
Journal of King Saud University – Computer and Information Sciences (2017) 29, 19–28
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A novel agent based autonomous and service

composition framework for cost optimization

of resource provisioning in cloud computing
* Corresponding author. Tel.: +91 9896710680.

E-mail address: singh2208@gmail.com (A. Singh).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.09.001
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Aarti Singh a,*, Dimple Juneja b, Manisha Malhotra a
aMMICT & BM, M.M. University, Haryana 133207, India
bDIMT, Kurukshetra, Haryana, India
Received 9 April 2015; revised 3 August 2015; accepted 12 September 2015
Available online 17 November 2015
KEYWORDS

Cloud computing;

Cloud mobile agent;

Cost optimization;

Resource allocation;

Virtual machine
Abstract A cloud computing environment offers a simplified, centralized platform or resources for

use when needed at a low cost. One of the key functionalities of this type of computing is to allocate

the resources on an individual demand. However, with the expanding requirements of cloud user,

the need of efficient resource allocation is also emerging. The main role of service provider is to

effectively distribute and share the resources which otherwise would result into resource wastage.

In addition to the user getting the appropriate service according to request, the cost of respective

resource is also optimized. In order to surmount the mentioned shortcomings and perform opti-

mized resource allocation, this research proposes a new Agent based Automated Service Composi-

tion (A2SC) algorithm comprising of request processing and automated service composition phases

and is not only responsible for searching comprehensive services but also considers reducing the

cost of virtual machines which are consumed by on-demand services only.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cloud computing is a business model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be elastically
provisioned on demand through world wide web and released
with minimal management effort or service provider interac-
tion. From the vast number of resources available on the
cloud, end user is required to pay only for services provided

by a concerned service provider. There are a number of virtual
machines (Ezugwu et al., 2013) present at cloud datacenter and
each virtual machine handles one resource with many

instances, respectively and since the resources are used at the
request of end user, therefore the cost of usage increases auto-
matically which becomes a major bottleneck in the deployment

of too many virtual machines. With unlimited number of
resources at cloud data center, allocating and discovering
active and most suitable service resource is another major

challenge. Besides various pros and cons associated with this

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.09.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:singh2208@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2015.09.001
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.09.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1 Cloud data center networking architecture as suggested

by CISCO (CISCO Systems, 2004).

20 A. Singh et al.
technology, enterprises are willing to execute their businesses
by shifting either to public, private or hybrid cloud where pub-
lic cloud offers the services and infrastructure off-site over the

Internet, private cloud maintains the services and infrastruc-
ture on a private network and hybrid cloud includes a variety
of public and private options with multiple providers adding to

the cost of multiple security providers also. In contrast to pub-
lic clouds which is known to be the most efficient in sharing
resources, private clouds are more efficient in terms of security

adding toward a high cost (Su et al., 2013) of maintaining the
software and infrastructure. In order to manage the aforemen-
tioned cloud centers, there exist stringent requirements and the
management of the same becomes complicated. Hence the need

of a novel strategy for resource management is quite apparent.
This work argues that mobile agents can potentially manage
resource allocation, especially in distributed applications while

considering request processing, automated service composition
and cost optimization of virtual machines as primary factors.
The current work proposes an autonomous service composition

framework relaxing the management requirements to a large
extent and hence overcoming the abovementioned cons. Next
subsection provides a brief overview of networking architecture

associated with typical data centers.

1.1. Data center networking architecture overview

A cloud data center mainly comprises of servers, infrastruc-

ture, power draw or power supporting devices (UPS, genera-
tors etc.), cooling devices and networking components (Lenk
et al., 2009). Each of these components has some cost involved

with them. Cost involved with server, infrastructure (Marrone
et al., 2013) and power supporting devices and cooling devices
in not of direct concern for the user, however networking com-

ponents are the backbone of accessing cloud services for the
user. Thus, networking is of importance for end users and ser-
vice providers. When user’s task is computation intensive and

requires resources from more than one server then the speed of
computation may drop because of an increase in propagation
delay between servers. Further, cost of communication and
cost of service would increase with increase in distance between

data centers. This is due to the fact that cost of WAN is signif-
icantly more than the cost of LANs. Thus the overall cost of
providing service to the user will increase if the service involves

use of physically distributed servers. Use of micro data centers
has been suggested to improve efficiency of services to the
users. Further agility (Greenberg et al., 2009) is the key to

reduce cost of cloud services for users which is the ability to
grow and shrink resources to meet demand of the user and
to draw those resources from optimal locations.

The existing physical structure of data centers causes hin-

drance in optimal utilization of available resources. Fig. 1
given below illustrates physical architecture of a data center,
it is taken from CISCO Systems (2004).

In a data center requests arriving from the Internet are at
layer 3 and they are identified using an IP address (layer 3),
they are routed through border and access routers to a layer

2 domain based on the destination virtual IP address (VIP).
The VIP is configured onto the two load balancers connected
to the top switches, and complex mechanisms are used to

ensure that if one load balancer fails, the other picks up the
traffic. For each VIP, the load balancers are configured with
a list of direct IP addresses (DIPs), which are the private and
internal addresses of physical servers in the racks below the

load balancers. This list of DIPs defines the pool of servers that
can handle requests to that VIP, and the load balancer spreads
requests across the DIPs in the pool.

For efficient service provisioning in clouds, user requests
should be allocated to any server in one data center or other
data centers, however present network architecture does not

support agility to that extent and leads to issues such as frag-
mentation of resources and poor server to server connectivity.
Researchers are making efforts to improve these networking
hurdles (Greenberg et al., 2008) however these problems still

prevail. This work aims to propose an intelligent service com-
position and provision mechanism so that prior to allocation
of resources, optimal hardware resources may be allocated to

user and some of networking problems may be avoided.
Rest of the paper is structured as follows. Section 2

discusses the related work in this field. Section 3 describes

the proposed technique, algorithms and flow diagram based
on it. Section 4 elaborates on the results and comparisons with
the existing techniques. Finally conclusion is given in

Section 5.

2. Related work

The section throws light on the work of some renowned
researchers who had been pillars and founders of the current
research work.

Research on resource management strategies in different

fields (Chia-Ming et al., 2014) of distributed computing with
different policies is not new. However in CC, dynamic resource
provisioning (Quang-Hung et al., 2014) without delay or any

compromise on delay is of utmost concern. Since, ubiquity
and cost-effectiveness are two keywords describing CC, cost
effectiveness centers on optimal resource allocation. Literature

has been reviewed to explore existing strategies of resource
allocation and scope of improvement. Buyya et al. (2002,
2003) presented resource allocation frameworks which could

optimize the objective function for users and resource
providers. Li et al. (2009) offered scheduling and optimization

Figure 2 Twin layered architecture of A2SC.

Novel agent based autonomous and service composition framework 21
techniques based on Service Level Agreement (SLA) ignoring
the throughput and response time of data centers. Bennani
and Menasce (2005) presented a predictive multi-class queuing

network model for computing the mean response time but the
model was not good enough to evaluate the cost in case server
switches from one application to another. Singh et al. (2015)

have presented an agent based load balancing mechanism. Arf-
een and his coworkers (Arfeen et al., 2011) focused on network
awareness and consistent optimization of resource allocation

strategies and highlighted the research issues prevailing in this
field. Zhang et al. (2010) emphasized that more efforts are
required to make the existing performance models predictive
and responsive. Zheng et al. (2009) proposed a binary integer

programming method to solve independent optimization but
linear problems only and is not suitable for dynamic and com-
plex problems. Also, a few authors (Christodoulou et al., 2007;

Doulamis et al., 2007) had proposed the game theoretic
method to solve the optimization of resource allocation in net-
work systems from the resource providers’ perspectives. Ji

et al. (2014) proposed a job scheduling algorithm based on
greedy approach. Authors have implemented their algorithm
in cloud environment and indicated success in reducing com-

pletion time of a task. Their implementation divides the tasks
based on completion time and bandwidth requirements. How-
ever, in case resources are not found in a particular data cen-
ter, this issue has not been paid attention. Hassan and Alamri

(2014) proposed a resource allocation mechanism based on
Nash Bargaining system for multimedia cloud computing,
their scheme provides dynamic resource allocation with

reduced cost. Authors have compared their algorithm with
greedy approach of migration in case of overloaded VMs
and indicated better results. However there is no bargaining

for resource utilization. Marrone and Nardone (2015) pro-
posed a model driven approach for resource allocation.
Authors have deployed an automatic negotiation model using

UML and Bayesian Network modeling approach. This works
is completely based on negotiations. However, response time
and cost optimization have been left unattended. Xiao et al.
(2013) has introduced concept of skewness to measure uneven-

ness in multi-dimensional resource utilization of a server. Dif-
ferent types of workloads can be combined to minimize
skewness and improve overall server resource utilization. This

mechanism provides overload avoidance while concerning
green computing. Yee-Ming and Hsin-mie (2010) provided
an allocation and pricing mechanism as a market-based model

for allocating resources in a cloud computing environment.
But this model is also not able to handle large scale problems
adequately. Many more resource allocation mechanisms are
available in Buyya et al. (2008), Jung and Sim (2011),

Stoesser et al. (2007), Streitberger et al. (2007) which reflects
that substantial efforts had already been put toward resource
management in cloud computing but to the best of our knowl-

edge none has proved to be suitable under all conditions. From
the literature review it is clear the main purposes of scheduling
algorithms are to minimize the resource starvation and to

ensure the effective and fair resource scheduling (Singh and
Malhotra, 2013). In fact, optimal resource allocation strategies
have always been of utmost concern for researchers and hence

the need to pay more attention on the resource scheduling poli-
cies is chirping in. Traditionally optimal resource allocation
makes use of the Hungarian algorithm, which can work only
on symmetric number of resources and requests. But, cost
sharing model of CC deploys multi-tenancy, thus resource
scheduling cannot be optimized using the Hungarian method
always. This gave us motivation for the present work which

focuses on an intelligent agent-based automated scheduling
and service composition framework for cost optimization of
resource provisioning in cloud computing. Next section elabo-

rates the proposed framework.
3. The A2SC framework

With the aim to reduce the complexity, A2SC offers a twin lay-

ered architecture (see Fig. 2) where each layer can operate
autonomously and cooperatively as well. Layer 1 named as
Automated Request Processing Layer (ARPL) is responsible

for initial request processing and locating the suitable service
providers whereas layer 2 known as Automated Service Com-
position Layer (ASCL) mainly deals with service composition

for which it might need to interact with layer 1. Each layer is
equipped with a varying set of mobile agents and the function-
ality of all operational agents as delineated in Table 1 given
below and levels i.e. ARPL and ASCL are discussed in the sub-

sequent sections.
Fig. 3 given below provides interaction between various

agents.

Upcoming subsections provide details of both layers of pro-
posed mechanism.
3.1. Automated Request Processing Layer (ARPL)

Primarily interface and assistant agents are the two active
agents executing at this level and are shown in Fig. 4. The
end user sends the resource request to data center having all

potential and available resources. On every incoming request,
interface_agent gets activated and immediately collects the rel-
evant information required for processing a request further. If
the request is found to be feasible requirement, it generates a

request id (b) and then calls for an assistant_agent assigning
the task of serving the request with respective id. Assis-
tant_agent then explores the datacenter’s resource_repository

to find resources for request in hand. On finding suitable

Table 1 Functionality of operative agents.

Sr. No. Agent Functionality

1. Interface agent Interface Agent maintains the log of all requests received from users and further associates an Assistant Agent

with every request. Also, it keeps the record of all virtual machines available for utilization along with the

services specifications

2. Assistant agent The respective assistant agent searches the resources from the available resource instances of current data

center being maintained by Interface Agent. It also keeps the cost of available resources and contains an index

of all unprocessed and processed requests along with request Ids

3. Broker agent Broker Agent is a third party agent that acts as an intermediary between consumer and service provider in

cloud computing. Its main role is to save the service searching time of consumer and provide the information

of best vendors to the customers. Broker agent composes the contracts with providers on behalf of its

customers

4. Directory agent At the time of creation of data centers, enterprises are required to register all deployed agents with Directory

Agent as this is the only agent that keeps record of all cloud agents including interface, assistant and broker

agent and maintains their status such as available or allocated. It also maintains the record of its allocation

delay time (ADT) where ADT is defined as time taken for allocation of services by the datacenter and also

tracks the workload on respective data centers

5. Resource manager

agent

Resource Manager Agent receives the user requests and corresponding resources recommended by Interface

Agent and requests by user. It plays the final and important role in the twin layer architecture by allocating the

suitable resources to every corresponding request

Figure 3 Interaction between agents.

22 A. Singh et al.
resources assistant_agent sends <req_id, list of resources> to
resource_manager_agent where resource_manager_agent main-
tains the log of all available as well as allocated resources (ai).

Since the focus of this mechanism is to optimize cost while
composing service for the user, cost of all resources allocated
to the user should be less than or equal to the cost expected
by the user in SLA. Eq. (1) given below represents user request

as a group of instances of various resources as alloc_aiIi where
alloc aiIi ¼ fa1I2 þ a2I3 þ � � � þ anI2g. There must be some
cost associated with this set represented as fiðalloc aiIiÞ, this
cost must be less than or equal to the cost specified by user
in its request i.e. fiðbiÞ. Thus at this stage every service provider
must satisfy the following goal:

aiIi () fi aiIið Þ 6 fi bið Þ 80 < bi < ai and

i ¼ 1; 2; . . . n ð1Þ

where ai represents the total number of resources available and
bi represents the number of requests by end user. aiIi is the
resource instance matrix which represents the instances of
every resource and fi describes the cost of resource.
Resource Instance Matrix ¼

a1
a2
–

an

I1 I2 � � � In

I1 I2 � � � In

– – � � � –

I1 I2 � � � In

0
BBB@

1
CCCA
Cost of each resource ¼

a1
a2
–

an

f1
f2
–

fn;

2
6664

3
7775

If the condition depicted by Eq. (1) is satisfied, then inter-
face_agent forwards all the terms and conditions such as cost,
time etc. to the requester and waits for a response for a thresh-

old time only. If the response is received within this threshold
time, interface_agent processes the request accordingly; how-
ever, if user fails to respond, it is assumed that user is no more

interested in the services of data center. Here, the requester
may opt to bargain for new services or resources not listed
in the request–responses and this calls for the execution of next
level i.e. ASCL described in the upcoming section. Further, on

Figure 4 Automated Request Processing Layer.

Table 2 Description of different cases.

Sr. No. Cases Description

1
P

ai ¼ bi It means the desired resources are equal to

the number of requests and are available in

the data center

2
P

ai > bi It means the numbers of desired resources are

less than available resources and there is

resource availability in the data center

3
P

ai < bi It means the desired number of resources or

resource instance are not available in the data

center

Novel agent based autonomous and service composition framework 23
the basis of the values ai, bi, assistant_agent determines if the
current request can be processed. There are three possible cases
as shown in Table 2 below:

All these cases deploy different course of action as dis-

cussed below:
Case I:

P
ai ¼ bi

Conventionally, the Hungarian algorithm1 is exploited by

data centers in the cases where request is equal to availability
assuming that each person (here person implies resource) can
do one job at a time though with varying degree of efficiency.

But this significant characteristic i.e. one-to-one allocation
becomes a major bottleneck in case of cloud computing. It fails
to satisfy in many cases where same request can be satisfied by a

lesser number of instances. The major contribution of this work
is to propose a modified version of the Hungarian algorithm so
1 http://en.wikipedia.org/wiki/Hungarian_algorithm.
that the same can be applied in an optimal way and hence sat-
isfying the user with lesser instances rather than one-to-one
allocation. The matrix should be based on instances of resource
so that all instances may be properly utilized. If some of the

instances have some space for more acquisition, then it would
be acquired by some user demand. The below matrix represents
the allocated instance of resources to its corresponding request.

Let us suppose the defined matrix as follows:

Resource Instance Matrix

¼

b1 b2 � � � bn

a1
a2
�
an

fI1b1; I2b1g fI3b2; I2b2g � � � fInbng
fI2b1; I2b1g fI3b1; I4b1g � � � fI5bng

– – � � � –

fI1b1; I3b1g fI2b2; I5b2g � � � fInbng

0
BBB@

1
CCCA

Now resource_manager_agent has the objective (Wang
et al., 2014) to minimize the cost with some constrains like
minimum response time and optimal utilization of every
instance. Eq. (2) given below indicates this objective function:

Minimize f ¼
Xn

i¼0

aiIi ð2Þ

Subject to constraints

b ¼
Xn

i¼0

I 80 < bi < ai ð3Þ

i.e. requested resources should be less than available resources
in the data center [refer Eq. (3)] and further the number of
resources in data center should be more than 0 as shown in
Eq. (4) below:

http://en.wikipedia.org/wiki/Hungarian_algorithm

Figure 5 Automated Service Composition Layer.

24 A. Singh et al.
a ¼
Xn

i¼0

I 80 < ai ð4Þ

After applying this algorithm the resource_manager_agent

will assign the resources to all requests and update the alloca-
tion table. Allocation table keeps the record of status of all
resources. Resource_manager_agent sends information of allo-

cated resources to the end user.
Allocation table =
 DC1 Data Center ID
 b1
 b2
 –
 bn

a1

a2

–

an
2 http://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%

93intention_software_model.
Case II:
P

ai > bi

In case the numbers of requests are less than the number of

resources, the resources will be assigned on FCFS basis satis-
fying the user demands.

Case III:
P

ai < bi

In all other cases, requests will exceed the available
resources. Now, the resource allocation can be done in
two ways. On one hand the interface_agent may suggest
the end users to modify their specifications based on BDI
(belief–desire–intention) architecture.2 The architecture is

based on the set of beliefs i.e. the goals which a system
can actually achieve, set of desires which are primarily the
requests placed and intentions are the actions that are exe-

cuted to achieve those beliefs and desires. Here, if the set
of beliefs do not match with the set of desires, the intentions
pertaining to the modification of desires are executed. The
process is repeated till the goal is reached or refused by

the client. On a similar note, interface_agent suggests the
end user to modify/reduce the number of requested
resources so that resources can be allocated as per the above

two cases. Accordingly, the interface_agent would now
arrange the resources at its own data center. In contrast
to the above strategy, scalability (Singh and Malhotra,

2012) is one of the other options. It provides an option of
moving from one cloud to another which is carried out with
the help of broker_ agent. Scalability leads to the call for

next layer i.e. Automated Service Composition Layer
(ASCL).

http://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%93intention_software_model
http://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%93intention_software_model

Figure 6.3 Broker_Agent.

Novel agent based autonomous and service composition framework 25
3.2. Automated Service Composition Layer (ASCL)

When a request is received at this layer, broker_agent gets acti-
vated and is responsible for establishing a new contract between
customer and service provider through service composition

layer. It keeps the record of all directory_agents which further
provides information about all data centers’ record of virtual
machines or resources available along with the cost of every ser-
vice, response time and workload (Malhotra and Singh, 2015)

associatedwith these resources at respective data centers.Work-
load of a data center (WLi) is calculated in terms of virtual
machines that are engaged and is given by the Eq. (5) below:

WLi ¼
X

WLi=VM ð5Þ
where

P
WLi is the total workload of data center and VM is

the number of virtual machine at that data center and it is

directly proportional to response time. If
P

WLi < VMi then
the DC is underloaded and vice versa. In fact, broker_agent
is required to search the suitable data center with minimum

response time and cost of virtual machines. On completion
of search process, a signal is communicated to interface_agent
which is further transferred to end user. If the end-user agrees
to all terms and conditions, the contract is established and a

message contract_established is communicated to resource_-
manager_agent for the final assignment of resources. Fig. 5
elaborates the procedure of ASCL.

3.3. Algorithms

Algorithms of all five agents deployed in proposed mechanism

are given in Figs. 6.1–6.5 below:

Interface_Agent (IA)
Figure 6.1 Interface_Agent.

Figure 6.4 Directory_Agent.
Assistant_Agent (AA)
Figure 6.2 Assistant_Agent.
Broker_Agent (BA)
Directory_Agent (DA)
Resource_Manager_Agent (RMA)
Figure 6.5 Resource_Manager_Agent.
3.4. Workflow

See Fig. 7.

Figure 7 Workflow of proposed A2SC framework.

Table 3 Available resources and their respective elements.

Data centers available No. of available resource per data center No. of instance per resource

Data Center – 1 4 {xp, ubuntu, win7, win8} 4

Data Center – 2 4 {xp, ubuntu, win7, win8} 4

Data Center – 3 4 {xp, ubuntu, win7, win8} 4

26 A. Singh et al.
Next section discusses the experimental outputs achieved.

4. Experimental results

This section presents the performance and result of proposed

system in a small environment. The proposed mechanism
being implemented is JAVA. Java is being chosen for this pur-
pose because of its web based nature and support to agent

technology. For the initial experiment we have considered
three data centers having four resources namely XP, ubuntu,
win7 and win8, respectively. We have assumed that there are

four instances of each resource type. Table 3 given below pro-
vides the experimental setup.
Table 4 given below provides description of various

resources in each data center. As discussed earlier how the
assignment would be done, it is implemented in the code and
afterward the corresponding response time taken for the

resources allocation and also the cost for every instance
assigned as per the user’s request are calculated. This entire
implementation has been done on a small scale which could

be further enforced at a large scale using the appropriate tech-
nology and the required resources. We have taken different
numbers of requests, for the same as well as different resources
from that available in data centers and recorded the response

time and cost incurred.
Table 5 shows the results after implementation.

Table 4 Description of available resources.

Resources XP Win7 Ubuntu Win8

1st Data Center

Instances Dotnet Dotnet Java Office

Office Office Office Java

Java VBasic Dotnet VBasic

VBasic Java VBasic Dotnet

2nd Data Center

Instances Dotnet Dotnet Dotnet Dotnete

Php Php Php Php

Java Oracle mysql Java

Oracle Office Vbasic mysql

3rd Data Center

Instances Oracle Java Php Oracle

Vbasic Dotnet Oracle Php

Office Php Java Java

mysql Office Dotnet Office

Table 5 Cost and response time as per the user’s requests.

Various cases No. of requests Response

time

Cost

calculation
P

ai >
P

bi (i) Requests = 2

(ii) Requests = 1

(iii) Requests = 3

(i) 5.953 s

(ii) 3.762 s

(iii) 6.703 s

(i) $9

(ii) $4

(iii) $13P
ai <

P
bi 5 10.391 s $20

Requests not found

in same data center

2 10.656 s $10

Figure 8 Illustration of response time and cost estimation as per

user’s requests.

Figure 9 Illustration of response time and cost estimation as per

user’s requests.

Novel agent based autonomous and service composition framework 27
Fig. 8 illustrate the response time and cost of virtual
machine as per the user request. As the number of requests
would increase, the response time (in seconds) and total cost

($) also increased.
Fig. 9 indicates the difference between response time and

cost, when the requests are allocated from same or different

data centers. While repeating the experiment with varied num-
ber of resource requests it is achieved that when same instances
are requested more, response time increases due to increase in

total workload, however cost of resources does not increase,
and even using scalability. Thus it is achieving the objective
of cost optimization.

5. Conclusion

The work presented in this paper proposes a unique, intelligent

and automated assignment strategy for assigning resources in
cloud computing environment. In this mechanism various
intelligent agents have been deployed to reduce system com-
plexity by modularization. Broker agent facilitates search for

optimal data center as per user requirements and service com-
position on user behalf till a contract is established between
two parties or user enters a new service specification. Thus

the proposed framework contributes toward eliminating user
headache of finding optimal service provider in any situation
and ensures efficient service allocation at the data centers.

The proposed work also eliminates the limitation of the exist-
ing Hungarian algorithm and extends it by introducing two
more cases and eliminating the one to one correspondence
for resource allocation. The proposed strategy has also been

implemented and results are found to be acceptable.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.jksuci.
2015.09.001.

References

Arfeen, M.A., Pawlikowski, K., Willing, A.A., 2011. Framework for

resource allocation strategies in cloud computing environment. In:

Proceedings in 35th IEEE Conference on Computer Software and

Application, pp. 261–266.

Bennani, M.N., Menasce, D.A., 2005. Resource allocation for auto-

nomic data centers using analytic performance models. In:

Proceedings of IEEE International Conference on Autonomic

Computing, Seattle, pp. 192–208.

Buyya, R., Abramson, D., Giddy, J., Stockinger, H., 2002. Economic

models for resource management and scheduling in grid comput-

ing. Concurr. Comput. Pract. Exp., 1507–1542 (Special Issue on

Grid Computing Environments)

Buyya, R., Branson, K., Giddy, J., Abramson, D., 2003. The virtual

laboratory: enabling molecular modeling for drug design on the

world wide grid. Concurr. Comput. Pract. Exp. 15 (1), 1–25.

Buyya, R., Yeo, C.S., Venugopal, S., 2008. Market oriented cloud

computing: vision, hype, and reality for delivering IT services as

computing utilities. In: Proceedings of 10th IEEE International

Conference on High Performance Computing and Communica-

tions, pp. 234–242.

Wu, Chia-Ming, Chang, Ruay-Shiung, Chan, Hsin-Yu, 2014. Green

energy-efficient scheduling algorithm using the DVFS technique for

cloud datacenters. Future Gener. Comput. Syst. 37, 141–147.

http://dx.doi.org/10.1016/j.jksuci.2015.09.001
http://dx.doi.org/10.1016/j.jksuci.2015.09.001
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0015
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0015
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0015
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0015
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0020
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0020
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0020
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0030
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0030
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0030

28 A. Singh et al.
Christodoulou, G., Koutsoupias, E., Vidali, A., 2007. A lower bound

for scheduling mechanisms. In: ACM-SIAM Symposium on

Discrete Algorithms, pp. 1163–1169

CISCO Systems, 2004. Data center: Load balancing data center

services.

Doulamis, N., Doulamis, A., Litke, A., Panagakis, A., Varvarigou, T.,

Varvarigos, E., 2007. Adjusted fair scheduling and non-linear

workload prediction for QoS guarantees in grid computing.

Comput. Commun. 30, 499–515.

Ezugwu, Absalom E., Buhari, S.M., Junaidu, S.B., 2013. Virtual

machine allocation in cloud computing environment. Int. J. Cloud

Appl. Comput. (IJCAC) 3 (2), 47–60.

Greenberg, A., Lahiri, P., Maltz, A.D., Patel, P., Sengupta, S., 2008.

Towards a next generation data center architecture: scalability and

commoditization. In: PRESTO’08, Seattle, Washington, USA.

Greenberg, A., Hamilton, J., Maltz, A.D., Patel, P., 2009. The cost of a

cloud: research problems in data center networks. ACM SIG-

COMM Comput. Commun. Rev. 39 (1), 68–73.

Hassan, Mohammad Mehedi, Alamri, Atif, 2014. Virtual machine

resource allocation for multimedia cloud: a Nash bargaining

approach. Procedia Comput. Sci. 34, 571–576.

Li, Ji, Feng, Longhua, Fang, Shenglong, 2014. An greedy based job

scheduling algorithm in cloud computing. J. Software 9 (4), 921–

925.

Jung, G., Sim, K.M., 2011. Agent based adaptive resource allocation

on the cloud computing environment. In: Proceedings of IEEE

Conference on Parallel Processing Workshop, pp. 345–351.

Lenk, A., Klems, M., Nimis, J., Tai, S., Sandholm, T., 2009. What’s

inside the cloud? An architectural map of the cloud landscape. In:

Proceedings of the ICSE Workshop on Software Engineering

Challenges of Cloud Computing (CLOUD ‘09), pp. 23–31.

Li, J., Chinneck, J., Wodside, M., Litoiu, M., 2009. Fast scalable

optimization to configure service system having cost and quality of

service constraints. In: Proceedings of 6th IEEE International

Conference on Autonomic System, Barcelona, pp. 159–168.

Malhotra Manisha, Singh Aarti, 2015. Adaptive framework for load

balancing to improve the performance of cloud environment. In:

IEEE International Conference on Computational Intelligence and

Communication Technology, pp. 224–228.

Marrone, Stefano, Nardone, Roberto, 2015. Automatic resource

allocation for high availability cloud services. Procedia Comput.

Sci., 980–987

Marrone, S., Nardone, R., Tedesco, A., D’Amore, P., Vittorini, V.,

Setola, R., et al, 2013. Vulnerability modeling and analysis for

critical infrastructure protection applications. Int. J. Crit. Infras-

truct. Prot. 6 (34), 217–227.
Quang-Hung, N., Thoai, N., Son, N., 2014. EPOBF: energy efficient

allocation of virtual machines in high performance computing

cloud. In: Transactions on Large-Scale Data and Knowledge-

Centered Systems XVI; LNCS. pp. 71–86. ISBN: 978-3-662-45946-

1; 2014.

Singh, A., Malhotra, M., 2012. Agent based framework for scalability

in cloud computing. Int. J. Comp. Sci. Eng. Technol. (IJCSET) 3

(4), 41–45.

Singh, A., Malhotra, M., 2013. A comparative analysis of resource

scheduling algorithms in cloud computing. Am. J. Comp. Sci. Eng.

Surv. 1 (1), 1–19.

Singh, A., Juneja, D., Malhotra, M., 2015. Autonomous agent based

load balancing algorithm in cloud computing. Procedia Comput.

Sci. 45, 832–841, Published in International Conference on

Advanced Computing Technologies and Applications, Science

Direct.

Stoesser, J., Roessle, C., Neumann, D., 2007. Decentralized online

resource allocation for dynamic web service applications. In:

Proceedings of 4th International Conference of Enterprise Com-

puting, E-Commerce, and E-Service, pp. 425–428.

Streitberger, W., Eymann, T., Veit, D., Catalano, M., Giulioni, G.,

Joita, L., Rana, O.F., 2007. Evaluation of economic resource

allocation in application layer networks a metrics framework.

In: Organisation: Service-, Prozess-, Market-Engineering, pp. 447–

494.

Su, Sen, Li, Jian, Huang, Qingjia, Huang, Xiao, Shuang, Kai, Wang,

Jie, 2013. Cost-efficient task scheduling for executing large

programs in the cloud. Parallel Comput. 39, 177–188.

Wang, Xiao li, Wang, Yuping, Cui, Yue, 2014. A new multi-objective

bi-level programming model for energy and locality aware multi

job scheduling in cloud computing. Future Gener. Comput. Syst.

36, 91–101.

Xiao, Z., Song, W., Chen, Q., 2013. Dynamic resource allocation using

virtual machines for cloud computing environment. IEEE Trans.

Parallel Distrib. Syst. (TPDS) 24 (6), 1107–1117.

Yee-Ming, C., Hsin-mie, Y., 2010. Autonomous adaptive agents for

market-based resource allocation of cloud computing. In: Proceed-

ings of the 9th International Conference on Machine Learning and

Cybernetics, Qingdao, vols. 11–14, pp. 2760–2764.

Zhang, Q., Cheng, L., Boutaba, R., 2010. Cloud computing: state-of-

the-art and research challenges. J. Internet Serv. Appl., 7–18

Zheng, Y., Vasilakos, V.A., Wei, G., Xiaong, N., 2009. A Game-

theoretic Method of Fair Resource Allocation for Cloud Comput-

ing Services. Business Media, LLc, pp. 252–269, Published in

Springer Science.

http://refhub.elsevier.com/S1319-1578(15)00084-1/h0045
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0045
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0045
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0045
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0050
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0050
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0050
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0060
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0060
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0060
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0065
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0065
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0065
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0070
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0070
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0070
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0095
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0095
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0095
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0100
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0100
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0100
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0100
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0110
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0110
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0110
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0115
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0115
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0115
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0120
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0120
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0120
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0120
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0120
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0135
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0135
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0135
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0140
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0140
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0140
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0140
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0150
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0150
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0150
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0160
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0160
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0165
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0165
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0165
http://refhub.elsevier.com/S1319-1578(15)00084-1/h0165

	A novel agent based autonomous and service�composition framework for cost optimization�of resource provisioning in cloud computing
	1 Introduction
	1.1 Data center networking architecture overview

	2 Related work
	3 The A2SC framework
	3.1 Automated Request Processing Layer (ARPL)
	3.2 Automated Service Composition Layer (ASCL)
	3.3 Algorithms
	3.4 Workflow

	4 Experimental results
	5 Conclusion
	Appendix A Supplementary data
	References

