
Journal of King Saud University – Computer and Information Sciences (2017) 29, 134–140
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Telugu dependency parsing using different

statistical parsers
* Corresponding author. Tel.: +91 9989308242.

E-mail addresses: venkataseshukumari@gmail.com (B.V.S. Kumari),

rajaraob4u@gmail.com (R.R. Rao).
1 Tel.: +91 9959559456.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2014.12.006
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
B. Venkata Seshu Kumari a,*, Ramisetty Rajeshwara Rao b,1
a JNTUH, Hyderabad, Telangana, India
bComputer Science & Engineering, JNTU Kakinada, Andhra Pradesh, India
Received 14 September 2014; revised 21 November 2014; accepted 24 December 2014
Available online 3 November 2015
KEYWORDS

Dependency parsing;

Telugu;

MSTParser;

MaltParser;

TurboParser;

ZPar
Abstract In this paper we explore different statistical dependency parsers for parsing Telugu. We

consider five popular dependency parsers namely, MaltParser, MSTParser, TurboParser, ZPar and

Easy-First Parser. We experiment with different parser and feature settings and show the impact of

different settings. We also provide a detailed analysis of the performance of all the parsers on major

dependency labels. We report our results on test data of Telugu dependency treebank provided in

the ICON 2010 tools contest on Indian languages dependency parsing. We obtain state-of-the art

performance of 91.8% in unlabeled attachment score and 70.0% in labeled attachment score. To

the best of our knowledge ours is the only work which explored all the five popular dependency

parsers and compared the performance under different feature settings for Telugu.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dependency parsing is the task of uncovering the dependency
tree of a sentence, which consists of labeled links representing
dependency relationships between words. Parsing is useful in

major NLP applications like Machine Translation, Dialogue
Systems, Question Answering, etc. This led to the development
of grammar-driven, data-driven and hybrid parsers. Due to the
availability of annotated corpora in recent years, data driven
parsing has achieved considerable success. The availability of

phrase structure treebank for English (Marcus et al., 1993)
has seen the development of many efficient parsers.

Unlike English, many Indian (Hindi, Bangla, Telugu, etc.)

languages are free-word-order and are also morphologically
rich. It has been suggested that free-word-order languages
can be handled better using the dependency based framework

than the constituency based one Bharati et al. (1995). Due to
the availability of dependency treebanks, there are several
recent attempts at building dependency parsers. Two CoNLL

shared tasks (Buchholz and Marsi, 2006; Nivre et al., 2007a)
were held aiming at building state-of-the-art dependency par-
sers for different languages. Recently in two ICON tools con-
tests (Husain, 2009; Husain et al., 2010), and Coling 2012

Hindi parsing shared task (Bharati et al., 2012), rule-based,
constraint based, statistical and hybrid approaches were
explored towards building dependency parsers for three Indian

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.12.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:venkataseshukumari@gmail.com
mailto:rajaraob4u@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2014.12.006
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.12.006
http://creativecommons.org/licenses/by-nc-nd/4.0/


Telugu dependency parsing using different statistical parsers 135
languages namely, Telugu, Hindi and Bangla. In all these
efforts, state-of-the-art accuracies are obtained by the popular
data-driven parsers namely, MaltParser (Nivre et al., 2007b)

and MSTParser (McDonald, 2006).
Among Indian languages, though there has been significant

amount of work on dependency parsingHindi, there is very little

work on parsing Telugu. Most of the work in ICON 2010 tools
contest for parsing Telugu used MaltParser. In this paper, we
consider five popular dependency parsers, MaltParser,

MSTParser, TurboParser, ZPar and Easy-First Parser. We pro-
vide relatedwork in Section 2 and details of dependency parsing,
Telugu language and the Telugu dependency treebank in Sec-
tion 3. In Section 4, we experiment with different parser and fea-

ture settings and show the impact of different settings. Section 5
provides a detailed analysis of the performance of all the parsers
on major dependency labels. We conclude with possible future

directions in Section 6. We obtain state-of-the art performance
of 91.8% in unlabeled attachment score and 70.0% in labeled
attachment score. To the best of our knowledge ours is the only

work which explored all the five popular dependency parsers
and compared the performance under different feature settings
for Telugu.

2. Related work

There has been significant amount of work on dependency

parsing in the recent past. Though majority of the work is done
on English language, there has been increasing interest in pars-
ing other languages. CoNLL 2006 and 2007 Shared tasks
(Buchholz and Marsi, 2006; Nivre et al., 2007a) introduced

the task of multi-lingual dependency parsing. Different
approaches were explored in these two shared tasks for parsing
eighteen different languages: Arabic, Basque, Catalan, Chi-

nese, Czech, Danish, Dutch, English, German, Greek, Hun-
garian, Italian, Japanese, Portuguese, Slovene, Spanish,
Swedish, and Turkish. Three metrices: labeled attachment

score (LAS), unlabeled attachment score (UAS) and label
accuracy (LA) were used for evaluation. LAS is the percentage
of tokens with both correct dependency head and correct

dependency label. UAS is the percentage of tokens with correct
dependency head and LA is the percentage of tokens with cor-
rect dependency label. Different techniques like data-driven vs.
hybrid; single step vs. two-stage; transition based vs. graph

based were explored. In all these efforts, state-of-the-art accu-
racies are obtained by MaltParser (Nivre et al., 2007b), a tran-
sition based parser and MSTParser (McDonald, 2006) a graph

based parser.
Following CoNLL shared tasks, there were two ICON

tools contests (Husain, 2009; Husain et al., 2010) aimed at

parsing three Indian languages: Hindi, Telugu and Bangla.
Different rule-based, constraint based, statistical and hybrid
approaches were explored towards building dependency par-
sers. Kesidi et al. (2010) used a constraint based approach.

The scoring function for ranking the base parsers is inspired
by a graph based parsing model and labeling. Nivre (2009),
Ambati et al. (2009) and Kosaraju et al. (2010) used

MaltParser and explored the effectiveness of local morphosyn-
tactic features, chunk features and automatic semantic infor-
mation. Parser settings in terms of different algorithms and

features were also explored. Ambati et al. (2009) explored
the usefulness of MSTParser for parsing Indian languages.
Zeman (2009) combined various well known dependency par-
sers forming a super parser by using a voting method.

Recently in Coling 2012 workshop on Machine Translation
and Parsing in Indian Languages, Hindi parsing shared task
was held with the latest Hindi dependency treebank (Bharati

et al., 2012). In this shared task, in addition to experimenting
with individual parsers, there were efforts at combining differ-
ent parsers. McDonald and Nivre (2007) showed that Mal-

tParser and MSTParser make different kinds of errors and
combining both the parsers can result in better parsing perfor-
mance. Following this idea, Kumari and Rao (2012) combined
the output of MaltParser and MSTParser in an intuitive man-

ner to extract pros of both the parsers. Kukkadapu et al.
(2012) explored voting and blending techniques for parsing
Hindi using MaltParser, MSTParser and TurboParser.

In this work, we explore five popular dependency parsers
namely MaltParser (Nivre et al., 2007b), MSTParser
(McDonald, 2006), TurboParser (Martins et al., 2009), ZPar

(Zhang and Clark, 2011) and Easy-First Parser (Goldberg
and Elhadad, 2010). MaltParser is a transition based parser
whereas MSTParser is a graph based parser. TurboParser is

also a graph based parser but uses integer linear programming
technique for parsing in contrast to MSTParser which uses
maximum spanning tree algorithms. Zpar is a shift-reduce par-
ser similar to MaltParser but uses beam search unlike greedy

search used by MaltParser. MaltParser and Zpar parse a sen-
tence from left to right. But, Easy-First Parser use non-
directional strategy for parsing where easier dependencies are

resolved first and use them as features while resolving harder
dependencies.

In addition to standard English Penn treebank data

(Marcus et al., 1993), all these parsers were explored for
CoNLL shared task data. Though average number of tokens
in test data is around 5000 tokens, number of tokens in the

training data varied from around 30 thousand tokens (Slo-
vene) to 1.2 million tokens (Czech). Apart from the amount
of training data, morphological richness and free word order
nature posed greater challenges for the parsers. It has been

observed that parsing performance is least for morphologically
rich and/or free word order languages like Arabic, Turkish, etc
(Buchholz and Marsi, 2006; Nivre et al., 2007a).

MaltParser and MSTParser are the two parsers which are

widely explored in the dependency parsing literature. Though

MaltParser is explored extensively for Telugu in ICON shared

tasks, there is very little work on experimenting with MSTPar-

ser for Telugu. Kukkadapu et al. (2012) adapted TurboParser

for Hindi but there is no work on adapting it for Telugu. There

has been some work on exploring Zpar and Easy-First Parser

for languages other than English (Zhang and Nivre, 2012;

Goldberg and Elhadad, 2010). There is no work on adapting

these parsers for Indian languages in general and Telugu in

particular. So, ours is the first work on exploring TurboParser,

Zpar and Easy-First Parser for Telugu. Also, most of the

papers compare MaltParser, MSTParser and one of the

TurboParser or Zpar or Easy-First parsers but not all of them.

To the best of our knowledge, ours is the only work which

explored all the five popular dependency parsers and compared

their performance for any language in general and Telugu in

particular.



Figure 1 Dependency tree for an example Telugu sentence.

136 B.V.S. Kumari, R.R. Rao
3. Dependency Grammar

Dependency Grammar (DG) describes the syntactic structure
of a sentence through dependency graphs. A dependency

graph represents words and their relationship to syntactic
modifiers using directed edges. These edges can be labeled with
grammatical relations like Subject, Object, etc.

Dependency trees can either be projective or non-
projective. As English is fixed word order language, most Eng-
lish sentences can be analyzed through projective trees. But, in
free word order languages, like Czech, Hindi, Telugu, etc. non-

projective dependencies are more frequent. Rich inflection
systems reduce the demands on word order, leading to
non-projective dependencies (McDonald, 2006). Fig. 1 shows

the dependency tree for an example Telugu sentence.
In the following section we first describe the morphological

and syntactic features of Telugu language. Then we provide

the details of Telugu dependency treebank.

3.1. Telugu language

Telugu is one of the official languages of India and the 13th
largest language in the world, with over 74 million speakers.2

It is a morphologically rich and free word order language. It
is also an agglutinative language where morphological infor-

mation is available as suffix to the word rather than a separate
lexical item. Fig. 2 shows different Telugu sentences describing
the free word order nature and morphological richness of Tel-

ugu. Sentence 1 is a simple past sentence ‘Ram ate a fruit’. Suf-
fix ‘du’ of the verb ‘tinnadu’ (ate) is a masculine marker. In 2nd
sentence, as the gender of the subject changed to feminine

(Sita), suffix of the verb changed to ‘dhi’ which is a feminine
marker. Suffix of a verb can change when the tense changes.
For example, in the 3rd sentence as the tense changed to pre-

sent continuous, suffix of the verb changed accordingly to ‘tun-
naadu’. Similar to verbs where suffix depends on different
factors like tense, aspect, modality and subject’s gender, suffix
of the nouns represents case or preposition. For example, in

sentence 4, ‘Ram gave a fruit to Sita in the school’, suffix
‘ki’ of ‘sithaki’ (to Sita) is the dative case marker and suffix
‘lo’ of ‘patashalalo’ (in School) is the marker for preposition

‘in’. Sentence 5 gives an example of free word order nature
in Telugu language. Though Subject-Object-Verb is the pre-
ferred word order, different word orders are possible in Telugu

as in sentence 5, with Object-Subject-Verb order.

3.2. Telugu dependency treebank

Telugu dependency treebank released in ICON 2010 Tools
contest (Husain et al., 2010) is used in our work. Data are
annotated using the part-of-speech (POS) tagging, chunking
and dependency annotation guidelines (Bharati et al., 2006;

Bharati et al., 2009). The treebank consists of morphological
information (root, coarse pos-tag, gender, number, person,
case marking, suffix and TAM (tense, Aspect and Modality

marker)), POS, chunk and dependency information. The
dependency annotation follows a scheme that can be traced
back to Paninian grammar (Bharati et al., 2009), known to

be well-suited to modern Indian languages. The dependency
2 http://www.ethnologue.com/statistics/size.
labels are syntactico-semantic in nature (Bharati et al., 1995;

Bharati et al., 2009). For example, ‘k1’ usually corresponds
to subject syntactic role and agent semantic role. Similarly,
‘k2’ corresponds to the syntactic role of object and the seman-

tic role of patient. For the purposes of readability, instead of
original treebank dependency labels, their corresponding Eng-
lish labels are used in this paper (SUBJ, OBJ, DEM for k1, k2,
nmod__adj respectively).

The treebank is available in SSF (Bharati et al., 2007) and
CoNLL3 formats. We work with the CoNLL format in this
paper. In this format, word, root, pos tag, chunk tag and mor-

phological features are available in the FORM, LEMMA,
POSTAG, and CPOSTAG and FEATS columns respectively.
Data released have both fine-grained and coarse-grained ver-

sions of dependency labels. We used fine-grained version for
our experiments. Table 1 shows the details of the training,
development and the testing data sets of the Telugu depen-

dency treebank. Statistics of sentence count, word count and
average sentence length are provided in this table.

4. Experiments and results

We explore MaltParser, MSTParser, TurboParser, ZPar and
Easy-First Parser for parsing Telugu. Exploring different fea-

ture and parser settings, we build best models for each parser.
As the training data size is small, we merged training and
development data and did 10-fold cross validation for tuning
the parameters of the parsers and for feature selection. Best

settings obtained using cross-validated data are applied on test
set. We used standard Unlabeled Attachment Score (UAS),
Labeled Attachment Score (LAS) and Labeled Score (LS) met-

rices for our evaluation.

4.1. MaltParser

MaltParser is a freely available implementation of the parsing
models described in Nivre et al. (2007b).4 It is a classifier based
shift reduce parser. With MaltParser, parsing can be per-
formed in linear time for projective dependency trees and

quadratic time for arbitrary (possibly non-projective) trees.
MaltParser provides options for nine deterministic parsing
algorithms: Nivre arc-eager, Nivre arc-standard, Covington

projective, Covington non-projective, Stack projective, Stack
swap-eager, Stack swap-lazy, Planar and 2-planar. It also pro-
vides options for libsvm and liblinear learner algorithms. For

Telugu dependency parsing liblinear learner and arc-eager
parsing algorithm consistently gave better performance.
3 http://nextens.uvt.nl/depparse-wiki/DataFormat.
4 http://www.maltparser.org/.

http://www.ethnologue.com/statistics/size
http://nextens.uvt.nl/depparse-wiki/DataFormat
http://www.maltparser.org/


Figure 2 Telugu example sentences describing free word order nature and morphological richness.

Table 2 Impact of different features on parsing Telugu using

MaltParser.

Features UAS

(%)

LAS

(%)

LS

(%)

Exp1: Current FORM, POSTAG 74.1 48.1 51.1

Exp2: Exp1 + context FORM,

POSTAG

86.1 59.4 61.1

Exp3: Exp2 + LEMMA 86.3 61.3 63.3

Exp4: Exp3 + CPOSTAG 87.7 61.4 62.8

Exp5: Exp4 + FEATS 88.7 66.8 69.1

Exp6: Exp5 + DEPREL 90.5 68.3 70.5

Exp7: Exp6 + Partial tree features 90.7 69.6 71.8

Exp8: Exp7 + Bi-gram features 91.8 70.0 72.3

Table 1 Telugu treebank statistics.

Type Sent count Word count Avg. sent_length

Train 1400 7602 5.43

Devel 150 839 5.59

Test 150 836 5.57

Telugu dependency parsing using different statistical parsers 137
We did a step-by-step analysis of the impact of different
features on parsing Telugu. Table 2 provides results of these

experiments. In Exp1, we provided word FORM and
POSTAG of current word as features which gave an accuracy
of 74.1% in UAS and 48.1% in LAS. Adding FORM and

POSTAG of context words (Exp2) improved both UAS and
LAS by around 12% which shows the importance of context
in parsing. Adding LEMMA and CPOSTAG features (Exp3

and Exp4) gave a slight improvement of 1.6% in UAS and
2% in LAS. In Exp5, we added FEATS which contain mor-
phological information and this gave 1% improvement in
UAS and boosted LAS by 5.4%. As Telugu is a morphologi-

cally rich language, it is expected that morphological informa-
tion plays a crucial role in parsing, especially in identifying
correct dependency labels. In Exp6, we provided dependency

relations (DEPREL) of the partially formed trees which gave
an improvement of 1.8% in UAS and 1.5% in LAS. Adding
partial tree (Exp7) and bi-gram (Exp8) features gave further

improvements of 1.3% in UAS and 1.7% in LAS. After all
these experiments, we achieved a performance of 91.8% in
UAS and 70.0% in LAS.

4.2. MSTParser

MSTParser is a freely available implementation of the parsing
models described in McDonald (2006).5 It is a graph-based

parsing system in which parsing algorithm is equated to
finding directed maximum spanning trees from a dense graph
5 http://mstparser.sourceforge.net/.
of the sentence. MSTParser uses Chu–Liu–Edmonds maxi-
mum spanning tree algorithm for non-projective parsing and

Eisner’s algorithm for projective parsing. It uses online large
margin learning as the learning algorithm (McDonald et al.,
2005). It also provides options of 1st order and 2nd order fea-

tures. 1st order features are the features over the parent and
child in the dependency arc. These include different unigram,
bigram features of parent node and child node. But, 2nd order

features include more global features like grand parent, grand
child and sibling features. For example, postag of parent node
and child node are 1st order features whereas, postag of grand
child and grand parent are second order features.

For Telugu, 2nd order features and non-projective algo-
rithm gave the best results of 90.0% UAS and 62.6% LAS
(Table 3, MSTParser: Baseline). It is difficult to do feature tun-

ing with MSTParser as it doesn’t provide nice options similar
to MaltParser. We had to modify the code of MSTParser to
add new features. Labeling module of the MSTParser is not

using FEATS column. Exp5 in Table 2 clearly shows that
morphological features in FEATS are very important for
labeling in case of Telugu. We explored different features using

http://mstparser.sourceforge.net/


Table 3 Impact of different features on parsing Telugu using

MSTParser.

Features UAS (%) LAS (%) LS (%)

MSTParser: Baseline 90.0 62.6 63.9

MSTParser: Extended 90.0 67.1 68.6

138 B.V.S. Kumari, R.R. Rao
FEATS columns in the labeling module of the MSTParser and
selected the settings which gave best results on 10-fold cross-
validation. This gave a huge boost of 4.5% improvement in

LAS over the baseline model (MSTParser: Extended in
Table 3). With this tuning, we achieved a performance of
90.0% in UAS and 67.1% in LAS.

4.3. TurboParser

TurboParser is a freely available implementation of the parsing

models described in Martins et al. (2009).6 It is a graph based
parser which uses integer linear programming technique for
parsing. With default settings, we got an UAS of 90.5% and

LAS of 67.5%. As the data are low and as the average sentence
length is small, using standard model and considering only first
order features gave better results. Final best results we could
obtain are 91.2% UAS and 68.8% LAS. TurboParser also

doesn’t provide flexibility like MaltParser to add new features.
Also, as the code is highly optimized for speed and perfor-
mance, it was much harder to add any new features in the code

as well. So, we could only explore parser settings, but couldn’t
do any feature ablation studies similar to MaltParser.

4.4. ZPar

ZPar is a freely available implementation of the parsing models
described in Zhang and Clark (2011).7 We used generic depen-
dency parsing module of ZPar for our experiments. In addition

to local features from the nodes in stack and input, it also uses
higher order features like valency information, grand child and
grand parent information (Zhang and Nivre, 2011). It uses

arc-eager algorithm with beam search for parsing. Averaged
perceptron (Collins, 2002) is used for learning. With default
settings, we got an UAS of 90.0% and LAS of 68.0%. As the

features are hard-coded, we modified the code and added
features like partial tree features, similar to our experiments
with MaltParser. Final best results we obtained after these

feature ablation studies are 90.7% UAS and 68.5% LAS.

4.5. Easy-First Parser

Easy-First Parser is a freely available implementation of the

parsing models described in Goldberg and Elhadad (2010).8

Parsing algorithm is a shift-reduce style algorithm. But instead
of traditional left to right parsing they employ non-directional

strategy for parsing. A variant of structured perceptron
(Collins, 2002) is used for learning. This parser only gives unla-
beled dependencies. With default settings, we got an UAS of

86.8%. This parser takes feature templates from an input file
which is similar to MaltParser. So, it was relatively easier to
add new features. Similar to our experiments with MaltParser,

we did feature ablation experiments. As this is only an unla-
beled dependency parser, we couldn’t explore the impact of
dependency label features. Final best results we achieved are
88.8% UAS. (see Tables 4–7).
6 http://www.ark.cs.cmu.edu/TurboParser/.
7 http://sourceforge.net/projects/zpar/.
8 http://www.cs.bgu.ac.il/yoavg/software/easyfirst/.
5. Analysis

We achieved state-of-the-art performance of 91.8% in UAS

and 70.0% in LAS using MaltParser. It has been observed that
transition based parasers like MaltParaser are good at short
distance dependencies and graph based parsers like MSTPar-

ser are good at long distance dependencies (McDonald and
Nivre, 2007). As the majority of dependencies in Telugu tree-
bank are short distance, MaltParser outperformed other par-
sers as it is good at short distance dependencies. As observed

in Table 2, features play a crucial role in parsing and in case
of MaltPaser, we can provide feature templates in a file as
an input to the parser. This flexibility with MaltParser helped

in providing different complex features which improved the
performance of the parser. As features were hard-coded for
other parsers (excluding Easy-First Parser), it was not very

easy to explore the impact of different feature settings. This
shows the importance of flexibility in providing features to a
parser while adapting a parser for new language or treebank.
We believe that as the treebank consists of a larger chunk of

short distance dependencies graph based parsers like MSTPar-
ser, TurboPrser or beam search parsers like ZPar didn’t give
better improvements over MaltParser. It has been observed

previously and we also observed in our experiments with Mal-
tParser that providing dependency labels of the partially
formed tree gave huge improvements of around 1.5–2.0% in

both UAS and LAS (Exp6 in Table 2). As Easy-First Parser
only does unlabeled parsing, we can’t provide such informa-
tion which could be the reason for relatively lower UAS values

compared to other parsers.
Though MSTParser and TurboParser are graph based par-

sers, TurboParser, through integer linear programmaing tech-
niques, efficiently incorporates linguistic constraints like a verb

should have only one subject, children of a conjunct should be
of similar type. This could be the reason for TurboParser giv-
ing second best results. ZPar uses global learning and beam

search which is better for learning long distance dependencies.
Due to availability of less number of long distance dependen-
cies, global learning didn’t give any improvement over greedy

local learning of MaltParser. As the training data are very low,
and also as Telugu is agglutinative language, LAS for the all
the systems is very low. Though we could achieve an UAS of

91.8%, we could only achieve LAS of 70.0%. With more train-
ing data and specialized techniques for handling agglutinative
languages like Telugu, we can achieve better results in LAS.

Table 8, gives an overview of the performance of the indi-

vidual parsers for the top six dependencies in Telugu depen-
dency treebank. MAIN, SUBJ, OBJ, COORD, TIME, and
VMOD are the dependency labels for sentence root, subject,

object, co-ordination, time expression, amd verbal modifier.
MaltParser performed better for MAIN, COORD and TIME
dependency labels. For SUBJ and VMOD labels TurboParser

performed better and for OBJ label MSTParser performed

http://www.ark.cs.cmu.edu/TurboParser/
http://sourceforge.net/projects/zpar/
http://www.cs.bgu.ac.il/yoavg/software/easyfirst/


Table 8 Performance of different approaches on top six

dependency labels.

Labels MaltParser MSTParser TurboParser ZPar

MAIN 97.0 95.3 96.3 95.3

SUBJ 63.0 59.4 64.1 63.0

OBJ 58.8 62.7 59.9 61.1

COORD 83.1 74.4 77.6 77.5

TIME 61.2 60.5 57.8 46.5

VMOD 62.7 65.1 66.7 63.3

Best parser result is marked in bold.

Table 7 Performance of different parsers on Telugu depen-

dency treebank test data.

Parser UAS (%) LAS (%) LS (%)

MaltParser 91.8 70.0 72.3

MSTParser 90.0 67.1 68.6

TurboParser 91.2 68.8 70.1

ZPar 90.7 68.5 70.3

Easy-First 88.8 – –

Best parser result is marked in bold.

Table 4 Impact of different features on parsing Telugu using

TurboParser.

Features UAS (%) LAS (%) LS (%)

TurboParser: Baseline 90.5 67.5 69.0

TurboParser: Extended 91.2 68.8 70.1

Table 5 Impact of different features on parsing Telugu using

ZPar.

Features UAS (%) LAS (%) LS (%)

ZPar: Baseline 90.0 68.0 69.5

ZPar: Extended 90.7 68.5 70.3

Table 6 Impact of different features on parsing Telugu using

Easy-First Parser.

Features UAS (%) LAS LS

ZPar: Baseline 86.8 – –

ZPar: Extended 88.8 – –

Telugu dependency parsing using different statistical parsers 139
better. TurboParser can handle linguistic constraints better
which could be the reason for better handling of subject

(SUBJ) and verbal modifier (VMOD) labels. As MaltParser
is a greedy transition based parser, it is subject to error prop-
agation. But MSTParser doesn’t have this problem which

could be the reason for better handling of OBJ label.

6. Conclusion and future work

Experimenting with different settings, we built best parsing
models for Telugu using five popular dependency parsers
namely MaltParser, MSTParser, TurboParser, ZPar and
Easy-First Parser. We studied the impact of different features
for parsing Telugu. We also provided a detailed analysis of the

performance of all the parsers on major dependency labels.
For morphologically rich languages like Telugu, our experi-
ments showed that providing morphological features can sig-

nificantly improve the parsing performance. We obtained
state-of-the art performance of 91.8% in unlabeled attachment
score and 70.0% in labeled attachment score. Our experiments

pointed out two important things which should be considered
while creating annotated data and building parsers. Data sets
should be representative of real world sentences in that
language. Real world Telugu sentences will have a good mix-

ture of short distance and long distance dependencies and
not just contain short distance dependencies. From engineer-
ing point of view, while developing a parser, it is better to pro-

vide flexibility to add or remove features. This would help in
adapting parsers to new data sets.

There has been increasing interest on parsing morphologi-

cally rich languages. Different approaches are being explored
in the Statistical Parsing of Morphologically Rich Languages
(SPMRL) workshops (Seddah et al., 2010; Seddah et al.,

2011; Apidianaki et al., 2012; Goldberg et al., 2013;
Goldberg et al., 2014). Great deal of work is done on incorpo-
rating morphological features into different kinds of parsers.
There has been some work on exploring the usefulness of large

un-annotated data using self-training and co-training tech-
niques (Goutam and Ambati, 2012; Cahill et al., 2014) and
using word vectors (Seddah et al., 2014). Though the size of

Telugu treebank is small, there is lot of un-annotated Telugu
text available. It would be an interesting direction to explore
these techniques for Telugu.

There has also been some interesting work going on
improving the greedy parsers like MaltParser by incorporating
better features from other grammatical frameworks (Ambati

et al., 2014) and exploring better learning and parsing algo-
rithms (Sartorio et al., 2013; Goldberg and Nivre, 2013). We
would like to see the impact of such approaches for parsing
Telugu.

References

Ambati, B.R., Deoskar, T., Steedman, M., 2014. Improving depen-

dency parsers using combinatory categorial grammar. In: Proceed-

ings of the 14th Conference of the European Chapter of the

Association for Computational Linguistics, Vol. 2, Short Papers.

Gothenburg, Sweden, pp. 159–163.

Ambati, B.R., Gadde, P., Jindal, K., 2009. Experiments in Indian

language dependency parsing. In: Proceedings of the ICON09 NLP

Tools Contest: Indian Language Dependency Parsing. pp. 32–37.

Apidianaki, M., Dagan, I., Foster, J., Marton, Y., Seddah, D.,

Tsarfaty, R. (Eds.), 2012. Proceedings of the ACL 2012 Joint

Workshop on Statistical Parsing and Semantic Processing of

Morphologically Rich Languages. JEJU, Republic of Korea.

Bharati, A., Chaitanya, V., Sangal, R., 1995. Natural Language

Processing: A Paninian Perspective. Prentice-Hall of India,

65–106.

Bharati, A., Mannem, P., Sharma, D.M., 2012. Hindi parsing shared

task. In: Proceedings of Coling Workshop on Machine Translation

and Parsing in Indian Languages. Kharagpur, India.

Bharati, A., Sangal, R., Sharma, D.M., 2007. SSF: shakti standard

format guide. In: Technical Report (TR-LTRC-33), LTRC,

IIIT-Hyderabad.

http://refhub.elsevier.com/S1319-1578(15)00079-8/h0020
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0020
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0020


140 B.V.S. Kumari, R.R. Rao
Bharati, A., Sangal, R., Sharma, D.M., Bai, L., 2006. AnnCorra:

annotating corpora guidelines for POS and Chunk Annotation for

Indian languages. In: Technical Report (TR-LTRC-31), LTRC,

IIIT-Hyderabad.

Bharati, A., Sharma, D.M., Husain, S., Bai, L., Begum, R., Sangal, R.,

2009. AnnCorra: TreeBanks for Indian Languages, Guidelines for

Annotating Hindi TreeBank (version 2.0). <http://ltrc.iiit.ac.in/

MachineTrans/research/tb/DS-guidelines/DS-guidelines-ver2-28-

05-09.pdf>

Buchholz, S., Marsi, E., 2006. CoNLL-X shared task on multilingual

dependency parsing. In: Proceedings of the Tenth Conference on

Computational Natural Language Learning. New York City, New

York, pp. 149–164.

Cahill, A., Gyawali, B., Bruno, J., 2014. Self-training for parsing

learner text. In: Proceedings of the First Joint Workshop on

Statistical Parsing of Morphologically Rich Languages and Syn-

tactic Analysis of Non-Canonical Languages. Dublin City Univer-

sity, Dublin, Ireland, pp. 66–73.

Collins, M., 2002. Discriminative training methods for hidden markov

models: theory and experiments with perceptron algorithms. In:

Proceedings of the Conference on Empirical Methods in Natural

Language Processing. EMNLP ’02. pp. 1–8.

Goldberg, Y., Elhadad, M., 2010a. Easy first dependency parsing of

modern hebrew. In: Proceedings of the NAACL HLT 2010 First

Workshop on Statistical Parsing of Morphologically-Rich Lan-

guages. SPMRL ’10. Association for Computational Linguistics,

Stroudsburg, PA, USA, pp. 103–107.

Goldberg, Y., Elhadad, M., 2010b. An efficient algorithm for easy-first

nondirectional dependency parsing. In: Human Language Tech-

nologies: The 2010 Annual Conference of the North American

Chapter of the Association for Computational Linguistics. Los

Angeles, California.

Goldberg, Y., Marton, Y., Rehbein, I., Versley, Y. (Eds.), 2013.

Proceedings of the Fourth Workshop on Statistical Parsing of

Morphologically-Rich Languages. Seattle, Washington, USA.

Goldberg, Y., Marton, Y., Rehbein, I., Versley, Y., Özlem Çetinoğlu,

Tetreault, J., (Eds.), 2014. Proceedings of the First Joint Workshop

on Statistical Parsing of Morphologically Rich Languages and

Syntactic Analysis of Non-Canonical Languages. Dublin, Ireland.

Goldberg, Y., Nivre, J., 2013. Training deterministic parsers with non-

deterministic oracles. In: Transactions of the Association for

Computational Linguistics.

Goutam, R., Ambati, B., 2012. Exploring self-training and co-training

for dependency parsing. In: Proceedings of the 13th International

Conference on Intelligent Text Processing and Computational

Linguistics. New Delhi, India.

Husain, S., 2009. Dependency Parsers for Indian Languages. In:

Proceedings of the ICON09 NLP Tools Contest: Indian Language

Dependency Parsing. India.

Husain, S., Mannem, P., Ambati, B.R., Gadde, P., 2010. The ICON-

2010 tools contest on Indian language dependency parsing. In:

Proceedings of ICON-2010 Tools Contest on Indian Language

Dependency Parsing. Kharagpur, India.

Kesidi, S.R., Kosaraju, P., Vijay, M., Husain, S., 2010. A two stage

constraint based hybrid dependency parser for Telugu. In:

Proceedings of the ICON-2010 Tools Contest on Indian Language

Dependency Parsing.

Kosaraju, P., Kesidi, S.R., Ainavolu, V.B.R., Kukkadapu, P., 2010.

Experiments on Indian language dependency parsing. In: Proceed-

ings of the ICON-2010 Tools Contest on Indian Language

Dependency Parsing.

Kukkadapu, P., Malladi, D., Dara, A., 2012. Ensembling various

dependency parsers: adopting turbo parser for Indian languages.

In: Proceeding of Coling 2012 Workshop on MT and Parsing in

Indian Languages.
Kumari, B.V.S., Rao, R.R., 2012. Hindi dependency parsing using a

combined model of Malt and MST. In: Proceeding of Coling 2012

Workshop on MT and Parsing in Indian Languages.

Marcus, M.P., Santorini, B., Marcinkiewicz, M.A., 1993. Building a

large annotated corpus of English: the Penn Treebank. Comput.

Linguist. 19 (2), 313–330.

Martins, A., Smith, N., Xing, E., 2009. Concise integer linear

programming formulations for dependency parsing. In: Proceed-

ings of the Joint Conference of the 47th Annual Meeting of the

ACL and the 4th International Joint Conference on Natural

Language Processing of the AFNLP. Suntec, Singapore, pp. 342–

350.

McDonald, R., 2006. Discriminative learning and spanning tree

algorithms for dependency parsing (Ph.D. thesis), Philadelphia,

PA, USA.

McDonald, R., Crammer, K., Pereira, F., 2005. Online large-margin

training of dependency parsers. In: Proceedings of the 43rd Annual

Meeting on Association for Computational Linguistics. Ann

Arbor, Michigan, pp. 91–98.

McDonald, R., Nivre, J., 2007. Characterizing the errors of data-

driven dependency parsing models. In: Proceedings of the Confer-

ence on Empirical Methods in Natural Language Processing and

Natural Language Learning.

Nivre, J., 2009. Parsing Indian Languages with MaltParser. In:

Proceedings of the ICON09 NLP Tools Contest: Indian Language

Dependency Parsing.

Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S.,

Yuret, D., 2007a. The CoNLL 2007 shared task on dependency

parsing. In: Proceedings of the CoNLL Shared Task Session of

EMNLP-CoNLL 2007. Prague, Czech Republic, pp. 915–932.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S.,

Marinov, S., Marsi, E., 2007b. Maltparser: a language-independent

system for data-driven dependency parsing. Nat. Lang. Eng. 13 (2),

95–135.

Sartorio, F., Satta, G., Nivre, J., 2013. A transition-based dependency

parser using a dynamic parsing strategy. In: Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistics

(vol. 1: Long Papers). Sofia, Bulgaria, pp. 135–144.

Seddah, D., Koebler, S., Tsarfaty, R., (Eds.), 2010. Proceedings of the

NAACL HLT 2010 First Workshop on Statistical Parsing of

Morphologically-Rich Languages. Los Angeles, CA, USA.

Seddah, D., Kübler, S., Tsarfaty, R., 2014. Introducing the spmrl 2014

shared task on parsing morphologically-rich languages. In: Pro-

ceedings of the First Joint Workshop on Statistical Parsing of

Morphologically Rich Languages and Syntactic Analysis of Non-

Canonical Languages. Dublin City University, Dublin, Ireland, pp.

103–109.

Seddah, D., Tsarfaty, R., Foster, J., (Eds.), 2011. Proceedings of the

Second Workshop on Statistical Parsing of Morphologically Rich

Languages. Dublin, Ireland.

Zeman, D., 2009. Maximum spanning malt: hiring world’s leading

dependency parsers to plant Indian trees. In: Proceedings of the

ICON09 NLP Tools Contest: Indian Language Dependency

Parsing.

Zhang, Y., Clark, S., 2011. Syntactic processing using the generalized

perceptron and beam search. Comput. Linguist. 37 (1), 105–151.

Zhang, Y., Nivre, J., 2011. Transition-based dependency parsing with

rich nonlocal features. In: Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Human Lan-

guage Technologies. Portland, Oregon, USA, pp. 188–193.

Zhang, Y., Nivre, J., 2012. Analyzing the effect of global learning and

beam-search on transition-based dependency parsing. In: Proceed-

ings of COLING 2012: Posters. Mumbai, India, pp. 1391–1400.

URL: <http://www.aclweb.org/anthology/C12-2136>.

http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-guidelines/DS-guidelines-ver2-28-05-09.pdf
http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-guidelines/DS-guidelines-ver2-28-05-09.pdf
http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-guidelines/DS-guidelines-ver2-28-05-09.pdf
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0050
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0120
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0120
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0120
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0125
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0125
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0125
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0125
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0125
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0125
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0155
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0155
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0155
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0155
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0170
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0185
http://refhub.elsevier.com/S1319-1578(15)00079-8/h0185
http://www.aclweb.org/anthology/C12-2136

	Telugu dependency parsing using different statistical parsers
	1 Introduction
	2 Related work
	3 Dependency Grammar
	3.1 Telugu language
	3.2 Telugu dependency treebank

	4 Experiments and results
	4.1 MaltParser
	4.2 MSTParser
	4.3 TurboParser
	4.4 ZPar
	4.5 Easy-First Parser

	5 Analysis
	6 Conclusion and future work
	References


