
Journal of King Saud University – Computer and Information Sciences (2016) 28, 330–344
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Sentiment classification of Roman-Urdu opinions

using Naı̈ve Bayesian, Decision Tree and KNN

classification techniques
* Corresponding author.

E-mail addresses: qec_mbilal@aup.edu.pk (M. Bilal), huma.israr@

gmail.com (H. Israr), shahid_swabi@yahoo.com (M. Shahid), amin-

khan@aup.edu.pk (A. Khan).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.11.003
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Muhammad Bilal *, Huma Israr, Muhammad Shahid, Amin Khan
CS/IT Department, IBMS, University of Agriculture, Peshawar, Pakistan
Received 31 July 2015; revised 14 October 2015; accepted 4 November 2015

Available online 12 December 2015
KEYWORDS

Roman Urdu;

Opinion mining;

Bag of words;

Naı̈ve Bayes;

Decision Tree;

k-Nearest Neighbor
Abstract Sentiment mining is a field of text mining to determine the attitude of people about a par-

ticular product, topic, politician in newsgroup posts, review sites, comments on facebook posts twit-

ter, etc. There are many issues involved in opinion mining. One important issue is that opinions

could be in different languages (English, Urdu, Arabic, etc.). To tackle each language according

to its orientation is a challenging task. Most of the research work in sentiment mining has been done

in English language. Currently, limited research is being carried out on sentiment classification of

other languages like Arabic, Italian, Urdu and Hindi. In this paper, three classification models

are used for text classification using Waikato Environment for Knowledge Analysis (WEKA).

Opinions written in Roman-Urdu and English are extracted from a blog. These extracted opinions

are documented in text files to prepare a training dataset containing 150 positive and 150 negative

opinions, as labeled examples. Testing data set is supplied to three different models and the results

in each case are analyzed. The results show that Naı̈ve Bayesian outperformed Decision Tree and

KNN in terms of more accuracy, precision, recall and F-measure.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to extensive use of computers, smartphones and high

speed internet, people are now using web for social contacts,
business correspondence, e-marketing, e-commerce, e-surveys,
etc. People share their ideas, suggestions, comments and

opinions about a particular product, service, political entity
and current affairs. There are so many user-generated opinions
available on the web. From all those opinions, it is difficult to
judge the number of positive and negative opinions

(Khushboo et al., 2012). It makes it difficult for people to take
the right decision about purchasing a particular product. On the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.11.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:qec_mbilal@aup.edu.pk
mailto:huma.israr@gmail.com
mailto:huma.israr@gmail.com
mailto:shahid_swabi@yahoo.com
mailto:aminkhan@aup.edu.pk
mailto:aminkhan@aup.edu.pk
http://dx.doi.org/10.1016/j.jksuci.2015.11.003
http://dx.doi.org/10.1016/j.jksuci.2015.11.003
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.11.003
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sentiment classification of Roman Urdu options 331
other hand, it is also difficult for manufacturers or service pro-
viders to keep the track of the public opinions about their prod-
ucts or service and to manage the opinions. Similarly, an analyst

wants to conduct a survey to get feedback of public on a specific
topic. He/She will post the topic on a blog to analyze the senti-
ment of people about that topic. There will be so many opinions

on that post. For all these opinions, it will be difficult to know
how many opinions are positive and negative. So a computer
machine may be trained to take such decisions in a quick and

accurate manner.
The important thing in opinion mining is to extract and

analyze the feedback of people in order to discover their senti-
ments. Growing availability of opinion-rich resources like

online blogs, social media, review sites; raised new opportuni-
ties and challenges (Pang and Lee, 2008). People now can
actively use information technologies to search the opinions

of others.
There are many issues involved in opinion mining. The first

is some words in opinion are representing a positive sense in

one situation and negative in the other. For example consider
an opinion ‘‘the size of this mobile is small”. Here the word
small comes in positive sense. On other hand, consider another

opinion, ‘‘The battery time of this mobile is small”. Here the
word small is interpreted negatively (Rashid et al., 2013).
Another issue in opinion mining is that most of the text pro-
cessing system depends on the fact that a small difference in

two sentences does not change the meaning very much. In sen-
timent analysis, the text ‘‘the movie was great” is different
from ‘‘the movie was not great”. People may have contradic-

tion in their statements. Most of the reviews have both positive
and negative comments, which is a bit manageable by analyz-
ing sentences one at a time. However in more informal medium

like facebook, twitter and blogs, lack of context makes it diffi-
cult for the people to understand what someone thought based
on a short piece of text. One important issue in opinion mining

is that product reviews, comments and feedback could be in
different languages (English, Urdu, Arabic, etc.), therefore to
tackle each language according to its orientation is a challeng-
ing task (Rashid et al., 2013).

Most of the research work in sentiment mining has been
done in English and Chinese languages. Currently, limited
research is conducted on sentiment classification for other lan-

guages like Arabic, Italian, Urdu and Hindi, etc. Urdu is an
Indo-Aryan language which uses extended Persian and Arabic
script. Roman script for Urdu does not have any standard for

the spelling of the word. A word can be written in different
forms with different spellings not only by distinct people but
also by the same person at different occasions. Specially, there
is no one to one mapping between Urdu letters for vowel

sounds and the corresponding roman letters (Ahmed, 2009).
There is no major difference in the pronunciation of Urdu
and Hindi, therefore the roman version of Urdu and Hindi

are written almost the same. Hence, this research is conducted
in Roman Urdu and could be applicable in Roman Hindi.
These are the most spoken languages in Pakistan, India,

Bangladesh and among the people of these areas living in dif-
ferent parts of the world.

Previous work (Daud et al., 2014) conducted Roman Urdu

opinion mining by using the key matching method. Adjectives
of the opinions were matched with a manually designed dic-
tionary to find polarity of that opinion. It was found that
the accuracy of that work was low because the adjective alone
cannot determine the polarity of an opinion. For example,
consider a comment ‘‘I really like Iphone” here adjective is
Like which has positive sense but on the other hand, consider

another comment ‘‘I didn’t like Iphone” here adjective is again
Like which gives a positive sense but the comment interprets
negative sentiments about Iphone. So it shows that all words

of the opinions are equally important to indicate a comment
either positive or negative. Thus the proposed model will use
Bag of Words Model and three different classification tech-

niques to improve the accuracy of Roman-Urdu sentiment
classification.

The objectives of this research are to mine the polarity of
public opinions written in Roman-Urdu with blend of English

and Urdu extracted from a blog, to train the machine using a
training data set, and to build Naı̈ve Bayesian, Decision Tree
and KNN classification models and to predict the polarity of

new opinions by using these classification models.
This paper is organized into five sections. In the first and

second sections the introduction and previous related work is

briefly described. In the third section, the methodology
adopted to perform different experiments is explained. In the
fourth section, calculation and evaluation of experiments are

performed to get various results and discussion on these results
is conducted. In the last section, certain conclusions are drawn
on the basis of outcomes.
2. Related work

In 2015, Daud et al. proposed a system called Roman Urdu
Opinion Mining System (RUoMiS) which uses natural lan-

guage processing technique to find the polarity of the opinion.
In this study, the adjectives in the opinions were compared
with a manually designed dictionary to find the polarity of

the opinions. The results of the experiment were recorded with
a precision of 27.1%, however, RUoMiS categorized about
21.1% opinions falsely. In 2014, Kaur et al. used a hybrid tech-

nique for Punjabi text classification (Kaur et al., 2014). In this
research the combination of Naı̈ve Bayesian and N-gram tech-
niques were used. The features of the N-gram model were

extracted and then used as training dataset to train Naı̈ve
Bayes. The model was then tested by supplying testing data.
It was found that by comparing results from already existing
methods, the accuracy of the proposed method was effective.

Ashari et al. in 2013, used Naı̈ve Bayes, Decision Tree, and
k-Nearest Neighbor in searching for the alternative design by
using WEKA as a data mining tool and developed three clas-

sification models (Ashari et al., 2013). Their experiments
showed that the Decision Tree is fastest and KNN is the slow-
est classification technique. The reason they mentioned is that,

in the Decision Tree, there is no calculation involved. The clas-
sification by following the tree rules is faster than the ones that
need calculation in the Naı̈ve Bayes and KNN. Moreover,
KNN is the slowest classifier because the classification time

is directly related to the number of data. If the data size is big-
ger, larger distance calculation must be performed and this
makes KNN extremely slow. They concluded that Naive Bayes

outperformed Decision Tree and KNN in terms of accuracy,
precision, recall and F-measure. Jebaseeli and Kirubakaran
in 2012 investigated the use of three classifiers namely Naı̈ve

Bayes, KNN and random forest for prediction of opinions
as positive or negative about the M learning system for the

332 M. Bilal et al.
purpose to analyze the efficiency of these three classifiers. A
training data set containing 300 opinions was taken in the
study with a split of 100 positive, 100 negative and 100 neutral

opinions (Jebaseeli and Kirubakaran, 2012). In the preprocess-
ing step, commonly occurring words and rarely occurring
words were removed by using the SVD approach. SVD is used

to rate the importance of words. The resultant preprocessed
data were used as input for random forest algorithm. In this
experiment a range of 55–60% accuracy was achieved. Khush-

boo et al. in 2012 used a counting based approach for opinion
mining for English language. Total numbers of negative and
positive words were used and then compared (Khushboo
et al., 2012). In this study, naı̈ve Bayesian algorithm was used

and observed that if the dictionary is good then, it really gives
good results. For increasing the accuracy of this algorithm, it is
changed in the terms of parameters which are passed to the

algorithm. Zhang et al. in 2008 worked on Chinese opinion
mining by using machine learning approach (Zhang et al.,
2008). Three classifiers SVM, Naı̈ve Bayes Multinomial and

Decision Tree were used to train the labeled corpus to learn
certain classification functions. For this purpose, AmazonCN
review dataset was used. It was found that the performance

of the proposed system was satisfied while using SVM with
String Kernel. Abbasi et al. in 2008 suggested sentiment anal-
ysis methodologies for the classification of opinions posted on
the web forum in Arabic and English languages (Abbasi et al.,

2008). In this research, specific feature extraction components
were used that were integrated to account for the linguistic
characteristics of Arabic language. The proposed system was

very good in accuracy (93.62%). However, the domain was
very specific because this system only classified sentiments
related to hate and extremist groups’ forums, as hate and

extremist vocabulary is limited and it is not difficult to distin-
guish between positive and negative words. Moreover, there
was no preprocessing step involved which is very important

for Arabic language. Pang et al. in 2002 classified documents
by overall sentiment rather than topic to determine whether
a review is positive or negative. Movie reviews were used as
dataset. It was found that standard machine learning methods

absolutely outperform human produced baseline (Pang et al.,
2002). However, their results showed that Naı̈ve Bayes, maxi-
mum entropy classification and SVM do not perform as well

on sentiment classification as on traditional topic-based cate-
gorization. Syed et al. in 2014 developed a framework that
was based on grammatical model. This approach focused on

grammatical structure of sentences and morphological struc-
ture of the words. In this technique, two types of grammatical
Figure 1 Proposed model.
structures were extracted and linked, the adjective phrases and
nominal phrases. Adjective phrases were termed as Senti-Units
and nominal as their targets. Shallow parsing and dependency

parsing methods were applied and found to have 82.5% accu-
racy (Syed et al., 2014).

All the above work on opinion mining is in the English lan-

guage. Other than English, research has been carried out in
Chinese, Arabic, Malay, and Japanese language. The literature
suggests that less work has been done in Urdu language espe-

cially in the Roman version.

3. Materials and methods

The proposed model is divided into five steps. First, opinions
written in Roman-Urdu are extracted from a Blog using Easy
Web Extractor software. The extracted opinions are docu-

mented in text files to prepare a training dataset containing
150 positive and 150 negative opinions, as labeled examples.
The dataset is first converted into ARFF (Attribute-Relation
File Format) by using Tex Directory loader command of

WEKA in Simple CLI mode. The dataset in ARFF is then
loaded to the WEKA explorer mode as training data set to
train the machine. The data are first preprocessed using

WEKA filters and then three different algorithms i.e. Naı̈ve
Bayesian, KNN and Decision Tree are applied on the dataset
to train the machine and develop three models. Testing data

set is supplied to the three models and the results in each case
are analyzed. The following steps are followed in the method-
ology (Fig. 1).

3.1. Pre-processing

In the Pre-processing step, the data were prepared before it
was being forwarded for classification to get accurate results.

The following steps were used for preprocessing.

3.1.1. Extraction

The extraction process involves crawling in the specific web site

for extracting information of interest. In this study, Easy Web
Extractor is used to extract user comments posted on a Blog
(http://hamariweb.com/blogs/blogdetails.aspx?id=59&Page=

1). The blog contains public comments on ‘‘Effect of Facebook
Usage”. The users freely posted their comments mostly in
multi-language, for example, ‘‘ye mobile nice hay”, ‘‘ye cam

achi condition me hay”, ‘‘is mobile ke battery life ziada hay”,
etc. The reason is the influence of English Language in Urdu
speaking community (Ahmed, 2009). Similarly, in this research

different comments were posted on the topic in multiple
languages. For example, ‘‘facebook aik informative website
hay”, ‘‘is website pe students apna sara time waste kartay
hain”, ‘‘is se taleb ilmo kee study par negative asar parta hy”,

‘‘ ےہہعیرذیحیرفتویسیردتکیاسیفےئلےکںولاوےنھڑپ ” etc.
To start the process of extraction, first a project was created

in Easy Web Extractor software and then following steps were

followed:

Step 1: The URL of source website is entered in the input

box and the web page is uploaded.
Step 2: The next button is pressed. It leads to the extraction
pattern window where the area to be extracted is selected
and HTML DOM is prepared for it.

http://hamariweb.com/blogs/blogdetails.aspx?id=59%26Page=1
http://hamariweb.com/blogs/blogdetails.aspx?id=59%26Page=1

Sentiment classification of Roman Urdu options 333
Step 3: The first record (opinion) is selected as data-

columns.
Step 4: Select next-page-urls to reach other pages.
Step 5: Click on extract button to extract the data from all

pages
Step 6: Export extracted data to your computer and make
the dataset.

3.1.2. Development of corpus

Each extracted opinion was stored in separate text file by using
Easy Web Extractor software. It gave a set of text files. The

text files were placed in two different folders such that, text
files having positive opinions were placed in the positives
folder and text files containing negative opinions were placed

in the negatives folder. In this research, 150 positive and 150
negative comments were taken as training data set.

3.1.3. Conversion of extracted data into Arff

The WEKA software was used for Pre-processing, classifica-
tion, building models of the training data set and predicting
the polarity of the testing data set. The WEKA accepts data

in Attribute-Relation File Format (ARFF). Therefore, the
training set composed of 300 text files (150 positive and 150
negative) was converted into a single Attribute-Relation File

Format (ARFF) by using the following Text Directory Loader
command in Simple CLI mode of WEKA.

>java weka.core.converters.TextDirectoryLoader–dir/C:/
opinions/trainingset>
C:/opinionmining/trainingdataset.arff

This command loads all text files in a directory and uses the
subdirectory names as class labels. In our case, subdirectories
were positive and negative, which reflected as class labels in

ARFF. The content of the text files were stored in a String
attribute tagged with relevant class labels.

3.2. Features extraction and selection

In the case of text classification, the features (attributes) are the
terms (word tokens) which are large in number and affect the
efficiency in terms of time taken to build the model. So feature

reduction is necessary. It serves two purposes. First it decreases
the size of effective vocabulary which makes it efficient to
apply a classifier on the training data and second, it eliminates

noise features which decrease classification errors on new data.
In this research study, both feature selection and extraction

were performed by using WEKA filters under the preprocess

tab.

3.2.1. StringToWordVector filter

StringToWordVector filter is used to transformString attributes

into a set of attributes that representword occurrence depending
on the tokenizer used. In this research, StringToWordVector fil-
ter was used to transform the text (loaded to the weka through

TextDirectory loader command) into a set of word tokens by
setting certain parameters discussed below.

3.2.1.1. TF–IDF transform. TF–IDF stands for Term Fre-
quency–Inverse Document Frequency. It is used to assign
weights to the terms which have relative importance in a cor-
pus (Rajaraman and Ullman, 2011). TF–IDF value increases
as the occurrence of a word appears frequently in a document

but is offset by the repetition of a word in the corpus, which
helps to adjust for the fact that some words appear more fre-
quently in general. In this research, the irrelevant terms were

eliminated using TF–IDF:

tfðt; dÞ ¼ 0:5þ 0:5� fðt; dÞ
maxffðw; dÞ : w 2 dg ð1Þ

Some terms like ‘‘the” are so common, which occurrs in
almost each document. According to Term Frequency (TF),
the documents which use the term ‘‘the” more frequently will

incorrectly get more weight without giving enough weight to
more meaningful but less common terms like ‘‘Good”, ‘‘Excel-
lent” and ‘‘Bad”. Therefore, an Inverse Document Frequency

(IDF) factor was combined with TF to moderate the weight of
terms that occur frequently in the document set and to increase
the weight of terms that occur rarely:

idfðt;DÞ ¼ log
N

jfd 2 D : t 2 dgj ð2Þ

here:

N represents total no. of documents in the corpus.
jfd 2 D : t 2 dgj: represents no. of documents where the

term t occurs (i.e., tfðt; dÞ–0).

3.2.1.2. Term Frequency–Inverse Document Frequency. Then
TF–IDF is calculated as

tfidfðt; d;DÞ ¼ tfðt; dÞ � idfðt;DÞ ð3Þ
3.2.1.3. Lower case tokens. Lower case token parameter is used
to convert all word tokens to lower case before adding to the
dictionary. The purpose of setting this parameter is to shift

all words to a single format that can easily be used for
prediction.

3.2.1.4. Minimum term frequency. This parameter allows the

users to specify a minimum value of occurrence of a word
token for its consideration in feature selection. If we set the
value 2 in minimum term frequency then the word tokens that

occur less than 2 times will not be considered in features selec-
tion. In our case, occurrence of a value of at least one was
important therefore, the value was set as 1.

3.2.1.5. Output Words Count. This parameter is used to count
the number of occurrences of a word token in a single docu-

ment. For example, a word comes three times in a single doc-
ument that in vector matrix will reflect the value. In this
research, Output Words Count was not used because the fea-
tures were converted into binarized form which indicates that

if a word appears in the opinion its value is 1 otherwise 0.

3.2.1.6. Tokenizer. A simple tokenizer that is using the java.

util.StringTokenizer class to break the strings into word
tokens. The Tokenizer create tokens out of string by reading
delimiters nrntnn.,;:n’n”()?!-><#$nn%&*+/@^_=[]{}|‘�01

23456789. The following is the code of tokenizer.

334 M. Bilal et al.
//Make a filter

StringToWordVector filter = new StringToWordVector();
//Make a tokenizer
WordTokenizer wt = new WordTokenizer();

String delimiters = ‘‘nrntnn.,;:n’n”()?!-><#$nn%&*+/@
^_=[]{}|‘�0123456789”;
wt.setDelimiters(delimiters);
filter.setTokenizer(wt);

//Inform filter about dataset
filter.setInputFormat(data);

3.2.1.7. WordsToKeep. This option enables us to restrict a
specific number of words per class. In general, it is good for

the classifier to keep as many words as possible with small fre-
quencies. But keeping too many words as features is badly
affecting the efficiency of classifiers, because large numbers
of features (attributes) make the classifiers to take a longer

time in building model. However, different filters like TF–
IDF keep most predictive words.

3.2.2. Reorder filter

After applying the StringToVector filter, the string attribute
was converted into word tokens each with a specific value
counted as TF–IDF value. Class attribute remained the first

token in the list. As WEKA considers the last attribute as a
class attribute. Hence, Reorder filter was used to relocate the
class attribute to the end where the WEKA reads it as a class

attribute. The following command was used:

weka.filters.unsupervised.attribute.Reorder: Reorder-R 2-

last,1

Reorder filter generates the output with a new order of the

attributes. It is useful if one wants to move an attribute to the
end to use it as class attribute (e.g. with using ‘‘-R 2-last,1”).

3.2.3. Numeric to binary filter

Numeric attributes were converted into binary attributes by
using NumericToBinary filter of WEKA. This filter converted
all numeric attributes into binary attributes (apart from the
class attribute). If the value of the numeric attribute is exactly

zero, the value of the new attribute will be zero otherwise it will
be 1. Its syntax is:

weka.filters.unsupervised.attribute.NumericToBinary

The presence of a word token in an opinion document is rep-

resented by 1 and its absence in the document is represented by 0.

3.2.4. Bag of Words Model

In Bag of Words Model, a document is represented as an unor-

dered collection of words, regardless of the grammar and even
word order. For natural language processing, a document is
represented as a Bag (multiset) of its words regardless of gram-

mar and word order but keeping multiplicity. Bag of Words
Model is used commonly in methods of document classifica-
tion and frequency of occurrence of each word is used as a fea-

ture for the training classifier.
Consider two text documents:
Ali likes to use facebook. Maryam likes facebook too.

Ali also likes to watch movie.

On the basis of above two texts documents, a dictionary is

constructed as:

{

‘‘Ali”: 1,

‘‘likes”: 2,
‘‘to”: 3,
‘‘uSe”: 4,

‘‘facebook”: 5,
‘‘also”: 6,
‘‘movie”: 7,

‘‘watch”: 8,
‘‘Maryam”: 9,
‘‘too”: 10

}

It has ten distinct words. By using the index of the dic-
tionary, each document is represented by a 10 entry vector:

Vector-1: [1,2,1,1,2,0,0,0,1,1]
Vector-2: [1,1,1,0,0,0,1,1,0,0]

Here each entry of the vector refers to the number of occur-
rences of the corresponding word in the dictionary. For exam-

ple, vector-1 represents the first document and its first and
second entries are ‘‘1, 2”. The first entry corresponds to the
word ‘‘Ali”, which is the first word in the dictionary having
value ‘‘1”, which shows that ‘‘Ali” appears in the first docu-

ment one time. Similarly, the second entry refer to the word
‘‘likes” which is the second word in the dictionary having value
‘‘2”, which shows that ‘‘likes” appears in the first document

two times, however this vector representation does not follow
the order of the words in original sentences.

In the binarized form the presence of a word token is rep-

resented by 1 and its absence is represented by 0. By this
way, the above vectors are written as (Fig. 2):

Vector-1: [1,1,1,1,1,0,0,0,1,1]

Vector-2: [1,1,1,0,0,0,1,1,0,0]

3.3. Classification

Classification is a technique of assigning class label to a set of
unclassified cases (Shrivastava, 2014). There are two types of

classification:

(i) Supervised classification.

(ii) Unsupervised classification.

(i) Supervised classification: In supervised classification,
class labels are known in advance. Training data is a set of

records having multiple attributes including the class attribute
that has predefined class labels. In this technique, a model is
developed by analyzing the training dataset. The model is used

to assign class labels to the testing dataset.
(ii) Unsupervised classification: In this type of classification,

class labels are not known in advance. After classification,

Figure 2 Vector matrix.

Figure 3 Building models in WEKA.

Sentiment classification of Roman Urdu options 335
records are assigned class labels by grouping records on the
basis of some natural similarities. Clustering is unsupervised
classification.
3.3.1. Building classification models of Naı̈ve Bayesian, J48 and
KNN

For this purpose, ‘‘Classify tab” of the WEKA tool was used.
There are 53 classification algorithms available in ‘‘Classify

tab” of WEKA version 3.7.10. The machine was trained using
a training data set by using three classification techniques e.g.
Naı̈ve Bayesian, Decision Tree (J48 in WEKA) and k-Nearest
Neighbor (IBk in WEKA) and three classification models were
built. These models were supplied with testing data to predict

polarity of opinions, as positive or negative (Fig. 3).

3.4. Testing of models

The models were supplied using testing dataset. The test data
set is the collection of new opinions posted on the blog. The

Table 1 Accuracy of Naı̈ve Bayesian on training set.

Number Age (%)

Correctly classified instances 292 97.33

Incorrectly classified instances 8 2.67

Total number of instances 300 100

Table 2 Contingency table of Naı̈ve Bayesian on training set.

X Y

A 149 1

B 7 143

149 (TP) 1 (FN)

7 (FP) 143(TN)

Table 3 Summarized results of Naı̈ve Bayesian on training

set.

Class TP

rate

FP

rate

Precision Recall F-

measure

ROC

area

Positive 0.993 0.047 0.955 0.993 0.974 0.999

Negative 0.953 0.007 0.993 0.953 0.973 0.999

Overall

(aggregate)

0.973 0.027 0.974 0.973 0.973 0.999

336 M. Bilal et al.
testing data set was also preprocessed and converted to ARFF
file. The test dataset was loaded to the WEKA by using ‘‘Clas-

sify tab” and selected ‘‘Supplied Test Set” option in ‘‘Test
Options” panel. After that the below steps were performed:
Figure 4 RO
Step 1: Click on ‘‘Set. . .” button.

Step 2: Click on ‘‘Open File”.
Step 3: Selected test dataset file.
Step 4: Click on ‘‘Close” button.

Step 5: Right click on each model and select option ‘‘Re-
evaluate model on current test set”.

3.5. Analysis of results

In this step, the results were analyzed to find out how accu-
rately the classification model classified the incoming opinions.

All three classification models were run on same testing data
and the results were compared to determine which classifier
more accurately classified the testing data. The results are ana-

lyzed and evaluated by using standard methodologies of infor-
mation retrieval i.e. precision, recall and F-measure.
4. Results and discussion

This section describes the results of experiments carried out in
this research along with discussions on these outcomes in light

of set objectives outlined in the study. Three classification algo-
rithms are used to check the performance of three algorithms.
The algorithm which gives better accuracy, recall and F-
measure value is considered the most efficient when applied

to the training data set as well as testing data set size.
4.1. Classification by Naı̈ve Bayesian

The training data set comprised of 150 positive and 150 nega-
tive opinion’s documents were taken to build a classification
model based on Naı̈ve Bayesian algorithm. The data was pre-

processed using weka built-in filters as discussed in the previ-
ous section. The pre-processed form of training data was
C curve.

Table 4 Accuracy of Naı̈ve Bayesian on testing set.

Number Age (%)

Correctly classified instances 39 97.5

Incorrectly classified instances 1 2.5

Total number of instances 40 100

Table 5 Contingency table of Naı̈ve Bayesian on testing set.

X Y

A 20 0

B 1 19

Table 6 Summarized results of Naı̈ve Bayesian on testing set.

Class TP

rate

FP

rate

Precision Recall F-

measure

ROC

AREA

Positive 1.000 0.050 0.952 1.000 0.976 1.000

Negative 0.950 0.000 1.000 0.950 0.974 1.000

Overall

(aggregate)

0.975 0.025 0.976 0.973 0.975 1.000

Table 7 Accuracy of Decision Tree on training set.

Number Age (%)

Correctly classified instances 284 94.667

Incorrectly Classified Instances 16 5.333

Total number of instances 300 100

Table 8 Contingency table of Decision Tree on training set.

X Y

A 140 10

B 6 144

Sentiment classification of Roman Urdu options 337
uploaded in WEKA Explorer interface. The Classify tab
enabled us to choose Naı̈ve Bayes classifier.

4.1.1. Building model on training dataset

After choosing Naı̈ve Bayes classification algorithm in weka
classify tab, the algorithm was applied on the training set to

build the model. The results are shown in Tables 1–3 and
Fig. 4.
Figure 5 RO
4.1.2. Testing model on testing dataset

After building the classification model on training set using

Naı̈ve Bayes algorithm, the testing data set was supplied to
the model and performed testing by using weka option ‘‘Re-
evaluate model on current test set”. Results are shown in

Tables 4–6 and Fig. 5.

4.2. Classification by Decision Tree

The training data set comprising 150 positive and 150 negative
opinion’s documents was again taken to build a classification
model based on Decision Tree. The pre-processed form of

training data was uploaded in WEKA Explorer interface.
The Classify tab enabled us to choose the J48 algorithm, which
is used for Decision Tree.

4.2.1. Building model on training dataset

After choosing J48 algorithm in weka, the algorithm was
applied on a training set to build the model. Results are shown
in Tables 7–9 and Fig. 6.
C curve.

Table 9 Summarized results of Decision Tree on training set.

Class TP rate FP rate Precision Recall F-measure ROC area

Positive 0.933 0.040 0.959 0.933 0.946 0.969

Negative 0.960 0.067 0.935 0.960 0.947 0.969

Overall (aggregate) 0.947 0.053 0.947 0.947 0.947 0.969

Figure 6 ROC curve.

Table 10 Accuracy of Decision Tree on testing set.

Number Age (%)

Correctly classified instances 37 92.5

Incorrectly classified instances 3 7.5

Total number of instances 40 100

Table 11 Contingency table of Decision Tree on testing set.

X Y

A 18 2

B 1 19

Table 12 Detailed results of Decision Tree on testing set.

Class TP rate FP rate Pre

Positive 0.900 0.050 0.9

Negative 0.950 0.100 0.9

Overall (aggregate) 0.925 0.075 0.9

338 M. Bilal et al.
4.2.2. Testing model on testing dataset

After building the classification model on a training set using

Decision Tree algorithm (J48), the testing data set was sup-
plied to the model and performed testing by using weka option
‘‘Re-evaluate model on current test set”. Results are shown in
Tables 10–12 and Fig. 7.

4.3. Classification by KNN

The training data set comprising of 150 Positive and 150 Nega-

tive opinion’s documents was taken again for the third algo-
rithm to build a classification model based on KNN. The
pre-processed form of training data was uploaded in WEKA

Explorer interface. The Classify tab enabled us to choose the
IBk algorithm, which is used for implementing the KNN
classification.

4.3.1. Building model on training dataset

After choosing IBk algorithm in weka, and setting essential
parameters (i.e. k= 3, search algorithm used = linear NN
cision Recall F-measure ROC area

47 0.900 0.923 0.948

05 0.950 0.927 0.948

26 0.925 0.925 0.948

Figure 7 ROC curve.

Table 13 Accuracy of KNN on the training set.

Number Age (%)

Correctly classified instances 260 86.667

Incorrectly classified instances 40 13.333

Total number of instances 300 100

Table 14 Contingency table of KNN on the training set.

X Y

A 134 16

B 24 126

Sentiment classification of Roman Urdu options 339
search, distance function = Euclidean distance), the algorithm
was applied on a training set to build the model. Results are

shown in Tables 13–15 and Fig. 8.
Table 15 Summarized results of KNN on the training set.

Class TP rate FP rate Pre

Positive 0.893 0.160 0.8

Negative 0.840 0.107 0.8

Overall (aggregate) 0.867 0.133 0.8
4.3.2. Testing model on testing dataset

After building the classification model on a training set using
KNN Algorithm (IBk), the testing data set was supplied to

the model and performed testing by using weka option ‘‘Re-
evaluate model on current test set”. Results are shown in
Tables 16–18 and Fig. 9.

4.4. Comparison of results

After applying three algorithms on the same data set, the fol-
lowing results were obtained. These results are combined in a

table for performance comparison of these algorithms.
From Table 19, the following results are obtained:

(1) Naı̈ve Bayes algorithm performed best in classification
of Roman Urdu opinions in terms of higher accuracy,
higher precision, higher recall and higher value of F-

measure as compared to the Decision Tree and KNN.
(2) The precision of KNN decreases significantly as the

sample size increases, however, values of recall and F-
measure initially increase and then decrease gradually

with an increase in sample size.
cision Recall F-measure ROC area

48 0.893 0.870 0.936

87 0.840 0.863 0.936

68 0.867 0.867 0.936

Figure 8 ROC curve.

Table 16 Accuracy of KNN on the testing set.

Number Age (%)

Correctly classified instances 38 95

Incorrectly classified instances 2 5

Total number of instances 40 100

Table 17 Contingency table of KNN on the testing set.

X Y

A 19 1

B 1 19

340 M. Bilal et al.
(3) The recall of Decision Tree increases significantly as the
sample size increases, however, values of precision and
F-measure initially increase and then decrease gradually
with an increase in sample size.

These results expressed in the form of graphs are shown in
Figs. 10–15.

4.5. Discussion

From the above experiments, it is revealed that Naı̈ve Bayes

out performs the rest of the two algorithms i.e. Decision Tree
Table 18 Summarized results of KNN on the testing set.

Class TP rate FP rate Pre

Positive 0.950 0.050 0.9

Negative 0.950 0.050 0.9

Overall (aggregate) 0.950 0.050 0.9
and KNN. Its performance is best in terms of accuracy, preci-

sion, recall and F-measure.
Decision Tree is the fastest and KNN is the slowest classi-

fication technique (Ashari et al., 2013). The reason is that,
there is no calculation process involved in Decision Tree. It

performs classification by following certain tree rules which
are faster than the calculation involved in Naı̈ve Bayes and
KNN. On the other hand, KNN is the slowest of the three

mentioned classifiers because its classification time is directly
related to the size of data. It means if the the data size is bigger,
a larger distance calculation would be performed and this is

what makes KNN extremely slow.
Naı̈ve Bayes is a simple classifier but it can perform much

better than other sophisticated classification algorithms. It is

fast and accurate, even applied to large datasets (Han and
Kamber, 2001). It has good speed during learning and predict-
ing. Its learning time is linear to the number of examples and
its prediction time is independent of the number of examples

(Pazzani and Bilsus, 1997). As far as computation is con-
cerned, Naı̈ve Bayes is more efficient in learning and classifica-
tion than Decision Tree (Amor et al., 2004). The reason behind

this fact is that it shows a good probability estimate for correct
class, which enables it to perform the correct classification
(Domingos and Pazzani, 1996). Another reason for good per-

formance of Naı̈ve Bayes over the other two classification tech-
niques is 0–1 loss function that defines the error as the number
of incorrect predictions in Naı̈ve Bayes. Unlike other loss func-

tions, it does not penalize for inaccurate classification as long
as the greatest probability is assigned to the correct class.
cision Recall F-measure ROC area

50 0.950 0.950 0.976

50 0.950 0.950 0.976

50 0.950 0.950 0.976

Figure 9 ROC curve.

Table 19 Comparison of results.

Algorithms Data set Time taken (in s) Accuracy (%) Precision Recall F-measure ROC area

Naı̈ve Bayesian Training 0.09 97.33 0.974 0.973 0.973 0.999

Testing 0.01 97.50 0.976 0.973 0.975 1.000

Decision tree Training 0.02 94.67 0.947 0.947 0.947 0.969

Testing 0.00 92.50 0.926 0.925 0.925 0.948

KNN Training 0.13 86.67 0.868 0.867 0.867 0.936

Testing 0.04 95.00 0.950 0.950 0.950 0.976

0.8000
0.8200
0.8400
0.8600
0.8800
0.9000
0.9200
0.9400
0.9600
0.9800
1.0000

Naïve Bayes
Decision Tree
KNN

Figure 10 Comparison of results of three algorithms on training

dataset.

0.8900
0.9000
0.9100
0.9200
0.9300
0.9400
0.9500
0.9600
0.9700
0.9800

Naïve Bayes
Decision Tree
KNN

Figure 11 Comparison of results of three algorithms on testing

dataset.

Sentiment classification of Roman Urdu options 341
Another reason for Naı̈ve Bayesian’s good performance is that
in a data set two attributes may depend on each other but this

dependence may distribute equally in each class. Similarly,
when dependencies among all attributes work together they
may cancel out the effect of each other and hence dependencies

no longer affect the classification. This is the reason because of
which conditional independence assumption is violated.
The experiment shows that k-Nearest Neighbor is worse
than both Naı̈ve Bayes and Decision Tree. The KNN uses

the number of nearest neighbor ‘‘k” as one of the parameters
in classifying an object. The value of k along with distance
function and weighting function affects the performance of

the classifier (Batista and Silva, 2009). In this study, we took
k= 3. When greater values of k were tested i.e. k = 5, 7, 9,

Figure 12 Effect of sample size on F-measure in KNN.

Figure 13 Effect of sample size on precision and recall in KNN.

342 M. Bilal et al.
the performance of the classifier moved downward. For all
weighting functions and distance function, the performance

of KNN decreases for higher values of k. One weakness of
KNN is its slow runtime and large memory requirement
(Bay, 1999) because the k-NN classifier requires a large mem-

ory to store the entire training set (Lee, 1991). It means the lar-
ger the data set, the more memory it will require to store the
training data and subsequently, larger distance calculations

would be performed, which makes it slow and inefficient than
others.
The recall of the Decision Tree increases significantly as the
sample size increases, however, values of precision and F-

measure initially increase and then decrease gradually with an
increase in sample size. It means that the larger the training
set the larger will be the tree size and more accurate results will

be obtained than the tree built from subsets (Catlett, 1991). The
reason for its increased accuracy and recall is because of extra
size of the tree and training instances. This provides extra rules

and allows better choices of attribute while building the tree and
better choices of the sub trees to prune after it has been built.

Figure 14 Effect of sample size on F-measure in Decision Tree.

Figure 15 Effect of sample size on precision and recall in Decision Tree.

Sentiment classification of Roman Urdu options 343
5. Conclusion

This research was conducted on Roman Urdu opinion mining
by using three classification algorithms i.e. Naı̈ve Bayes, Deci-
sion Tree and KNN. A training dataset was used containing

150 positive and 150 negative opinions as labeled examples,
to train the machine and to develop three models. Testing
dataset was supplied to three different models for classifica-

tion. The results show that Naı̈ve Bayes algorithm performed
best in terms of higher accuracy, higher precision, higher recall
and higher value of F-measure as compared to the Decision

Tree and KNN.
As far as computation is concerned, Naı̈ve Bayes is more
efficient in learning and classification than the Decision Tree
(Amor et al., 2004). The reason for its good performance is
that, in many cases the probability estimates may be poor,

but the correct class will still have highest estimate, leading
to correct classification (Domingos and Pazzani, 1996).
Another reason for good performance of Naı̈ve Bayesian over

other two is zero-one loss function used in Naı̈ve Bayesian
classification.

Decision Tree is the fastest and KNN is the slowest classi-

fication technique (Ashari et al., 2013). The reason is that,
there is no calculation process involved in Decision Tree.
The precision of KNN decreases significantly as the sample

344 M. Bilal et al.
size increases. However, values of recall and F-measure ini-
tially increase and then decrease gradually with an increase
in sample size. As KNN uses number of nearest neighbor

‘‘k” as one of the parameters, in classifying an object and this
value of k affects the performance of the classifier (Batista and
Silva, 2009). The recall of Decision Tree increases significantly

as the sample size increases, however, values of precision and
F-measure initially increase and then decrease gradually with
an increase in sample size. This means that trees built from

very large training sets are larger and more accurate than trees
built from subsets (Catlett, 1991).

References

Abbasi, A., Chen, H., Salem, A., 2008. Sentiment analysis in multiple

languages: feature selection for opinion classification in Web

forums. ACM Trans. Inf. Syst. 26 (3). http://dx.doi.org/10.1145/

1361684.1361685.

Ahmed, T., 2009. Roman to Urdu transliteration using wordlist. In:

Proceedings of the Conference on Language and Technology, 305–

309.

Amor, N.B., Benferhat, S., Elouedi, Z., 2004. Naive Bayes vs decision

trees in intrusion detection systems. In: ACM Symp. on Applied

Computing, pp. 420–424.

Ashari, A., Paryudi, I., Tjao, A.M., 2013. Performance comparison

between Naı̈ve Bayes, decision tree and k-nearest neighbor in

searching alternative design in an energy simulation tool. Int. J.

Adv. Comput. Sci. Appl. 4 (11), 33–39.

Batista, G.E.A.P.A., Silva, D.F., 2009. How k-nearest neighbor

parameters affect its performance. In: Simposio Argentino de

Inteligencia Artificial, pp. 95–106.

Bay, S.D., 1999. Nearest neighbor classification from multiple feature

subsets. Intell. Data Anal. 3 (3), 191–209.

Catlett, J., 1991. Overpruning large decision trees. In: Proceedings of

Int. Joint Conf. on Artif. Intel. (IJCAI).

Daud, M., Khan, R., Duad, A., 2014. Roman Urdu opinion mining

system (RUOMiS). CSEIJ 4 (6), 1–9. http://dx.doi.org/10.5121/

cseij.2014.4601.
Domingos, P., Pazzani, M., 1996. Beyond independence: conditions

for the optimality of the simple Bayesian classifier. In: 13th

International Conference on Machine Learning, 105–112.

Han, J., Kamber, M., 2001. Data Mining: Concepts and Techniques.

Morgan–Kaufmann Publishers, San Francisco, 310–315.

Jebaseeli, A.N., Kirubakaran, E., 2012. M-learning sentiment analysis

with data mining techniques. Int. J. Comput. Sci. Telecommun. 3

(8), 45–48.

Kaur, A., Gupta, V., 2014. N-gram based approach for opinion

mining of Punjabi text, multi-disciplinary trends in artificial

intelligence. Lecture Notes Comput. Sci. 8875, 81–88.

Khushboo, T., Vekariya, S.K., Mishra, S., 2012. Mining of sentence

level opinion using supervised term weighted approach of Naı̈ve

Bayesian algorithm. Int. J. Comput. Technol. Appl. 3 (3), 987–991.

Lee, Y., 1991. Handwritten digit recognition using k Nearest-Neigh-

bor, radial-basis function, and back propagation neural networks.

Neural Comput. 3 (3), 440–449.

Pang, B., Lee, L., 2008. Opinion mining and sentiment analysis.

Found. Trends Inf. Retrieval 2 (1–2), 1–135.

Pang, B., Lee, L., Vaithyanathan, S., 2002. Sentiment classification

using machine learning techniques. In: Proceedings of the ACL-02

Conference on Empirical Methods in Natural Language Process-

ing, vol. 10, pp. 79–86.

Pazzani, M., Bilsus, D., 1997. Learning and revising user profiles: the

identification of interesting web sites. Mach. Learn. 27, 313–331.

Rajaraman, A., Ullman, J.D., 2011. Data mining. Mining of Massive

Datasets. pp. 1–17.

Rashid, A., Anwer, N., Iqbal, M., Muhammad, S., 2013. A survey

paper: areas, techniques and challenges of opinion mining. Int. J.

Comput. Sci. 10 (6), 18–31.

Shrivastava, P., 2014. A study on some of data warehouses and data

mining (case study of data mining for environmental problems).

Int. J. Comput. Sci. Trends Technol. (IJCST) 2 (1), 36–43.

Syed, A.Z., Aslam, M., Martinez-Enriquez, A.M., 2014. Associating

targets with SentiUnits: a step forward in sentiment analysis of

Urdu text. Artif. Intell. Rev. 41 (4), 535–561.

Zhang, C., Zuo, W., Peng, T., He, F., 2008. Sentiment classification for

Chinese reviews using machine learning methods based on string

kernel. In: Third 2008 International Conference on Convergence

and Hybrid Information Technology, pp. 909–914.

http://dx.doi.org/10.1145/1361684.1361685
http://dx.doi.org/10.1145/1361684.1361685
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0020
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0020
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0020
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0020
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0030
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0030
http://dx.doi.org/10.5121/cseij.2014.4601
http://dx.doi.org/10.5121/cseij.2014.4601
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0050
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0050
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0055
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0055
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0055
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0060
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0060
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0060
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0065
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0065
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0065
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0070
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0070
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0070
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0075
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0075
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0085
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0085
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0095
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0095
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0095
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0100
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0100
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0100
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0105
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0105
http://refhub.elsevier.com/S1319-1578(15)00133-0/h0105

	Sentiment classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and KNN classification techniques
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Pre-processing
	3.1.1 Extraction
	3.1.2 Development of corpus
	3.1.3 Conversion of extracted data into Arff

	3.2 Features extraction and selection
	3.2.1 StringToWordVector filter
	3.2.1.1 TF–IDF transform
	3.2.1.2 Term Frequency–Inverse Document Frequency
	3.2.1.3 Lower case tokens
	3.2.1.4 Minimum term frequency
	3.2.1.5 Output Words Count
	3.2.1.6 Tokenizer
	3.2.1.7 WordsToKeep

	3.2.2 Reorder filter
	3.2.3 Numeric to binary filter
	3.2.4 Bag of Words Model

	3.3 Classification
	3.3.1 Building classification models of Naïve Bayesian, J48 and KNN

	3.4 Testing of models
	3.5 Analysis of results

	4 Results and discussion
	4.1 Classification by Naïve Bayesian
	4.1.1 Building model on training dataset
	4.1.2 Testing model on testing dataset

	4.2 Classification by Decision Tree
	4.2.1 Building model on training dataset
	4.2.2 Testing model on testing dataset

	4.3 Classification by KNN
	4.3.1 Building model on training dataset
	4.3.2 Testing model on testing dataset

	4.4 Comparison of results
	4.5 Discussion

	5 Conclusion
	References

