a possible schedule for a given scheduling problem, Sj

is the starting time of job Ji in a possible schedule. Ej Denotes
the end time of job Ji, Pj is the processing completion time of
job Ji (Mezmaz et al., 2011),

Pj ¼
X
ðEj � SjÞ ð10Þ

Nj denotes number of jobs, Cj is the completion time of job
Ji. Let Ji be the set of jobs (J1, J2, J3, . . . Ji) that need to process
and p be the possible schedule for a given job scheduling prob-

lem. Ji of jobs need to processed by the virtual machine
vmm = (vm1, vm2, vm3, . . . vmm). Where ‘m’ is the mth virtual
machine, the minimal value of the makespan (completion time)

among all the possible schedules is given by the processing time
of the operations Pj = (P1, P2, P3, . . . Pj), Cmax denotes the
completion time.

3.3.2. m parallel virtual machines scheduling problem

Let us considered that ‘m’ parallel virtual machines is avail-
able, and now at time being let us assume that one is always

in a busy state and it is not available for the job execution.
To perform the scheduling jobs are arriving Ji = (J1, J2, J3,
. . . Jn) and it is necessary to schedule the jobs to available

virtual machines. Constraints are that new jobs that need
to be scheduled arrive only after already existing jobs are
scheduled. Let us assume that virtual machine vm1 is period-
ically unavailable and the virtual machine which is not avail-

able will start at the unavailable period of time. The aim is
to minimize the makespan (completion time). For our
assumption, let the length of the available virtual machine

and unavailable virtual machine be 1 and a > 0,
respectively. pm, denotes the processing time of the virtual
machines, cmax is the completion time conline and cofflin
algorithm respectively.

For a given problem pm, vm1|online|cmax and thus,
there is no online algorithm with lower bound of ratio less
than 2.

Let b be positive number of small value, and jobs Ji = (J1,
J2, J3, . . . Ji arriving have a common processing time as b.

Case 1. It is possible that one virtual machine can process two
jobs that are jobs J1 and J2.

In such a scenario conline P 2b, but in the offline schedule

each virtual machine will be processing one job at a time that
is coffline = b.

Conline

Coffline

P
2b
b

ð11Þ

Cancel the both numerator and denominator.

Conline

Coffline

P 2 ð12Þ

Case 2. If all the virtual machines process one job at a time

After completion of first set of schedule, if we provide the
second set of job to be scheduled to the vm for the job Jvm+1-

. . .J2vm with processing time 1.

Conline P minðbþ 2; 2þ aÞ ð13Þ
Likewise in the offline scheduling algorithm each and every

virtual machine is capable of processing one vm only. If the

second set of jobs is given to the virtual machine then vm2-
. . .vmm, schedules.

Coffline ¼ ð1þ 2bÞ ð14Þ
and evaluating the equations

Conline P minðbþ 2; 2þ aÞ
Coffline ¼ ð1þ 2bÞ ð15Þ

and then on evaluating further,

Conline

Coffline

! 2 ð16Þ

b! 0 ð17Þ
Hence for a given problem pm, vm1|online|cmax and

thus, there is no online algorithm with lower bound of ratio
less than 2.
4. Hybrid algorithm

Combining advantage of ant colony optimization and
cuckoo search, a new Hybrid algorithm has been developed

for combinatorial optimization problems. The disadvantage
of ant colony optimization has been overcome by cuckoo
search that is in ant colony optimization ant moves in ran-
dom directions for search of food source around the colony.

Chemical substances named pheromone is deposited on the
path. While solving optimization problems it traps the ants

60 N. Moganarangan et al.
and hence to perform local search time taken is considerably
more. The above draw backs can be overcome by using
cuckoo search. Cuckoo search is used to perform local

search in ant colony optimization. The major advantage of
using cuckoo search is that, distinct parameter is used apart
from population size.

4.1. Description of ACO and cuckoo search

4.1.1. Ant colony optimization

For solving computational problems ant colony optimization
technique can be used because of the probabilistic nature,

ant colony optimization is used to discover best path
through graphs, based on activity of ants looking for a path
among their colony in search of food source. This idea has
been used to solve various numerical problems; many prob-

lems have come out based on various distinct features of ant
behaviors.

Explanations: ant moves in random directions in search

of food source around the colony, if food source has been
discovered by ant it will come directly to nest, leaving a
trail of pheromone in path. Since pheromone is attractive

by its nature the rest of ants tend to follow directly along
that path. Once coming back to their colony they further
leave a trail of pheromone in path, which will in turn
strengthen the route. If there exist more than one route

to reach an identical food source, shorter path will be trav-
eled by many number of ants, than longer path because
pheromone deposited in the longer path will be evaporated

for a particular instant of time. This is due to the volatile
nature of pheromones, finally all ants decided to travel
shortest path. Generally environment is used as a commu-

nication medium by ants, for exchange of information
among ants and it takes place with the help of pheromone
that has been deposited. The scope of information exchange

is local, those colonies where ant located pheromones left
has a belief for them.

Local decision policies (trails and attractiveness): In ant
colony algorithm ants try to construct a solution for a

given problem iteratively, once the solution is constructed
for the problem. Evaluation of solution will be carried
out by ant and then will try to modify trail value which

is used in construction of solution. The modified phero-
mone information is used by future ants to search
further.

Trail evaporation and daemon: reduction of trail value will
be carried out by trail evaporation to avoid getting stuck fur-
ther in local optima. Searching of non-local perspective is car-
ried out by daemon.

Edge selection: in ant colony optimization algorithm ant
acts as a computational agent. It incrementally tries to build
solution for the problem, solutions which are derived instantly

are called as solution states. Each and every looping of algo-
rithm is considered based on ant movement from state ‘m’ to
state ‘n’, resulting in a more feasible solution. Each ant ‘k’

works out a set Ak(m) of feasible elaboration to its current

state in each looping, the probability Pk
mn of moving from state
‘m’ to state ‘n’ is based on arrangement of two values.
Attractiveness bmn of move, and trail Tmn of move, shows
how capable in the past for a particular move. Thus kth ant

moves from state ‘m’ to state ‘n’ with probability (Ferrandi
et al., 2010).

Pk
mn ¼

ðTa
mnÞðbg

mnÞPðTa
mnÞðbg

mnÞ
ð18Þ

Tmn denotes the pheromone amount deposited from state
‘m’ to ‘n’, ‘a’ is used for controlling the influence of Tmn.
bmn is the state transition desirability from ‘m’ to ‘n’. g is used

to control influence of bmn.
Pheromone update: if solution is completed by all ants,

updated trail equation is (Ferrandi et al., 2010)

bg
mn ð1� qÞbg

mn þ
X

Dbk
mn ð19Þ

where, bmn denotes pheromone amount that has been dumped
for state transition mn. q is the coefficient for pheromone

evaporation. Dbk
mn states the amount of pheromone dumped

by ‘kth’ ant.

4.1.2. Cuckoo search

Cuckoo search is used for the optimization problem, it has
been seen that performance of the cuckoo search is higher than

other Meta heuristic algorithms.
Representation of cuckoo search (CS): each and every

egg in the nest denotes a solution; a new solution is rep-

resented by a cuckoo egg. The main motivation of cuckoo
egg is to derive the best solution and to replace the solu-
tion, which is not so-good in the nests. Each nest contains

exactly one egg. Cuckoo search is based on following
rules,

� All cuckoos lays only a single egg at a specific period of time
and the eggs are dumped by randomly choosing the nest.
� For the next generation, high quality of eggs in best nest is
carried out.

� Generally hosts nests are fixed, the probability of laid egg
by cuckoo bird is found by the host bird pa e (0,1). On
finding this we can further do some operations on worst

nests, solution which is derived is dumped for further
calculations.

Random walk: the major issues in application of random
walk and Levy flights for deriving the new solution is

Ztþ1 ¼ ðZt þ sEtÞ ð20Þ
Et, is obtained from Levy flights, or by normal distribution,

it is also possible to link similarity between hosts egg and
cuckoo egg while implantation will be somewhat tricky. ‘s’
denotes for a fixed number of iterations, how much distant a
random walker can go.

If ‘s’ is too large, from the old solution a new solution
derived will be far away. In such case, it is necessary to accept.
If ‘s’ is too small, the changes are also considerably small and

hence search is not efficient. Hence it is more important to
maintain a proper step size.

A novel algorithm for reducing energy-consumption in cloud computing environment 61
4.3. Hybrid algorithm
Hybrid algorithm
Step 1:
 Initialization of parameters
Set the beginning of pheromone trail, heuristic

information (hif), random nests (rns)
Step 2:
 Get Input jobs from 1 to n jobs
Step 3:
 Apply transition rules
Step 4:
 for each jobs ji to jn do
for each virtual machine vm1 to vmm do
Assign jobs to vm
Vm= job ji

end for
end for
Step 5:
 random walk by cuckoo search from Eq. (20)
Step 6:
 Pheromone updation
for each pheromone pm to pn do
Step 7:
 evaluate Pk
mn using Eq. (18)
end for
Step 8:
 pheromone trails updation
for pheromone dumped bm to bn do
evaluate bmn using Eq. (19)
end for
Step 9:
 If current_jobsP n jobs then
n jobs ++ and go to step 2
else
Step 10:
 Return value
Algorithm description: parameter initialization such as phero-
mone trail, heuristic information, and random nest. The jobs
are processed based on arrival from 1 to n jobs. After applying
transition rules, jobs which have arrived need to be processed.

For processing of jobs, jobs are assigned to virtual machines
based upon the arrival. Thus n jobs are assigned to the vmm

virtual machines. Process random walk, for performing the

local search, cuckoo search is used by performing random
walk and Levy’s flight has to be applied based on the best nest
that has been carried for next generation. kth Ant moves are

performed from m to n. Apply updation of pheromone trails,
once search has been performed. Global updation of phero-
mone has to be carried out and hence pheromone trail upda-

tion is performed. Perform iteration, in this step it
accumulates entire iterations until all jobs have been sched-
uled. It will list all the necessary resources for virtual machines.

A new Hybrid algorithm perform search is much faster

than rest of all the optimization algorithm, for job scheduling
problems resources need to allocated to job with the limited
interval, thereby allocating resources to other jobs is much

easier so that no jobs need to wait for resource n number of
times. By searching the required resources and allocating to
jobs a new Hybrid algorithm performance becomes much bet-

ter which in turn leads to reduction of energy consumption and
Makespan.

4.4. Flow chart

Fig. 2 shows the flow chart of Hybrid algorithm, thus initial-
ization of pheromone, heuristic information, number of nest
and random initial solution has to be done. The jobs that have
to be done by the colony of ants are determined. For process-
ing of next job, transition rule have to be applied. Construc-
tion of ant scheduling for each and every ant is carried out,

that is which ant has to execute first is scheduled. Finding
resources for job scheduling in cloud computing has been per-
formed using the cuckoo search process, since cuckoo search is

very easy to implement that is local search in ant colony opti-
mization is performed using cuckoo search. Trail of phero-
mone is updated using a new solution and global updation is

also carried out. Once local search and other non-local are per-
formed process is terminated.

Local search: the current best nest which has been carried
out from the past generation is fetched. Condition function

is evaluated for checking fitness with maximum generation, if
condition is satisfied cuckoo value is fetched and levy’s flight
is applied. Evaluation of quality/fitness is carried out and a

random nest is chosen, if the fitness is greater than random
nest that has been chosen. The value of new nest has been
replaced, construction of nest is taken placed and ranking is

given to them. The best solution from current best nest is car-
ried out to next generation.
5. Experimental analysis

Computational and data-demanding problem can be solved
with the help of simulation tools; simulation tool is created

comprising parallel execution and distributing computing,
using tools jobs which are created for parallel execution as it
has been carried out by virtual machines in cloud computing.
A cloud computing lab has been setup to analyze the perfor-

mance of an algorithm. The time taken for the following fac-
tors such as job creation time, tasks creation time, result
retrieval time and destruction time are determined. Based on

these factors the total execution time has been evaluated for
analyzing the performance of an algorithm and the analysis
is shown in Tables 2–4.

Table 2 shows job creation time, tasks creation time, result
retrieval time and destruction time for Task 1, Task 2 and Task
4 which are evaluated for five consecutive iterations and mean

value is evaluated. Table 3 shows job creation time, tasks cre-
ation time, destruction time and result retrieval time which is
evaluated up to 32 tasks.

Job creation time: job creation time is stated as the time

taken for creating a new job for execution. Generally job man-
ager includes remote call and time taken to allocate space in
the database by a job manager. In some schedulers generally

job creation time is states as writing some files to disk.

Jct ¼ Rc þDs ðorÞ Jct ¼ Dw ð21Þ
Fig. 3 shows the job creation time of a new Hybrid algo-

rithm. As the number of tasks increases like 2, 4, 8, 16 and

32, job creation time also increases slightly. It is clear from
the figure that as the number of tasks increases, variation in
job creation time is minimal and it is not drastic.

Job submission time: job submission time can be stated as
the time taken for submission of job to the job manager, in
other words time taken to start the execution of the job in
the database. In case of schedulers, it is the time taken for exe-

cution of tasks that has been created.

Jst ¼ St ðorÞ Jst ¼ Ej ð22Þ

Figure 2 Hybrid algorithm flow chart.

Table 2 Job creation time, task creation time, result retrieval time, job destruction time in terms of iteration.

Sl. No. Job creation time Task creation time Result retrieval time Job destruction time

Task 1 Task 2 Task 4 Task 1 Task 2 Task 4 Task 1 Task 2 Task 4 Task 1 Task 2 Task 4

1 0.0260 0.0290 0.0294 4.2042 4.2083 4.2113 0.0100 0.0104 0.0105 0.0256 0.0269 0.0262

2 0.0285 0.0289 0.0265 4.2021 4.2036 4.2052 0.0102 0.0103 0.0107 0.0266 0.0263 0.0268

3 0.0261 0.0254 0.0258 4.2030 4.2034 4.2036 0.0104 0.0110 0.0105 0.0255 0.0256 0.0261

4 0.0269 0.0272 0.0281 4.2142 4.2125 4.2380 0.0103 0.0104 0.0122 0.0239 0.0256 0.0262

5 0.0265 0.0251 0.0269 4.2112 4.2122 4.2133 0.0101 0.0105 0.0108 0.0255 0.0257 0.0260

Total 0.134 0.1356 0.1367 21.0347 21.0400 21.0714 0.0510 0.0526 0.0547 0.1271 0.1301 0.1313

Average 0.0268 0.02712 0.02734 4.20694 4.2080 4.21428 0.0102 0.01052 0.01094 0.02542 0.02602 0.02626

62 N. Moganarangan et al.
Task creation time: task creation time is stated as the time
taken for creation of tasks and saving disk information. The

job manager will try to save required task information in its
database. In case of scheduler, task creation time is mentioned
as time taken to save task information in a file on the file

system.

Tct ¼ Ct þ tsin f ð23Þ

Fig. 4 shows the task creation time of Hybrid algorithm; as

the number of tasks increases from 2, 4, 8, 16 and 32 the time
taken for the creation of tasks also increases.

Result retrieval time: result retrieval time is stated as the

time taken to retrieve the result from the job manager and dis-
play it to the client. In the job manager result retrieval time is
mentioned as the time taken for obtaining results from data-
base. In case of other schedulers, result retrieval time is repre-

sented as time taken to read from file system.

Rrt ¼ Djrt ð24Þ
Fig. 5 shows the result retrieval time of a new Hybrid algo-

rithm; as the number of tasks increases like 2, 4, 8, 16 and 32
the result retrieval time also increases.

Job destruction time: job destruction time is stated as the

time taken for destruction of job or the time taken for deletion
of the entire job and its associated information present in the
database. Scheduler job destruction time is the time for com-

pletely deleting job and task information.

Jdt ¼ Jdt þ td inf ð25Þ

Table 3 Job creation time, task creation time, result retrieval

time, job destruction time.

Sl.

No.

No. of

tasks

Hybrid algorithm

Job

creation

time

Task

creation

time

Result

retrieval

time

Job

destruction

time

1 1 0.0268 0.03312 0.0102 0.02542

2 2 0.02712 0.03318 0.01052 0.02602

3 4 0.02734 0.03458 0.01094 0.02626

4 8 0.02766 0.036038 0.011283 0.02687

5 16 0.02799 0.037558 0.011637 0.027513

6 32 0.02833 0.039142 0.012002 0.028162

Table 4 Comparison of speed-up of Hybrid algorithm and

ACO algorithm.

Sl. No. No. of tasks Speed-up (s)

ACO algorithm Hybrid algorithm

1 1 4.20697 4.20697

2 2 4.21 4.21

3 4 4.21756 4.21756

4 8 4.2279 4.2279

5 16 4.27572 4.27572

6 32 4.2829 4.2829

7 64 4.29332 4.29332

8 128 4.29342 4.29342

9 256 4.29805 4.29805

Figure 3 Job creation time based on number of tasks.

Figure 4 Total time for task creation based on number of tasks.

Figure 5 Result retrieval time based on number of tasks.

Figure 6 Job destruction time based on number of tasks.

A novel algorithm for reducing energy-consumption in cloud computing environment 63
Fig. 6 shows the job destruction time of Hybrid algorithm;

as the number of tasks increases from 2, 4, 8, 16 and 32 the job
destruction time also increases considerably.

Total time: total time is the complete time taken to perform

the job creation time, task creation time, job submission, job
waiting time, task execution time, result retrieval time, job
destruction time.

Tt ¼ ðJct þ Tct þ Jst þ JwtTet þ Rrt þ JdtÞ ð26Þ
Fig. 7 shows the speed-up comparison of a new Hybrid and
ACO algorithm; if the number of tasks increases speed-up time
also increases considerably, from Fig. 7 it is clear that the per-

formance of a new Hybrid algorithm tends to be higher than
that of ACO algorithm. Fig. 7 depicts that if tasks increase
the performance of a new Hybrid and ACO algorithm same

up to 16 tasks and when the number of tasks increased to

Figure 7 Speed-up of Hybrid algorithm and ACO algorithm.

64 N. Moganarangan et al.
128 and 256 the performance of Hybrid algorithm is higher
than that of ACO algorithm. This is because resource schedul-
ing is performed better than in ACO algorithm.

Further a cloud computing lab has been step up and we
have analyzed the execution time, energy consumption, energy
improvement rate and make span of Hybrid algorithm with

ACO algorithm. The analyses are shown in Tables 5, 6 and
from analysis it seems to be clear that energy consumption
Table 5 Comparison of Hybrid algorithm and ACO algorithm.

Sl.

No.

No. of

tasks

ACO algorithm

Speed -

up (s)

Energy

consumed

(J)

Energy

improvement

(%)

Makespan

improvemen

(%)

1 5 1.3 170.69 34.13 26

2 10 2.4 316 31.6 24

3 15 4.05 533.25 35.55 27

4 20 5.25 691.25 34.56 26.25

5 25 6.38 839.77 33.56 25.25

6 30 7.53 991.45 33.04 25.31

7 35 9.09 1196.85 34.19 25.91

8 40 10.29 1354.8 33.87 25.72

9 45 11.49 1512.8 33.61 25.53

10 50 13.09 1722.9 34.45 26.1

11 55 14.29 1880.99 34.19 25.92

12 60 15.04 1979.74 32.99 25.06

13 65 16.24 2137.74 32.88 24.98

14 70 17.44 2295.74 32.79 24.91

Table 6 Comparison of energy consumption based on No. of proc

Sl. No. No. of Processor ACO algorithm

Energy consumed (J) Energy impro

1 1 103.68 99

2 2 190 82.64

3 3 277 75.96

4 4 364 70.12

5 5 451 67.82

6 6 538 65.28

7 7 625 65.19

8 8 712 64.36

9 9 799 63.27

10 10 886 63.12
for Hybrid algorithm is considerably reduced. Table 5 depicts
the comparison of algorithms on the basis of factors such as
execution time, energy consumed, energy improvement rate

and makespan improvement rate.
Speed-up comparison: Table 4 shows performance analysis

of a new Hybrid and ACO algorithm. Evaluation is performed

up to 256 tasks using the tools.
Fig. 8 shows performance comparison of a new Hybrid and

ACO algorithm executed in the cloud computing environment.

The performance of a new Hybrid and ACO algorithm is the
same up to 35–40 tasks in real time environment, from tasks
45 and the performance of a new Hybrid algorithm is substan-
tially better than that of ACO algorithm. This is mainly due to

faster searching of new Hybrid algorithm, at tasks 35–40 both
search equally; as the number of tasks increases there is a grad-
ual decrease in ACO compared with Hybrid algorithm.

Energy consumption: Fig. 9 shows the comparison of energy
consumption graph, as the number of tasks increases to 40, 50,
60 and 70. The consumption of energy by a new Hybrid algo-

rithm is not as much of ACO algorithm.
Energy utilization: Fig. 10 shows the energy utilization

graph of a new Hybrid algorithm and ACO algorithm. The

energy consumed by the Hybrid algorithm is considerably less
than the ACO algorithm. Moreover as the number of tasks
Hybrid algorithm

t

Speed -

up (s)

Energy

consumed

(J)

Energy

improvement

(%)

Makespan

improvement

(%)

1.3 170.69 34.13 26

2.4 316 31.6 24

4 521.4 34.76 26

5 655.7 32.78 25

6 790 31.6 24

7 921.14 30.7 23.3

8 1053.07 30.08 22.8

9 1185 29.62 22.5

10 1316.14 29.24 22.2

11 1445.7 28.91 22

12 1580 28.72 21.81

13 1706.4 28.44 21.66

14 1840.7 28.31 21.53

15 1975 28.21 21.43

essors.

Hybrid algorithm

vement (%) Energy consumed (J) Energy improvement (%)

98.75 98.75

156 78

213 71.1

270.6 67.65

327 65.58

385.2 64.2

442.5 63.2

499.8 62.4

557.1 61.9

614.4 61.44

A novel algorithm for reducing energy-consumption in cloud computing environment 65
increases, the energy utilized by Hybrid algorithm decreases
considerably and at the particular number of tasks energy con-
sumption by Hybrid algorithm continues to be in the steady

state. Even though the Hybrid algorithm searches much faster
than ACO algorithm up to tasks 50 it gradually reduces the
energy consumption; as the number of tasks increases more

and more, further reduction of energy is negligible.
Makespan: Fig. 11 shows makespan improvement

comparison graph of Hybrid algorithm and ACO algorithm.

The comparison shows that makespan of Hybrid algorithm
Figure 8 Speed-up of Hybrid algorithm and ACO algorithm.

Figure 9 Energy consumption of Hybrid algorithm and ACO

algorithm.

Figure 10 Energy utilization of Hybrid algorithm and ACO

algorithm.

Figure 11 Makespan of Hybrid algorithm and ACO algorithm.

Figure 12 Energy consumption of Hybrid algorithm and ACO

algorithm based on number of processors.

Figure 13 Energy improvement based on No. of processors.
reduces considerably than that of ACO algorithm on the basis
of tasks.

Energy consumption of processor: Table 6 shows compar-
ison of energy consumed by a new Hybrid algorithm and
ACO algorithm with respect to processors.

The Fig. 12 shows energy consumption comparison graph
of a new Hybrid algorithm, when processors are increased to
6, 7, 8, 9 and 10. The consumption of energy by Hybrid
algorithm is low, when compared to ACO algorithm.

Figure 14 Makespan and energy utilization of Hybrid

algorithm.

66 N. Moganarangan et al.
Energy improvement of processor: Fig. 13 shows energy
improvement of a new Hybrid algorithm and ACO algorithm.
Energy consumed by Hybrid algorithm is considerably less
than ACO algorithm, when processors increase energy utilized

by Hybrid algorithm also decreases considerably and at the
particular number of tasks energy consumption by Hybrid
algorithm continues to be in the steady state.

Energy and makespan improvement of Hybrid algorithm:
Fig. 14 shows makespan and energy improvement of a new
Hybrid algorithm and it is clear that energy consumed by a

Hybrid algorithm significantly decreases in regard to number
of tasks compared with ACO algorithm. Moreover, makespan
of Hybrid algorithm is also reduced.

6. Conclusion

Cloud computing provides computing as a service afore pro-

duct as a service. In cloud computing shared software
resources and vital information are provided to the computer
on basis of usage in a network. The ultimate goal of energy
efficient scheduling is to reduce cost and computing infrastruc-

ture. In this paper, a new Hybrid algorithm is proposed for
reduction of energy consumption and makespan. The execu-
tion time of Hybrid algorithm is evaluated in cloud computing

lab as the number of tasks increases, the time taken for Hybrid
algorithm is less compared to the ACO algorithm. Energy con-
sumed is calculated and the improvement rate is compared

with ACO algorithm with respect to number of tasks. It is very
clear that energy consumed for job scheduling using Hybrid
algorithm decreases considerably. This is possible only if the

makespan of job is decreased. Further the energy consumption
based on number of processors is analyzed and it depicts that
energy consumed is less as the number of processors goes on
increasing. Energy consumption seems to be at steady state if

we increase the number of tasks and processors. In the future,
we plan to extend the work for 1000 to 10,000 jobs to evaluate
energy consumption.

References

Ahn, Chang Wook, An, Jinung, Yoo, Jae-Chern, 2010. Estimation of

particle swarm distribution algorithms: combining the benefits of

PSO and EDAs. Inf. Sci. 192, 109–119.

Bacigalupo, David A., van Hemert, Jano, Chen, Xiaoyu, Usmani,

Asif, Chester, Adam P., He, Ligang, Dillenberger, Donna N., Wills,
Gary, Gilbert, Lester, Jarvis, Stephen A., 2011. Managing dynamic

enterprise and urgent workloads on clouds using layered queuing

and historical performance models. Simul. Model. Pract. Theory

19, 1479–1495.

Bae, Changseok, Yeh, Wei-Chang, Chung, Yuk Ying, Liu, Sin-Long,

2010. Feature selection with Intelligent Dynamic Swarm and

Rough Set. Expert Syst. Appl. 37 (10), 7026–7032.

Byun, Eun-Kyu, Kee, Yang-Suk, Kim, Jin-Soo, Maeng, Seungryoul,

2011. Cost optimized provisioning of elastic resources for

application workflows. Future Gener. Comput. Syst. 27 (8),

1011–1026.

Dhavachelvan, P., Uma, G.V., 2005. Multi-agent based framework for

intra-class testing of object-oriented software. Int. J. Appl. Soft

Comput., Elsevier 5, 205–222.

Dhavachelvan, P., Uma, G.V., Venkatachalapathy, V.S.K., 2006. A

new approach in development of distributed framework for

automated software testing using agents. Int. J. Knowl.-Based

Syst., Elsevier 19, 235–247.

Rubing Duan, R. Prodan, T. Fahringer, Performance and cost

optimization for multiple large-scale grid workflow applications,

Proceedings of the 2007 ACM/IEEE Conferences on Supercom-

puting, 2007, pp. 1–12.

Ferrandi, Fabrizio, Lanzi, P.L., Pilato, C., Sciuto, D., 2010. Ant

colony heuristic for mapping and scheduling tasks and communi-

cations on heterogeneous embedded systems. IEEE Trans. Com-

put. Aided Des. Integr. Circuits Syst. 29 (6), 911–924.

Garg, Saurabh Kumar, Yeo, Chee Shin, Anandasivam, Arun, Buyya,

Rajkumar, 2011. Environment-conscious scheduling of HPC

applications on distributed Cloud-oriented data centers. J. Parallel

Distrib. Comput. 71 (6), 732–749.

Guo, Suchang, Huang, Hong-Zhong, Wang, Zhonglai, Xie, Min,

2011. Grid service reliability modeling and optimal task

scheduling considering fault recovery. IEEE Trans. Reliab. 60 (1),

263–274.

Hu, Xia-Min, Zhang, Jun, Chung, H.S., Li, Yun, 2010. SamACO:

variable sampling ant colony optimization algorithm for continu-

ous optimization. IEEE Trans. Syst. Man Cybern. B Cybern. 40

(6), 1555–1566.

Huang, Ye, Bessis, Nik, Norrington, Peter, Kuonen, Pierre, Hirsbrun-

ner, Beat, 2013. Exploring decentralized dynamic scheduling for

grids and clouds using the community-aware scheduling algorithm.

Future Gener. Comput. Syst. 29 (1), 402–415.

Losup, Alexandru, 2011. Performance analysis of cloud computing

services for many-tasks scientific computing. IEEE Trans. Parallel

Distrib. Syst. 22 (6), 931–945.

Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.C., Talbi, E.G., Zomaya,

A.Y., Tuyttens, D., 2011. A Parallel bi-objective hybrid meta-

heuristic for energy-aware scheduling for cloud computing systems.

J. Parallel Distrib. Comput. 71 (11), 1497–1508.

Montero, Ruben S., Moreno-Vozmediano, Rafael, Lorente, Ignacio

M., 2011. An elasticity model for High Throughput Computing

clusters. J. Parallel Distrib. Comput. 71 (6), 750–757.

Moreno-Vozmediano, Rafael, Montero, R.S., Llorente, I.M., 2011.

Multicloud deployment of computing clusters for loosely coupled

MTC applications. IEEE Trans. Parallel Distrib. Syst. 22 (6), 924–

930.

Rajeswari, M., Sambasivam, G., Balaji, N., Saleem Basha, M.S.,

Vengattaraman, T., Dhavachelvan, P., 2014. Appraisal and anal-

ysis on various web service composition approaches based on QoS

factors. J. King Saud Univ. – Comput. Inf. Sci. 26, 143–152.

Sha, D.Y., Lin, Hsing-Hun, 2010. A Multi-objective PSO for job-shop

scheduling problems. Expert Syst. Appl. 37 (2), 1065–1070.

SiYuan, Jing, 2013. A novel energy efficient algorithm for

cloud resource management. Int. J. Knowl. Lang. Process. 4 (2),

12–22.

Sumathi, Surekha, 2010. PSO and ACO based approach for solving

combinatorial Fuzzy Job Shop Scheduling. Int. J. Compt. Technol.

Appl. 2 (1), 112–120.

http://refhub.elsevier.com/S1319-1578(15)00081-6/h0005
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0005
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0005
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0015
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0015
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0015
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0025
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0025
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0025
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0030
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0030
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0030
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0030
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0040
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0040
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0040
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0040
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0045
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0045
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0045
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0045
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0055
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0055
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0055
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0055
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0060
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0060
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0060
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0060
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0065
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0065
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0065
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0070
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0070
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0070
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0070
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0075
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0075
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0075
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0080
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0080
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0080
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0080
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0085
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0085
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0085
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0085
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0090
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0090
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0100
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0100
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0100

A novel algorithm for reducing energy-consumption in cloud computing environment 67
Qi Tan, Hua-Ping Chen, Bing Du, Xiao-lin Li, Two-agent scheduling

on a single batch processing machine with non-identical job sizes,

Artificial Intelligence, Management Science and Electronic Com-

merce (AIMSEC), 2011, pp. 7431–7435.

Tao, Qian, Chang, Hui-you, Yi, Yang, Gu, Chun-qin, Li, Wen-jie,

2011. A rotary Chaotic PSO algorithm for trustworthy scheduling

of a grid workflow. Comput. Oper. Res. 38 (5), 824–836.

Tavakkoli-Moghaddam, R., Azarkish, M., Sadeghnejad-Bark-

ousaraie, A., 2011. A new hybrid multi-objective Pareto archive

PSO algorithm for a bi-objective job shop scheduling problem.

Expert Syst. Appl. 38 (9), 10812–10821.

Venkatesan, S., Saleem Basha, M.S., Chellappan, C., Vaish, Anurika,

Dhavachelvan, P., 2013. Analysis of accounting models for the

detection of duplicate requests in web services. J. King Saud Univ.

– Comput. Inf. Sci. 25, 7–24.

Wang, Wei, Zeng, Guosun, Tang, Daizhong, Yao, Jing, 2012. Cloud-

DLS: dynamic trusted scheduling for cloud computing. Expert

Syst. Appl. 39 (3), 2321–2329.
Zhao, Chunyan, Xu, Baomin, Hu, Enzhao, Hu, Bin, 2011. Job

scheduling algorithm based on Berger model in cloud environment.

Adv. Eng. Softw. 42 (7), 419–425.

Yang, Xueming, Yuan, Jiangye, Yuan, Jinsha, Mao, Huina, 2010. An

improved WM method based on PSO for electric load forecasting.

Expert Syst. Appl. 37 (12), 8036–8041.

Yeo, Sungkap, Lee, Hsien-Hsin S., 2011. Using mathematical mod-

eling in ‘‘Provisioning a Heterogeneous Cloud Computing Envi-

ronment”. IEEE Comput. Soc. 44 (8), 55–62.

Yuan, Yulai, Wu, Yongwei, Wang, Qiuping, Yang, Guangwen, Zheng,

Weimin, 2012. Job failures in High Performance computing

systems: a large-scale empirical study. Comput. Math. Appl. 63

(2), 365–377.

Zhiqiang Zhang, Jing Zhang, Shujuan Li, A Modified Ant Colony

Algorithm for the Job Shop Scheduling Problem to Minimize

Makespan, International Conference on Mechanic Automation

and Control Engineering (MACE), 2010, pp. 3627–3630.

http://refhub.elsevier.com/S1319-1578(15)00081-6/h0110
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0110
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0110
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0115
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0115
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0115
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0115
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0120
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0120
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0120
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0120
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0125
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0125
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0125
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0130
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0130
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0130
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0135
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0135
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0135
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0140
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0140
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0140
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0140
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0145
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0145
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0145
http://refhub.elsevier.com/S1319-1578(15)00081-6/h0145

	A novel algorithm for reducing energy-consumption in cloud computing environment: Web service computing approach
	1 Introduction
	2 Related work
	3 Problem modeling
	3.1 Application model
	3.2 Energy model
	3.2.1 Heuristic for energy-conscious scheduling
	3.2.2 Machine energy estimation

	3.3 Makespan model
	3.3.1 Notations
	3.3.2 m parallel virtual machines scheduling problem

	4 Hybrid algorithm
	4.1 Description of ACO and cuckoo search
	4.1.1 Ant colony optimization
	4.1.2 Cuckoo search

	4.3 Hybrid algorithm
	4.4 Flow chart

	5 Experimental analysis
	6 Conclusion
	References

