
Journal of King Saud University – Computer and Information Sciences (2016) 28, 211–229
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A formal approach for change impact analysis

of long term composed services using Probabilistic

Cellular Automata
* Corresponding author.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2014.10.009
1319-1578 � 2015 Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
M. Thirumaran, M. Jannani *, N. Sivakumar
Pondicherry Engineering College, Puducherry, India
Received 11 January 2014; revised 26 June 2014; accepted 23 October 2014

Available online 18 November 2015
KEYWORDS

Service oriented architecture;

Web services;

Change management;

Change impact analysis;

Finite State Machine;

Probabilistic Cellular

Automata
Abstract Incorporating changes into the logics of composed services dynamically and successfully

is a challenge for sustaining a business’ image and profit in the society, especially when the change is

expected to be made immediately at low cost. In this paper, we address this challenge by proposing

a change impact analysis framework for long term composed services (LCS) which: (i) enables the

business people to implement the changes by themselves through their analysts, (ii) reduces cost and

time by eliminating the dependence on IT developers once the application services are developed

and delivered, (iii) ensures effective incorporation of the changes made by using standard method-

ologies for evaluation – finite state automaton for verifying the runtime compatibilities and change

evaluation and probabilistic cellular automaton for impact analysis and prediction. Through the

evaluated probability measures and effective incident matching, the knowledge gained by the ana-

lyst over his service logics and the efficiency of incorporating changes are increased.
� 2015 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Service Oriented Computing (SOC) is emerging as a new para-
digm and is accruing the outsourcing of the required function-
alities from third party web based providers especially through

service composition. Composite services are built from aggre-
gates of other autonomous services which collectively provide
a value added service. In a long term composed service (LCS),
the partnership among the services in composition and the

business objective to be attained are for a long run. LCSs facil-
itate dynamic modification of the composition structure by
choosing the best services and dissolving the services whose
execution is no longer needed. They thus enable dynamic selec-

tion of the partners and aid the end users and consumers to be
highly benefited from the open competition among the busi-
nesses. As the end users are always interested in latest tech-

niques and technologies, the LCSs are more prone to
changes, as time passes. Changes to an LCS can be of two
types: top down changes or bottom up changes (Liu et al.,

2011). In the former, the changes are initiated by the owners
of the LCS and in the latter they are originated from the out-
sourced service providers. With the increase in the emanation

of wide range of business competitors and the demands of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.10.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2014.10.009
http://dx.doi.org/10.1016/j.jksuci.2014.10.009
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.10.009
http://creativecommons.org/licenses/by-nc-nd/4.0/

212 M. Thirumaran et al.
the end users, effective change management in LCSs has
become vital. The dependence on the IT developers for the
incorporation of these changes claims the investment of a con-

siderable amount of time and cost which poses a significant
threat to the business’ income.

So there is a need for a framework which would enable the

business people to make changes to the LCS through their ana-
lysts without the aid of the IT developers. Once a change
occurs, the framework must enable the LCS to adapt itself

quickly and automatically in order to satisfy the business need.
However such changes should be incorporated systematically
without any issues (Maamar et al., 2008) and hence change
impact analysis which involves analyzing the impact which

the incorporated change would have on the LCS, is essential
and would increase the accuracy of the changes made. Though
there are a lot of research works focusing on automatic com-

position and integration of the services, change impact analysis
in web service change management using formal approaches
has not been lime lighted much. The existing frameworks do

not provide maximum runtime support and degree of automa-
tion and do not enable changes at the analyst level (Apostolou
et al., 2010). They do not perform change impact analysis and

incident matching which are very much essential for a timely
and cost effective change management (Rovegard et al.,
2008; Setzer et al., 2010; Chua and Aslam Hossain, 2012).
There are frameworks for handling top down and for handling

bottom up changes but not for both. There are no standard
procedures and methodologies adopted in the existing works
and even if the changes are made, there is no means to find

the exact reason for the change being unmanageable in the cur-
rent static scenario. In the current situation it is very difficult
to incorporate the changes perfectly into the logics of the

LCS. All these together have motivated our research question,
‘‘How can the change management process in long term com-
posed services be enhanced such that the changes can be made

by the analysts in a timely and cost effective manner and with
reduced risk?”.

In this paper, we have addressed this issue through the pro-
posed change impact analysis framework which adopts formal

methods and standard procedures for analyzing the impact of
the changes through effective runtime support, change evalua-
tion, constraint evaluation and QoS factor evaluation. When a

request for making a change is received, the framework verifies
if there are no runtime issues in the business logic extracted by
property pre evaluation using Finite State Machine (FSM) and

only then it allows the analyst to make the changes over the
logic. After the changes are made, the change evaluation is
done which verifies if the change made can be committed safely
or not. This involves the checking over the deviation of the

functionality of the logic after change through change factor
evaluation, over the workflow of the logic through constraint
factor evaluation and over the quality of the modified LCS

using QoS factor evaluation for differentiating from competing
service providers. All these evaluations are performed using
FSM which provides the formalism required for verifying the

changes made. The impact that the changes would have on
the LCS is indicated through impact analysis and incident
matching. The evaluated factors are compared with the thresh-

old estimations and impact value estimations from the previ-
ous incidents and Cellular Automata (CA) is used to validate
the evaluation and to generate the change factor, constraint
factor and QoS factor patterns. The current changes are
matched with the pre occurred, similar change request patterns
followed by the behavioral analysis which is performed using
Probabilistic Cellular Automata (PCA). PCA makes use of

the knowledge extracted from these patterns and indicates
the risk, degree of automation, accuracy and degree of incident
matching involved which would aid the analyst in making the

changes confidently and maximize the market attraction of the
LCS.

2. Change impact analysis of LCS using Probabilistic Cellular

Automata

In this section, we present our change impact analysis frame-

work for managing changes in LCS using Probabilistic Cellu-
lar Automata. We first illustrate the working of the change
impact analysis framework shown in Fig. 1 by means of the

sequence of operations and activities involved in the change
impact analysis and their dependencies depicted in Fig. 2.
We then describe how the framework reduces the cost and time
involved in effectively incorporating the changes with the help

of a motivating example of a sample web service composition.
The impact of a change, the construction of LCS schema, FSM
and the associated PCA for the example are demonstrated

manually. LCSs have attracted a lot of attention since they
provide a powerful tool to offer value-added and customized
services. These vividly contribute toward the need to standard-

ize and fine tune the change management process for LCSs and
to follow structured approaches to make error free changes in
the functionality of the services without compromising the
quality of the business process.

2.1. Overview of change impact analysis approach and

framework

The importance of the change impact analysis approach can be
adumbrated with the help of the following example. Consider
a business analyst working on services in long term composi-

tion. In case of a situation where a change has to be made to
the service logic immediately and at low cost, the analyst is
put in a situation where he cannot wait for the development

team and has to make the changes by himself. So, there are
high chances for him to make a bug introducing change and
inject incorrect statements into the logic of the LCS which
might end with the changed LCS exhibiting an undesired

behavior. Even if the changes are made as careful as possible,
without analyzing the impact that the changes would have on
the logic, it is not possible to assure a risk-free and accurate

incorporation of the changes which in turn serves as a serious
threat to meet the business outcome. This problem is addressed
by the change impact analysis framework depicted in Fig. 1.

Initially the received request for change is sent to the
change request manager to identify the part of the business
process in which the change has to be made. The change

request consists of the command to be executed i.e. the
DML operations to be performed like an addition or a substi-
tution etc., the resource to which the change is to be done
expressed in terms of the process name and the condition to

be followed i.e. performing the mentioned steps on the satisfac-
tion of certain condition mentioned. Then, the source code of
the composed service which can be in any language, to which

the change is to be made, is extracted by analyzing the change

Figure 1 Change impact analysis framework.

Change impact analysis of long term composed services 213
request as shown in step 1 of Fig. 2. The domain analysis is
performed to identify the business domain and the context

analysis is performed to identify the business environment of
the composed service. The business logic analysis involves
the analysis of the project domain, business process and the

business logic (rule, function).
This is followed by the dependency analysis. The entities

are checked for any input dependency where two or more enti-

ties depend on the same input, output dependency where enti-
ties are expected to produce the same output, call sequence
dependency, policy dependency where the entities are expected
to abide by the same policy, mapping dependency where enti-

ties depend on the same data set for instance and existence
dependency where the existence of an entity is meaningless in
the absence of another particular entity. The service composi-
tion set, composition type and the process owner (policy
dependencies are checked) are analyzed and checked. The ser-

vice registry maintains information about the services includ-
ing the service id, service profile and the service location.
The business logic source maintains the business logic set, busi-

ness logic schema and the corresponding Finite State Machine,
state transition table and the change measure table.

After the dependency analysis, the rules, functions, param-

eters and dependency are identified and are placed in the busi-
ness logic set as shown in step 2 of Fig. 2. Rules, their syntax
and their description are identified. Functions are expressed in
terms of primitive computable functions. Then the LCS

schema before change is identified and generated by the
schema generator as shown in step 3 of Fig. 2. Business logic
is a group of the logic entities which includes rules, functions,

Business Logic Set
Service

set
Rule
Set

Param
Set

Dependency
Set

{S1,S2} {R1,R2} {P1,P2} {D1,D2}

Property Before A�er
Traceability True
Accessibility True
Computability True
Dependency True

Change Factor A�er
Change

Order of Execu�on 80%
Correctness 89%
Similarity Measure 56%
Business Policy Enforcement 77%

eurTlellaraP
eurThcnarB
eurTnoitaretI

Synchroniza�on True

Probability
es�ma�on from

incidents

Es�mated probability
measures

Degree of automa�on 0.723
Risk 0.34
Incident Matching 0.89
Accuracy 0.666

CR
ID Timestamp Domain Condition CR

Type
LCS
Set Status

12
12/3/2012

6:56:50 PM
(UTC+05:30)

Travel
Agency

Policy not
violated Deletion

{Airline,
Hotel,
Cab}

Change
Committed

QoS Factor Before
Change

A�er
Change

Execu�on Time 223 ms 220 ms

Availability 98% 99%
Cost $ 669 $ 660
Response Time 340 ms 338 ms

Property Before A�er
Traceability True True

Accessibility True True
Computability True True
Dependency True True

Decidabil-
ity Factor

Name Type Impact
Value

IOOE Order of
Execu�on

Change
Factor

3

ISM Similarity
Measure

Change
Factor

2

…

Threshold name Impact
priority

Impact
value

Threshold
value

Threshold Very High, TVH 5 40% 100
Threshold High, TH 4 45% 90
Threshold Medium, TM 3 50% 88
Threshold Low, TL 2 55% 34

Change Request

[Command]

<Resource>

(Condi�on)

Source Code

Business Logic Schema

<LCS Schema [Airline][Hotel][Cab]>
<cservice>
<service name=Singapore_Airlines”>
<rule id=”r11” name=”getcust_details”>
<input>
<parametername=”name”
ptype=”String”/>

FSM Construc�on (before
Change)

6

7 8

9

10

11

12

13

14

1 2

3

5 4

@WebService(serviceName=
”Singapore_Airlines”)
ResultSet
rs1=stmt.executeQuery(“Sel
ect * from airline where

Figure 2 Workflow diagram of change impact analysis framework.

214 M. Thirumaran et al.
parameters and dependency. Every operation in a web service
is rule based and is reflected by the schema. Every rule is con-
verted into schema and this reduces the time taken in the gen-

eration of schema at runtime. The schema reflects the part of
the logic under change only and hence is validated against
the complete schema. After the schema validation is done,
the corresponding FSM which provides better understandabil-
ity and is language neutral is generated as shown in step 4 of

Fig. 2. FSM being a conceptual and machine processable
model provides enhanced focus on the part of the business

Change impact analysis of long term composed services 215
process where the change has to be made by reflecting the
schema. Any change made to the FSM is reflected back in
the schema. While FSM consists of nodes, the schema consists

of Meta data which are very useful when fetched during back-
tracking. In order to fetch the Meta data, the information
about the node is needed which is provided by the FSM. This

provides better understandability to the business analyst and
the analyst is facilitated to make the change which is then
reflected back at the source code. For an analyst with little

knowledge about the code, this facilitation would grant
immense comfort. But still, the changes must be carefully eval-
uated, verified and only then reflected in the source code to
avoid critical latent issues which is assured by the proposed

framework. This is guaranteed by the framework by perform-
ing the Property evaluation, change factor evaluation, con-
straint factor evaluation, QoS factor evaluation and change

impact analysis.

2.2. Runtime management

The property evaluator performs the process of evaluating the
identified vital properties. The framework manages the
changes dynamically without any exceptions and makes sure

that the changes are made as expected, with the help of this
property evaluator. When a part of the logic is extracted from
an entire business process of the LCS, it tends to have compat-
ibility issues to implement a change like its dependence on a

rule, function, parameter of change. The extracted logic might
not be complete with all required rules to implement the
required change and some required rules or functions might

be missing. The constructed FSM might reflect the rules, func-
tions or even services which do not have the access permission
to make a change or the rules might make a call to the rules of

other services. All these issues need to be checked to set the
manageability factor which indicates whether the extracted
logic and the constructed FSM is complete reflecting the exact

code to be changed and hence fit for a change process as shown
in step 5 of Fig. 2.

Property evaluation is done all the time during the schema
extraction, during the change process and even after the

change is committed or discarded. The properties including
computability, accessibility, traceability and dependency are
evaluated over the FSM and the property evaluation tag is

updated in the business logic schema. The evaluation of the
computability property involves the check over the reachabil-
ity and completeness of the logic reflected by the FSM. Let

S1, S2, S3 . . .Sn be the services in composition. Let M be the
respective Finite State Machine associated with it.M is defined
as M = {Q,

P
,d,qo,F}. The transition function is given as, d

(Q1,
P

1) ? {Q2}, d(Q2,
P

2)? {Q3}, . . .d(Qn�1,
P

n�1)?
{Qn}, where

P
n is the set of input alphabets for the Sn for

any n, such that Q1 consumes the input set
P

1, goes to Q2

and finally Qn�1 consumes
P

n�1 and reaches Qn. If this is sat-

isfied, reachability property is observed to be true. This verifi-
cation makes sure that every node i.e. every rule or function
represented in the FSM is reachable from every other rule or

function. This identifies the lack of call to any rule or function
of the logic under change. Completeness is associated with the
single service wherein the transition function for any service Sn
in M is given by, d(qn,
P

n) ? Fn, where qn 2 Qn and Fn # Qn

is set of final states. This verification checks if there is a rule
initiating the execution (start state) and for completing the exe-

cution (end state). The traceability property is verified in order
to make sure that the business logic entity (service, rule, func-
tion or parameter) in the change request is traceable in the con-

structed FSM as the FSM reflects only the part of the logic
under change. The services S1, S2, S3 . . .Sn are said to be
dependent on each other when the transition function is as

9n 4(Sn,
P

n) ? d(Sn+e,
P

n+e)
T 4(Sn+e,

P
n+e)? d(Sn+d,P

n+d), where e > 0 and d > 0. The accessibility property is
checked in order to verify that the business logic entities have
the access permission to incorporate the change.

2.3. Change management

After the property evaluation before change is done, the ana-

lyst is allowed to perform functional changes to the logic.
Then, the corresponding FSM after change is constructed
and the change evaluation is done. The change evaluator per-

forms the process of change factor evaluation, constraint fac-
tor evaluation and QoS factor evaluation. This assures that
the changes made to the business logic are in accordance with

the change request, meeting the expectation of the analyst and
that the changes are injected correctly into the logic.

2.3.1. Change factor evaluator

Change factors are envisaged as the touchstones for the evalu-
ation of the changes made. Any change in the business logic is
influenced by the change factors either independently or in a

group and they aid in making the changes effectively. The vital
factors for change factor evaluation are listed in Table 1. Order

of execution is given by OOE ¼ P DRid

R

� � [P DFid
F

� �� � � 100,
where Rid, Fid are the unique ids which establish the order of
the rule and the function within the logic L. Similarity measure

is estimated by SM ¼ P DIP=DOP

N

� �
� 100, where DIP and DOP,

refer to the number of states in which the inputs and outputs
have varied respectively and N is the total number of states
generated for L in FSM, M (Rovegard et al., 2008). Business

Policy Enforcement is given by BPE ¼ P
FP
P

� � � 100, where

FP is the states in which the business policies failed and P
are the total states related to business policies in M. Correct-

ness is given by
P

1� Cd

Ts

� �h i
� 100, where Cd is the number

of dangling states and Ts is the total number of states in M.
The evaluation of these change factors indicates the deviations
caused in the functionality of the business logic due to the

change as shown in step 6 of Fig. 2.

2.3.2. Constraint factor evaluator

Constraint factors play a vital role in the evaluation of the

changes made by evaluating the changes with respect to the
invocation order and the work flow order which is significantly
important in case of composed services. Synchronization,

Sequence, Branch, Parallel and Iteration are the constraint fac-
tors considered for the functional changes made to the busi-
ness logic. Let S1, S2, S3 . . .Sn be the set of n services in
composition comprising of rule sets such as S1 = {r1, r2,

Table 1 Evaluation factors and their purpose.

Evaluation

phase

Component Factors

evaluated

Purpose

Runtime

management

Property

evaluator

Computability In order to provide

runtime support by

checking if the FSM

reflects the exact

logic under change

and is free from

compatibility issues

before and after

change

Traceability

Accessibility

Dependency

Change

management

Change

factor

evaluator

Order of

execution

In order to evaluate

the changes made to

the functionality of

the business logic

Correctness

Similarity

measure

Business

policy

enforcement

Constraint

factor

evaluator

Sequence To evaluate the

changes made with

respect to the

invocation and

work flow order

Parallel

Branch

Iteration

QoS factor

evaluator

Response time In order to verify

the impact that the

change has over the

quality of the

business process

Execution

time

Cost

Availability

Change

impact

analysis

Behavior

analyzer

Probability of

risk

To deduce the

measures for

decision making and

analyze the behavior

of the composed

service after change

using PCA

Probability of

accuracy

Probability of

incident

matching

Probability of

degree of

automation

216 M. Thirumaran et al.
r3 . . . rp}, S2 = {rp, rp+1, rp+2 . . . rq}, . . .Sn = {rq+1, rq+2, rq+3

. . . rr}. These services are said to be synchronized with each

other (S1 [S2 [S3 . . .Sn) if and only if S1 [S2 = ;,
S2 [S3 = ; . . .Sn�1 [Sn = ;. The sequence is said to be

observed in LCS if and only if, 9n d�

Sn;DSnð Þ ¼> Snþe \ d� Snþe;DSnþeð Þ ¼> Snþd where d�

Sn;DSnð Þ ¼> Snþe indicates the transition of Sn to Sn+e taking

DSn input in multiple steps, e > 0 and d > 0, DSn represents
the output of Sn. Let S1, S2, S3 . . .Sn be n services possessing
the states Q1, Q2, Q3 . . .Qn. The branch is said to be observed

in the LCS if and only if, d� qn;Lsð Þ ! qnþd, d
�ðqn;LpÞ ! qnþe,

where s \ p ¼ ;, d\e ¼ ; and d > 0, e > 0. Let us consider
two parallel services possessing the states Qa and Qb respec-
tively and the parallel execution is observed between them if

and only if, 9n d qn;Lsð Þ ! qnþd\
��

d qn;Lp

� � !
qnþe� \ d qnþd;Ls

� �
–

�
> qnþe \ d qnþe;Lp

� �
– > qnþd�g where

qn+d, qn+e � qn+d 2 Qa and qn+e 2 Qb. qn+d should not reach
any of the states in set Qb and qn+e should not reach any of the
states in set Qa. For any service n iteration is said to be

observed if and only if 9n d� qn;Lð Þ ¼> qn i.e. if any state qn
in a service reaches the same state qn using the logic L then iter-
ation is said to be observed. The factors are evaluated and
updated as shown in step 6 of Fig. 2.

2.3.3. QoS factor evaluator

QoS factors influence the changes made to the composite ser-
vice in the idea that any service in composition with devastat-

ing variations in its non functional behavior after change is not
preferable as it might result in the failure to meet the business
competitors (Xiong et al., 2009; Wang et al., 2009). So when a

change has been made to the logic, the quality metrics pave the
way for making the behavioral analysis and committing the
change. Response time, execution time, cost and availability

are the vital QoS factors evaluated. Web service availability
is the ratio of the expected value of the uptime of a service
to the aggregate of the expected values of up and down time.

Response time is the measure of how long it takes for a service
to respond from the time of invocation of the service. Execu-
tion time is the measure of the time taken for the complete exe-
cution of a rule or service in composition. Cost is measured

from the estimation of the execution time of the rule or service
in composition. The QoS factors are evaluated and updated as
shown in step 7 of Fig. 2. After these evaluations are done, the

property evaluation is done again as shown in step 8 of Fig. 2
and the change evaluation values are updated as reference
points in the business logic schema before the change is com-

mitted. Based on these values, the impact analysis is done.
Temporal analysis is performed which involves the behavior
analysis and growth rate analysis which focuses on the profit

or loss gained from the composition.

3. Change impact analysis

The change, constraint and the QoS factors together are called
the decidability factors which determine whether the change
made can be committed or not through the estimation of
decidability. For every change request once the decidability

factors are measured, they are considered for impact analysis.
The amount of impact (impact factor) of each decidability fac-
tor on the logics is determined first. The generalized formula

for determining impact factor is: If ¼
PðDfv � IvÞ=NDf where,

If – impact factor, Dfv – decidability factor value, Iv – impact

value, NDf – total number of decidability factors. The decid-
ability factor values (Dfv) are taken from the measures done
in the change, constraint and the QoS evaluators. The impact

values (Iv) for each decidability factor is provided in Table 2.
Impact value is the priority of impact that a particular decid-
ability factor has on the business logic which is estimated from

the behavior of the factor in the previous similar incidents. The
decidability factors are rated from 1 to 5. For example con-
sider the factors correctness, sequence and response time. They

are of higher importance to logic than the other factors
because they have been the reason for the failure in the previ-
ous similar incidents. Hence they are rated with highest impact
value 5. These impact values can also be given by the analyst

according to his business and the prediction based on proba-
bility estimation. This is shown in step 9 of Fig. 2.

For every impact value (1–5), only a particular percentage

of allowance is allowed to act on the logic while making a
change. For example, if a decidability factor’s impact value
is 5, then it is of higher impact i.e. the factor has been the

Table 2 Impact values of the decidability factors.

Decidability factor Factor type Impact value from

incidents

Order of execution, IOOE Change

factor

3

Similarity measure, ISM Change

factor

2

Business Policy

Enforcement, IBPE

Change

factor

4

Correctness, ICS Change

factor

5

Synchronization, ISY Constraint

factor

4

Branch, IBR Constraint

Factor

3

Parallel, IPL Constraint

factor

2

Sequence, ISQ Constraint

factor

5

Iteration, IIT Constraint

factor

1

Availability, IAV QoS factor 2

Execution time, IET QoS factor 4

Response time, IRT QoS factor 5

Cost, ICT QoS factor 3

Change impact analysis of long term composed services 217
reason for the failure of a change in the maximum number of
previous incidents and hence only 40% of its impact is allowed

to act on the logic where as if a decidability factor’s impact
value is 1, it is of lower impact hence 60% of its impact is
allowed to act on the logic. This allowance of impact is termed

as the threshold in the impact analysis part. The threshold cal-
culation for each kind of impact value is listed in Table 3. This
is shown in step 10 of Fig. 2. Threshold estimation, Ti is based

on the following: Ti ¼ Dfð1þ IAÞ, where, Df = maximum

value of the decidability factor from successful incidents,

IA = percentage of impact allowed for that threshold type i.
As the impact values are rated based on their effect on log-

ics, the impact factor determination is also classified according

to the rating. Hence the impact factor for the decidability fac-
tors having impact value 5 is calculated as Impact_Very_High
and abbreviated as IVH, impact value 4 is calculated as
Impact_High and abbreviated as IH, impact value 3 is calcu-

lated as Impact_Medium and abbreviated as IM, impact value
2 is calculated as Impact_Low and abbreviated as IL and
Table 3 Threshold values for impact values.

Threshold name Impact

value

Percentage of impact

allowed (%)

Threshold_Very_High

– TVH

5 40

Threshold_High – TH 4 50

Threshold_Medium –

TM

3 50

Threshold_Low – TL 2 55

Threshold_Very_Low –

TVL

1 60
impact value 1 is calculated as Impact_Very_Low and abbrevi-
ated as IVL based on the formulation. The impact values deter-
mined are compared with the threshold values and if all the

change, constraint and QoS factor values are within the limit
of allowance indicated by the successfully satisfied change,
constraint and QoS factor patterns, then that particular

change request’s decidability changes to ‘1’.
Else, the decidability is set to ‘0’. The decidability algorithm

is given in Fig. 3. The algorithm adumbrates the decidability

calibration by analyzing the impact analysis set I. Every decid-
ability factor value CFV is compared with the maximum suc-
cessful decidability factor values CFM and if found greater
that the maximum value, is checked for its corresponding

impact factor. The threshold values are computed with respect
to the impact factor values. For instance, threshold high is
computed if the impact factor belongs to impact high. Based

on this decidability is calibrated.
When the decidability is changed to ‘1’, the various cellular

automaton patterns are generated based on this decidability

and manageability for rules, functions and parameters as
shown in step 11 of Fig. 2 and the approval is sent to the run-
time manager.
3.1. Estimation of probability through incident matching

The various cellular automata patterns including the property,
change, request, QoS, rule, function, parameter, and incident
patterns generated act as the knowledge base to aid in knowl-

edge discovery and decision making. The probabilities of risk,
accuracy, automation, and incident matching are determined
and from the extracted knowledge, the functional deviations,

variations in QoS, violations in SLA and policy and failure
are discovered. Probability of accuracy indicates the extent
to which the evaluations are accurate. This is estimated

based on the following formulation, P accuracyð Þ ¼Pn
x¼1ConEvalðxÞ þ Pn

x¼1ChangeEvalðxÞ þ Pn
x¼1QoSEval

�
ðxÞ�=ð3 � nÞ.

where ConEval(x) is the result of evaluation of the con-
straint factors for incident x by the cellular automata,
ChangeEval(x) is the result of evaluation of the constraint fac-

tors for incident x by the cellular automata, QosEval(x) is the
result of evaluation of the constraint factors for incident x by
the cellular automata and n is the total number of incidents

recorded. Probability of risk indicates the amount of risk
involved in the evaluations made. This is estimated based on
the following formulation,

PðriskÞ ¼ 1�
Xn

x¼1

P5
i¼1ConResiðxÞ � ConPriðxÞP5

i¼1ConPriðxÞ

"(

þ
P4

i¼1ChangeResiðxÞ � ChangePriðxÞP4
i¼1ChangePriðxÞ

þ
Xn

x¼1

QoSEvalðxÞ
#,

ð3 � nÞ

where ConResi(x) is the value of the constraint factor i in inci-
dent x in the cellular automata, ChangeResi(x) is the value of

the change factor i in incident x in the cellular automata,
ConPri(x) is the priority for the constraint factor i of incident
x, QosEval(x) is the result of evaluation of the constraint fac-
tors for incident x by the cellular automata, Change Pri(x) is

Figure 3 Decidability calibration algorithm.

218 M. Thirumaran et al.
the priority for the constraint factor i of incident x, Probability
of degree of automation is the estimation of the extent to
which correct and smooth changes are made by automated
decisions made.
Pðdegree of automationÞ ¼
Pn

x¼1 PropEvalðxÞ � ConEvalðxÞ � ChangeEvalðxÞ �QoSEvalðxÞ½ �
n

where ConEval(x) is the result of evaluation of the constraint
factors for incident x by the cellular automata, ChangeEval(x)
is the result of evaluation of the constraint factors for incident
x by the cellular automata, QosEval(x) is the result of evalua-

tion of the constraint factors for incident x by the cellular
automata and n is the total number of incidents recorded.
Probability of incident matching is the estimation of the extent
to which incidents are matched. This is estimated based on the
following formulation,
Pðincident matchingÞ ¼
P

PRC�PRPð Þ þ PSC�PSPð Þ½ �
PRP þ PSP

where PRC is the possible rule combinations for received rule,
PSC is the possible service combinations for received composi-

tion set, PRP existing rule combinations for received rule, PSP
existing service combinations for received composition set.

Figure 4 Algorithm for behavioral analysis.

Change impact analysis of long term composed services 219
This is followed by behavioral analysis using Probabilistic Cel-

lular Automata.

3.2. Behavioral analysis using Probabilistic Cellular Automata

The Probabilistic Cellular Automata is a stochastic cellular
automaton where two rules are followed synchronously for
the updation of the cells. One of the rules applied here is for

the determination of the decidability of the automaton by
comparing every cell state with the threshold. The second rule
is for the determination of the cell positions dynamically based

on the probabilistic measures. So, the states of the new entities
are chosen according to some probabilistic distribution and
behavioral analysis is thus performed and the predictions are
made. The algorithm for behavioral analysis is shown in

Fig. 4. The algorithm adumbrates the dynamic change of cell
positions based on the probability measures. Considering all
change requests, CR, the probability of risk is estimated from

the recorded incidents and is compared with the threshold
value which in turn is estimated through incident matching.
If the probability value exceeds the threshold, then it indicates

majority of the recorded incidents have failed to satisfy the
decidability criterion. So, the impact ratings, priorities and
the cell positions of the factors have to be revised. Therefore,

the change requests with decidability failed, CD’ are extracted
and the total sum of the difference between threshold and
decidability factor value of all unsuccessful incidents is esti-
mated for every decidability factor i. Then the decidability fac-

tor with greater deviation from the threshold is chosen and the
impact priority of the factor is increased. The decidability is
verified and the cell positions are dynamically and syn-

chronously changed by the Probabilistic Cellular Automata
according to the transition rule as shown in step 12 of Fig. 2.

3.2.1. Transition rule

The transition rule followed by the PCA for changing the cell
positions dynamically is elucidated with the aid of Fig. 5. The
impact values at the top position, X1, at the right position X2,

at the bottom position X3, and at the left position X4 are com-
pared with the impact values configured for the cells, O1, O2,
O3, O4, at the respective positions. The transition rule applied

for the PCA is shown below:

Transition Rule for PCA:

If (XN >O3 && XN < O1) then

Move cell position of XN to X2 (right)

End If

If (XN >O4 && XN < O2) then

Move cell position of XN to X3 (bottom)

End If

If (XN <O3) then

Move cell position of XN to X4 (left)

End If

If (XN >O2) then

Move cell position of XN to X1 (top)

End If
The transition rule is elucidated in the following Fig. 5. On
backtracking from cell X4, the corresponding FSM before
and after change is extracted and this makes it possible to trace

back any point of change.
The change history stores the incident property, change fac-

tor, constraint factor and QoS factor patterns and the audit

log keeps track of the change incidents, change outcome and
the change log. From this rich knowledge base, the agent per-
forms decision making and risk analysis (Tjoa et al., 2011;
Marschall et al., 2012). The patterns are detected and the Prob-

abilistic Cellular Automata performs the behavioral analysis
by estimating the probability of accuracy, risk, automation
and incident matching (Plebani and Pernici, 2009) by employ-

ing the JESS rule engine for the purpose of decision making
and this ultimately leads to the goal and value prediction.

4. Experimental results

This section elucidates the change management scenario with
the help of an application from a business domain. Further,

O/P:o1,o2,o3

R11

R12 R21 R31

S1

S1

S2 S3

I/P:i1,i2,i3,i4,i5,i6 O/P: status O/P: status

I/P: user id

I/P: user id

O/P:o1,o2,o3
I/P: user id

O/P:o1,o2,o3,o4,o5,o6

Before Change

O/P:o1,o2,o3

R11

R12 R21 R41

S1

S1

S2 S4

I/P:i1,i2,i3,i4,i5,i6 O/P: status O/P: status

I/P: user id

I/P: user id

O/P:o1,o2,o3
I/P: user id

O/P:o1,o2,o3,o4,o5,o6

After Change

X4

X3

X2

X1

TOP

LEFT

BOTTOM

RIGHT

X4 >O1 X1<O1

X3<O3
X2<O2

X1<O3
X2>O2

X4>O4&& X4 <O2 X3<O3&& X3<O1

X4>O3&& X4 <O1

X2<O3

X3>O2

X1< O 2 && X1 >O4

X4

Change of cell positions based on
Probability of risk

Figure 5 Rule followed for cell positioning and behavioral analysis.

220 M. Thirumaran et al.
the results of change impact analysis and incident matching
approach over the LCS have been depicted.

4.1. Change management scenario

In this section, an application from the travel domain is illus-

trated for elucidating the change management and change
impact analysis process. Consider a travel agency LCS that
offers many types of functionalities airline, hotel and cab ser-

vice. The composed service offers submission of the customer
details – get_cust_details, booking the air ticket – book_air-
ticket, booking the hotel – book_hotel and booking the cab
– book_cab executing in sequence.

Now, consider a change request which demands the
removal of ‘book_airticket’. This removal has to be done very
cautiously since the execution of the other rules and services

must not be affected. On receiving a change request, the
change impact analysis framework extracts the corresponding
source code based on the domain and context analysis as

shown in Fig. 6. After this, dependency analysis is done and
the business logic set is formed. The corresponding composed
partial schema before change is then built and validated with

the complete composed schema.
The schema under consideration is termed as a partial

schema because it reflects only the part of the business logic

under change while the complete composed schema reflects
the entire business process. After successful schema validation,
the Finite State Machine before change is constructed as
shown in Fig. 7. The property pre evaluation is performed over

this FSM and the results are shown in Fig. 8 calibrating the
manageability.

On successful manageability calibration, the business ana-

lyst is allowed to make a change. There are various criteria
considered before the deletion process. A rule in the FSM can-

Travel-LCS

AAiirrLLiinnee__SSeerrvviiccee

HHootteell__SSeerrvviiccee CCaabb__SSeerrvviiccee

 <LCS Schema [Airline][Hotel][Cab]>
 <cservice>
 - <service name="Singapore_Airlines">
 - <rule id="r11" name="getcust_details">
 - <input>
 <parameter name="uname" ptype="String" />
 </input>
 </rule>
 - <rule id="r12" name="book_airticket">
 <call rule="getcust_details" service="Singapore_Airlines" />
 - <input>
 <parameter name="uname" ptype="String" />
 <parameter name="contact" ptype="String" />
 <parameter name="address" ptype="String" />
 <parameter name="source" ptype="String" />
 <parameter name="dest" ptype="String" />
 <parameter name="toc" ptype="String" />
 </input>
 - <output>
 <rtype>String</rtype>
 </output>
 </rule>

@WebService(serviceName = “Taj
Hotel")
code1 code1 String sql=("insert into
hotel(username,contact,address,roo
mtype,no_of_mem)" + " values" +
"("+cust.get(0).toString()
+","+cust.get(1).toString()+","+cust.ge
t(2).toString()+“”);

@WebService(serviceName =
"Cab_Service")
code2 code2 String sql=("insert into
taxi(username,contact,address,area,
type) values("+cust.get(0).toString()
+","+cust.get(1).toString()+","+cust.g
et(2).toString()+","+area+","+type+")"
);

@WebService(serviceName =
"Singapore_Airlines")
ResultSet rs1=stmt.executeQuery
("Select * from airline where
username='"+uname+"'");
while(rs1.next()) {
 cust.add(rs1.getString(2));
 cust.add(rs1.getString(3));
 cust.add(rs1.getString(4)); }

Schema Genera�on

Source Code Extrac�on

Figure 6 Source code extraction, schema generation and business logic set extraction for travel LCS.

Change impact analysis of long term composed services 221
not be deleted if it is being called by any other rule or if it is the

only call to any other rule or if there is no link between the pre-
vious and the next rule or service other than the rule to be
deleted. Only then, the analyst is allowed to make the initial
move toward deletion. This aids in reducing the risk involved

in making the change in addition to the change evaluation pro-
cess. ‘book_airticket’ is neither called by any other rule nor is
the only call to any other rule.

It is not the only link between the previous and the next rule
either. So, the analyst is allowed to make the change at the
schema level. The constructed FSM after the incorporation

of the deletion of ‘book_airticket’ is shown in Fig. 9. Fig. 10
depicts the change process and the schema and FSM before
and after change.

Before the change is committed, the change factor evalua-
tion, constraint factor evaluation and QoS factor evaluation
for the travel agency application are performed and the corre-
sponding decidability factor values are estimated. This is

followed by change impact analysis where the previously
recorded similar change incidents are extracted and the impact
value estimations are done as shown in Fig. 11. The threshold

estimations and the impact factor estimations are also done
and the probabilistic measures are estimated for behavioral

analysis. PCA then performs the dynamic updation of the cell
states followed by the decidability calibration. The change is
then committed on successful decidability calibration and
rolled back if the calibration fails. The impact analysis done

based on the estimated decidability factor values is shown in
Fig. 11. Probability of risk is estimated as P (risk) = 0.233.
Probability of accuracy is estimated as P (accuracy) =

0.7667, Probability of degree of automation as
P (aut) = 0.723 and probability of incident matching as
P (inc) = 0.89. Fig. 12 shows the results of impact analysis

for 50 change requests to travel LCS for different impact fac-
tors. The blue curve indicates the decidability factor value of
the particular factor belonging to the corresponding impact

factor category and the red curve indicates the corresponding
threshold estimations.

Fig. 13 shows the change in cell position based on the prob-
ability function from previous neighboring states at different

time stamps and for different change requests. Figs. 14–17
show the improvement observed in the response time, execu-
tion time, cost and availability after change is made with

change impact analysis. The blue curve indicates the

Figure 7 Constructed FSM before change for travel LCS.

Property Evalua�on

Figure 8 Property evaluation results for travel LCS.

222 M. Thirumaran et al.

Figure 9 Constructed FSM after change for travel LCS.

 <LCS Schema [Airline][Hotel][Cab]>
 <cservice>
 - <service name="Singapore_Airlines">
 - <rule id="r11" name="getcust_details">
 - <input>
 <parameter name="uname" ptype="String" />
 </input>
 </rule>
 - <rule id="r12" name="book_airticket">
 <call rule="getcust_details" service="Singapore_Airlines" />
 - <input>
 <parameter name="uname" ptype="String" />
 <parameter name="contact" ptype="String" />
 <parameter name="address" ptype="String" />
 <parameter name="source" ptype="String" />
 <parameter name="dest" ptype="String" />
 <parameter name="toc" ptype="String" />

/i

 <LCS Schema [Airline][Hotel][Cab]>
 <cservice>
 - <service name="Singapore_Airlines">
 - <rule id="r11" name="getcust_details">
 - <input>
 <parameter name="uname" ptype="String" />
 </input>
 </rule>
 </service>

Change Evalua�on

Before Change A�er Change

Figure 10 Change evaluation for travel LCS.

Change impact analysis of long term composed services 223

Figure 11 Impact analysis results for 50 change requests and impact succeeded change requests.

224 M. Thirumaran et al.
estimation before change and red curve indicates the estima-
tion after change.
4.2. Goal formulation

The various goals of the framework have been identified and

depicted in Table 4. The proposed framework aims at provid-
ing efficient change management with reduced risk, high accu-
racy, high degree of automation and incident matching. These

goals of the framework are evaluated based on the metrics
shown in the table. For the estimation of risk, the number of
automatons in which either manageability i.e. property evalu-
ation or decidability i.e. change evaluation comprising of

change factor, constraint factor and QoS factor evaluation
has failed is to be extracted from the entire set of incidents.
This indicates the extent to which runtime support and deci-

sion making assured by the framework have failed to meet
the business needs.

The degree of automation is the extent to which the deci-

sions are automatically made by the framework. This is indi-
cated by the number automatons which have proceeded to
and succeeded in the decidability calibration after manageabil-

ity calibration from the entire set of incidents i.e. the extent to
which the decisions have been automatically made. Incident
matching indicates the possible number of combinations of
rule and service patterns out of the existing number of patterns

from the entire set of incidents i.e. the depth and level of inci-
dent matching performed by the framework. Accuracy is the
measure which indicates the extent to which the decisions

made by the framework have been correctly and cautiously
made i.e. how accurate is the behavior of the framework. This
is estimated from the number of manageability and decidabil-

ity automatons which have succeeded in incorporating the
change.

5. Related work

In this section the various works pertinent to the proposed
framework and approaches are discussed. Change manage-

ment is a structured approach for making sure that the changes
are thoroughly and smoothly made and that the lasting bene-
fits of the change are achieved.

5.1. Related change management work

Liu et al. (2011) have presented a framework where managing
changes in LCSs has been modeled as a dual service query

optimization process (Liu et al., 2011). The optimization has
been performed by considering only the non functional factors
like reputation and the QoS factors. However, we have consid-

ered the factors for enabling the analysts to manage the func-
tional and non functional requirements of the consumers.
Akram et al. (2010) have proposed an automatic change

management framework that is based on the petri net models
which is used to manage triggering changes and reactive
changes (Akram et al., 2010). Also the functional and non-

functional properties of the composed services have been iden-
tified. However, we have used FSM for the modeling of the
changes as they facilitate incident matching with low time
and space complexity. We also have identified the QoS

Figure 12 Impact analysis results (a) for Impact_VeryHigh, (b) for Impact_High, (c) for Impact_Medium and (d) for Impact_Low.

Change impact analysis of long term composed services 225
parameters into account as it has to satisfy the service provi-
ders and analysts since as business policies change continu-

ously, there is a need for service-oriented systems to be
submissive and adaptive. Dijkman et al. (2011) have proposed
the metrics for the evaluation of the node matching, structural

and behavioral similarities of business (Rajeswar et al., 2014).
The evaluation of similarity among business process models is
only dealt whereas its applicability in web service change man-

agement is not considered. Tjoa et al. (2011) have proffered a
formal approach which enables risk-aware business process
modeling and simulation (Koriem et al., 2003). But the estima-
tion of risk is based on the detection of intrusion and the esti-

mation of policy violations alone. In our work, we have
estimated the metric risk from the evaluation of change, con-
straint and QoS factor evaluation.
5.2. Methodology adopted in the related work

Liu et al. (2013) have proposed a change management frame-

work where managing changes in LCS which deals with both
functional and non functional change requests (Liu et al.,
2013). But there is no methodology adopted for performing
emergency changes and change impact analysis was not done.

In our work, by implementing Finite State Machine, a stan-
dard methodology is adopted for the evaluation of manage-
ability and decidability factors. Craiu and Lee (2006) have

developed likelihood-based methods for estimating rules of
cellular automata aimed at the regeneration of observed regu-
lar patterns (Craiu and Lee, 2006). But the idea of pattern gen-

eration using likelihood inference has not been focused in the
view of change management. In our work, we have imple-
mented Probabilistic Cellular Automata (PCA) for the infer-
ence from historical patterns of change incidents. The

concept of Probabilistic Arithmetic Automata (PAA)
described as markov chains over a larger state space and their
benefits in their utility as a modeling technique has been con-

templated by Marschall et al. (2012) and Dijkman et al. (2011).
The claim of PAA as a modeling technique and its justification
has paved the way for the idea of implementing the Probabilis-

tic Cellular Automata (PCA) in our work for the decision
making and prediction from the historical change incidents.
Maamar et al. (2008) have suggested a holistic approach for
managing software change impact (Yu et al., 2008). But, this

Figure 13 Cell position change based on probability function and behavioral analysis using PCA.

Figure 14 Change in the estimation of response time for 100

change requests of travel LCS.

Figure 15 Change in the estimation of execution time for 100

change requests of travel LCS.

Figure 16 Change in the estimation of cost for 100 change

requests of travel LCS.

Figure 17 Change in the estimation of availability for 100

change requests of travel LCS.

226 M. Thirumaran et al.

Table 4 Evaluation metrics for CIA framework.

Goals Formulation

Risk RiskðRIÞ ¼ P
m0
m

� � [d0
d

h ih i
� 100

m0 – Number of automata in which

manageability failed

m – Total number of automata generated in

manageability pattern

d0 – Number of automata in which decidability

failed

d – Total number of automata generated in

decidability pattern

Degree of

automation
Degree of Automation ¼ P 1�m0

m½ �\ 1�d0
d½ �

CRn

	

� 100

m0 – Number of automaton in which

manageability failed

m – Total number of automatons generated in

manageability pattern

d0 – Number of automaton in which decidability

failed

d – Total number of automaton generated in

decidability pattern

CRn – Number of change requests

Incident

matching

Patterns ¼ P ðPRPCPRC
þ PSPCPRC

Þ½ �
PRC – Possible rule combinations for received

rule

PFC – Possible service combinations for received

composition

PRP – Existing rule combinations for received

rule

PFP – Existing service combinations for received

composition

Accuracy Accuracy ¼ P
1� m0

m

� � \ 1� d0
d

h ih i
� 100

m0 – Number of automaton in which

manageability failed

m – Total number of automatons generated in

manageability pattern

d0 – Number of automaton in which decidability

failed

d – Total number of automaton generated in

decidability pattern

Change impact analysis of long term composed services 227
work illustrates how context and policy are woven into web
services composition scenarios only. In our work, we have

incorporated the estimation of Business Policy Enforcement
(change factor) for hunting for any policy violations among
services and accessibility (property) for checking if the services

in composition are accessible. All these issues are the hurdles in
the current scenario which hinder the change management pro-
cess in long term composed services in enabling the analysts to

make the changes in a timely and cost effective manner and
with reduced risk.

5.3. Related works in web services

The analysis done (Rajeswar et al., 2014) brings out the impor-
tance of considering QoS for service composition. This
research work has analyzed a number of QoS requirements,

various QoS models and also the difficulties that are faced
for QoS based service composition. The research work has
provided a utility function that can be used to evaluate the
QoS parameters of various services, but this work does not
consider the various trade-offs that will be faced by QoS based
composition during runtime. These QoS factors have not been

focused in the change management view of web services. Thus
in our work, QoS factors are considered during the change
management phase, as they help in verifying the impact caused

due to the change over the quality of the business process. The
cookie (Venkatesan et al., 2013) based accounting model pro-
posed identifies duplicate service requests which are used by

most of the attackers to affect the availability of the servers.
This model works by recording each request in the client side
and a hash value of the corresponding request is also stored
in the server. Thus any client attempting to send a duplicate

request or modify the content of the cookie can be easily iden-
tified, thereby protecting the server from DOS attacks.

5.4. Related work based on petri nets

Koriem et al. (2003) has proposed a system called SRN Equiv-
alent Model (EM) for evaluating the performance of POS

based system. This model is a combination of petri net theory
and control theory and has two main nets. The main net con-
sists of the known parts and the other net (second) consists of

parts that feed the known parts. Considering petri nets for
change management has certain difficulties as their complex
structures brings difficulties in the analyzing them. Moreover,
representation of petri nets is task based which is not suitable

for analysts. Therefore, in our work FSM representation of the
services in terms of rules, policy etc. make it easier for the ana-
lyst to achieve successful changes. FSM also achieves the

decidability of the problems that were not possible when petri
nets were used. The verification and validation of the changes
will also become a complex task as the number of services

increases.
6. Discussion

In this section, we present the contributions of our research
and its limitations.

6.1. Research contributions

This research makes the following contributions by presenting
a formal approach for change impact analysis of LCS using
Probabilistic Cellular Automata. Specifically this research:

� Presents a formal approach for analyzing the LCS for
effective runtime management by property evaluation and

to evaluate the changes over the LCS by change
evaluation using Finite State Machine as the
methodology.

� Presents a novel framework with standard procedures and
methodologies for managing the changes in a timely and
cost effective manner finding the inconsistencies in the

changes made.
� Presents and performs change impact analysis and behavior
analysis over the knowledge extracted from the patterns
using Probabilistic Cellular Automata (PCA) with efficient

incident matching enabling to trace the exact reason for
failure in case of change being discarded.

228 M. Thirumaran et al.
In the existing works, petri nets are used as mathematical
models which help in depicting the flow of a particular process
(Tan et al., 2009). A petri net structure has 4 components –

state, transition, token and edge. Petri nets are complex to
be analyzed and moreover the number of states increases to
a very large extent when the number of services in composition

is large. Petri nets are suitable for concurrent and complex pro-
cesses like business process alignment, workflow management
and the focus is more on the top down changes alone (Tan
et al., 2009) whereas Finite State Machines are suitable for

sequential process with every state followed by a transition
to another state or end state which is the focus of our work
(Chenthati et al., 2010). The petri nets are represented as tasks

[Event, Action. Condition] and are suitable for event based
change verification which is suitable only for the IT developers
and not for the analysts, whereas FSM which is represented as

rule, function, and policy assures a representation supporting
the analysts which is much needed in the change scenario.
Decidability of the problems is not possible to be judged using

petri nets whereas it is possible using FSM with standard algo-
rithmic conversion and automated decision making. The
default language handling capability of the FSM notifies every
new member added to the language, so the analyst can be noti-

fied when any new rule, function or even a parameter is added
to the logic which is not possible in petri nets. FSM is the best
choice in case of incident mapping because of its backtracking

capability with cellular automata compared to petri nets. Rule
level changes in the reflected directly in the source code by the
FSM.

With respect to the behavioral analysis, petri nets can be
used to model the behavior of concurrent process whereas
FSM can be used to model the I/O behavior which is much
needed in our case. The primary goal of the framework is to

respond to the changes correctly and cautiously at low cost
and time. Since petri nets are complex structures they demand
large memory conception and high processing time leading to

high time and space complexity. Petri nets are comparatively
slow and inefficient in the retrieval of services and inflexible
in searching and tracking of them. There are high changes

for a petri net based system to reach an undesirable state
due to the loss of its token. Hence, petri nets are suitable only
for modeling concurrent processing associated with determin-

istic task, event and condition and not for modeling non deter-
ministic sequential processing associated with language theory
like FSM.

6.2. Limitations

Generalization of the results from this work must be done with
caution in light of its limitations. Though petri nets have a lot

if issues with respect to our focus as mentioned, they also have
a few advantages compared to FSM. The representation as
tasks enables high expressiveness in petri nets while the expres-

siveness is low in the case of FSM. Petri nets are much suited
for concurrent processes and in the case of the change scenario
demanding the analysis of concurrent processes, petri nets are

more advantageous (Akram et al., 2010; Tan et al., 2009).
Though this problem can be solved when FSM are used by
the use of Tuning Machines, petri nets are readily suitable
for concurrent deterministic processing while FSM are not

suitable for concurrent processing. Petri nets can easily repre-
sent the safe and unsafe states of the Service Oriented Enter-
prises (Akram et al., 2010). When a new change request
arises for a new LCS set which has never been encountered

before, the change impact analysis and incident matching are
not done. Though the property, change, constraint and QoS
factor evaluation are evaluated, the inference cannot be made

based on the probabilistic measures from the previous inci-
dents. However the results of the new change are recorded as
a new incident and this aids in impact analysis for future sim-

ilar change requests.
Change management provides large space for intense

research. Future enhancements of this work would be to imple-
ment tuning machines in order to support analysis of concur-

rent processes extending the framework to support change
optimization and to support automated identification of
change decay over time.

7. Conclusion

Based on the behavioral analysis, the degree of automation,

accuracy, incident matching and risk are to be predicted based
on incident matching. Hence the proposed framework is
expected to assess, change and manage the business logic of

the web services in long term composition with efficient inci-
dent matching, high degree of automation and authorization,
high degree of knowledge transfer, manageability, decidability,

high success and incident rates at low risk and cost without
compromising the quality of the business process. The frame-
work facilitates in choosing the ‘best’ services from multiple
service providers who compete to offer the similar services with

a different user-centric quality and paves way for the con-
sumers or end users to be highly benefited from the open com-
petition among businesses. This aids in the enhancement of the

change management process in long term composed services so
that the changes can be made by the analysts in a timely and
cost effective manner and with reduced risk.

References

Akram, Salman, Bouguettaya, Athman, Liu, Xumin, Haller, Armin,

Rosenberg, Florian, Xiaobing, Wu, 2010. Change management

framework for service oriented enterprises. Int. J. Next-Generation

Computing (IJNGC) 1 (1), 1–077.

Apostolou, Dimitris, Mentzas, Gregoris, Stojanovic, Ljiljana, Thoens-

sen, Barbara, Lobo, Tomás Pariente, 2010. A collaborative

decision framework for managing changes in e-Government

services. Elsevier J. Gov. Inf. Q. 28 (1), 101–116.

Chenthati, Deepak, Vaddi, Supriya, Mohanty, Hrushikesha, Damo-

daram, Avula, 2010. Verification of web services modeled as finite

state machines. In: Proceedings of IEEE International Conference

on Mathematical/Analytical Modeling and Computer Simulation

(AMS), pp. 526–531.

Chua, David K.H., Aslam Hossain, Md., 2012. Predicting change

propagation and impact on design schedule due to external

changes. IEEE Trans. Eng. Manage. 59 (3), 483–493.

Craiu, Radu V., Lee, Thomas C.M., 2006. Pattern generation using

likelihood inference for cellular automata. IEEE Trans. Image

Process. 15 (7), 1718–1727.

Dijkman, Remco, Dumas, Marlon, van Dongen, Boudewijn, Kaarik,

Reina, Mendling, Jan, 2011. Similarity of business process models:

metrics and evaluation. Elsevier J. Inf. Syst. 36 (2), 498–516.

Koriem, Samir M., Dabbous, T.E., El-Kilani, W.S., 2003. A new petri

net modeling technique for the performance analysis of discrete

http://refhub.elsevier.com/S1319-1578(15)00100-7/h0005
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0005
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0005
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0005
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0010
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0010
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0010
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0010
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0020
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0020
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0020
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0025
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0025
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0025
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0030
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0030
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0030
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0035
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0035

Change impact analysis of long term composed services 229
event dynamic systems. J. King Saud Univ. Comput. Inf. Sci. 15,

95–128.

Liu, Xumin, Bouguettaya, Athman, Qi, Yu, Malik, Zaki, 2011.

Efficient change management in long-term composed services.

Springer J. Serv. Oriented Comput. Appl. 5 (2), 87–103.

Liu, Xumin, Akram, Salman, Bouguettaya, Athman, 2011. Change

Management for Semantic Web Services, first ed. Springer Science

and Business Media, ISBN 978-1-4419-9328-1.

Liu, Xumin, Bouguettaya, Athman, Wu, Jemma, Zhou, Li, 2013. Ev-

LCS: a system for the evolution of long-term composed services.

IEEE Trans. Serv. Comput. 6 (1), 102–115.

Maamar, Zakaria, Benslimane, Djamal, Mostéfaoui, Ghita Kouadri,

Subramanian, Sattanathan, Mahmoud, Qusay H., 2008. Toward

behavioral web services using policies. IEEE Trans. Syst. Man

Cybern. 38 (6), 1312–1324.

Marschall, Tobias, Herms, Inke, Kaltenbach, Hans-Michael, Rahmann,

Sven, 2012. Probabilistic arithmetic automata and their applications.

IEEE/ACM Trans. Comput. Biol. Bioinf. 9 (6), 1737–1750.

Plebani, Pierluigi, Pernici, Barbara, 2009. URBE: web service retrieval

based on similarity evaluation. IEEE Trans. Knowl. Data Eng. 21

(11), 1629–1642.

Rajeswar, M., Sambasivam, G., Balaji, N., Saleem Basha, M.S.,

Vengattaraman, T., Dhavachelvan, P., 2014. Appraisal and anal-

ysis on various web service composition approaches based on QoS

factors. J. King Saud Univ. Comput. Inf. Sci. 26 (1), 143–152.

Rovegard, Per, Angelis, Lefteris, Wohlin, Claes, 2008. An empirical

study on views of importance change impact analysis issues. IEEE

Trans. Software Eng. 34 (4), 516–530.
Setzer, Thomas, Bhattacharya, Kamal, Ludwig, Heiko, 2010. Change

scheduling based on business impact analysis of change-related

risk. IEEE Trans. Network Serv. Manage. 7 (1), 58–71.

Tan, Wei, Fan, Yushun, Zhou, MengChu, 2009. A petri net-based

method for compatibility analysis and composition of web services

in business process execution language. IEEE Trans. Autom. Sci.

Eng. 6 (1), 94–106.

Tjoa, Simon, Jakoubi, Stefan, Goluch, Gernot, Kitzler, Gerhard,

Goluch, Sigrun, Quirchmayr, Gerald, 2011. A formal approach

enabling risk-aware business process modeling and simulation.

IEEE Trans. Serv. Comput. 4 (2), 153–166.

Venkatesan, S., Saleem Basha, M.S., Chellappan, C., Vaish, Anurika,

Dhavachelvan, P., 2013. Analysis of accounting models for the

detection of duplicate requests in web services. J. King Saud Univ.

Comput. Inf. Sci. 25 (1), 7–24.

Wang, Qianxiang, Shao, Jin, Deng, Fang, Liu, Yonggang, Li, Min,

Han, Jun, Mei, Hong, 2009. An online monitoring approach for

web service requirements. IEEE Trans. Serv. Comput. 2 (4), 338–

351.

Xiong, Peng Cheng, Fan, Yu Shun, Zhou, Meng Chu, 2009. Web

service configuration under multiple quality-of-service attributes.

IEEE Trans. Autom. Sci. Eng. 6 (2), 311–321.

Yu, Qi, Liu, Xumin, Bouguettaya, Athman, 2008. Deploying and

managing web services: issues, solutions and directions. Springer

VLDB J. 17 (3), 537–572.

http://refhub.elsevier.com/S1319-1578(15)00100-7/h0035
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0035
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0040
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0040
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0040
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0045
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0045
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0045
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0050
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0050
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0050
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0055
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0055
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0055
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0055
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0060
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0060
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0060
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0065
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0065
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0065
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0070
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0070
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0070
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0070
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0075
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0075
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0075
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0080
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0080
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0080
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0085
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0085
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0085
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0085
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0090
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0090
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0090
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0090
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0095
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0095
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0095
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0095
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0100
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0100
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0100
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0100
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0105
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0105
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0105
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0110
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0110
http://refhub.elsevier.com/S1319-1578(15)00100-7/h0110

	A formal approach for change impact analysis �of long term composed services using Probabilistic Cellular Automata
	1 Introduction
	2 Change impact analysis of LCS using Probabilistic Cellular Automata
	2.1 Overview of change impact analysis approach and framework
	2.2 Runtime management
	2.3 Change management
	2.3.1 Change factor evaluator
	2.3.2 Constraint factor evaluator
	2.3.3 QoS factor evaluator

	3 Change impact analysis
	3.1 Estimation of probability through incident matching
	3.2 Behavioral analysis using Probabilistic Cellular Automata
	3.2.1 Transition rule

	4 Experimental results
	4.1 Change management scenario
	4.2 Goal formulation

	5 Related work
	5.1 Related change management work
	5.2 Methodology adopted in the related work
	5.3 Related works in web services
	5.4 Related work based on petri nets

	6 Discussion
	6.1 Research contributions
	6.2 Limitations

	7 Conclusion
	References

