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Abstract This article consists of using biologically inspired algorithms in order to detect

potentially interesting structures in large and multidimensional data sets. Data exploration and

the detection of interesting structures are based on the use of Projection Pursuit that involves the

definition and the optimization of an index associated with each direction or projection. The opti-

mization of a projection index should provide a set of multiple optima that is expected to corre-

spond to interesting graphical representations in low dimensional space. The implementation of

the bio-inspired algorithms along with the projection pursuit develops a new software called

EPP-Lab. Projection pursuit is widely used in different scientific domains (biology, pharmacy,

bioinformatics, biometry, etc) but not widely present in the well-known softwares. EPP-Lab is ded-

icated to recognize and visualize clusters and outlying observations on one dimension from high

dimensional and multivariate data sets. It includes different statistical techniques for results analy-

sis. It provides several features and gives the user the option to adjust the parameters of the selected

bio-inspired methods or to use defaults values. EPP-Lab is a unique software for detection, visual-

ization and analysis of non-linear structures. The performance of this tool has been validated by

testing different real and simulated data sets.
� 2016 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In computer science and especially Artificial Intelligence, meta-
heuristic is a technique intended to find an approximate solu-
tion for hard and combinatorial optimization problems in a

reasonable time. Metaheuristic methods include nature-
inspired by social behavior (Particle Swarm Optimization, Ants
Colony Optimization, Bee Colony, Firefly, etc) or by Darwin

evolutionary biology (Genetic Algorithms, Genetic program-
ing, Evolution strategies, etc). Most of them solve hard and
combinatorial problems (Sevkli et al., 2014; Goswami and

Mandal, 2013; Upadhyay et al., 2014) by handling a set of solu-
tions and maintaining a balance between diversification (explo-
ration of the solution space) and intensification (exploitation of

the accumulated knowledge). This research work concerns the
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use of biologically inspired algorithms to find out potential
interesting structures in large and multidimensional data sets.
Extracting hidden information from data of large dimensions

involves employing exploratory data analysis methods. A Prin-
cipal Component Analysis is one known method of statistical
analysis that is based on projecting the data on dimensions that

maximize the dispersion of the observations. However, maxi-
mizing the dispersion does not constantly lead to the detection
of interesting structures. In this study, Projection Pursuit (PP),

one of Exploratory Projection Pursuit methods, is used. It con-
sists of finding interesting low dimensional projections of high
dimensional multivariate data (Jones andSibson, 1987; Huber,
1985). Based on human visualization, low dimension means

(one- two- three) dimensions. PP focuses on the definition
and the optimization of an index associated with each direction
or projection space. To optimize the projection indices, exact

optimization methods (Newton, Steepest ascent, etc) were
applied. These methods require the properties of regularity that
most of the projection indices do not provide. On the other

hand, the main characteristic required for PP is to find multiple
optima corresponding to different interesting structures
(Friedman, 1987; Morton, 1989; Sun, 1993). However, these

exact methods cannot provide multiple optima. Hence, the
use of bio-inspired algorithms is encouraging. They can, not
only find a global optimum (approximate solution) but also
several local optima (using several runs) corresponding to dif-

ferent potential interesting projections. Among the different
bio-inspired algorithms, Genetic Algorithm (GA), Particle
Swarm Optimization (PSO) and a hybrid Particle Swarm Opti-

mization method called Tribes are employed. The performance
of these selected methods combined with PP has been validated
in Berro et al. (2010) and Mari-Sainte et al. (2010).

This study is focused on the detection of clusters and outlying
observations. Clustering is one of the main tasks of data mining
and mainly importuned in different domains (Alghamdi et al.,

2014; Aljumah et al., 2013). Outlier detection involves removing
anomalous observations from data (Hogge and Austin, 2004).
Outliers occur due to mechanical faults, fraudulent behavior,
human error, device fault or natural deviations in populations.

Theirdetection can eliminate contaminatingeffecton thedata set.
Although PP has been used for this purpose in different

domains (biology, bioinformatics, image processing, biometry,

etc), its implementation is not satisfactory (Caussinus and
Ruiz-Gazen, 2009).

Therefore, having a software including PP has become

indispensable in many scientific disciplines that use this
statistical analysis method. In this article, one-dimensional
projection pursuit method, including five projection indices,
is implemented along with the selected bio-inspired methods

in order to obtain a powerful tool called Exploratory Projec-
tion Pursuit Laboratory (EPP-Lab).

EPP-Lab is dedicated to look for hidden non-linear

structures in high dimension data sets, particularly clusters
and outlying observation. This software is designed with col-
laboration of statisticians. It gives the user the option to adjust

the parameters of the bio-inspired methods implemented or to
use the defaults values. In addition, it provides new ways for
the analysis of the results. EPP-Lab is a unique tool for

clusters-outliers detection, visualization and analysis.
To validate the performance of this software, several real

and simulated data sets are treated, and some data sets are
large and with complex structures.
The rest of this paper is organized as follows. Section 2
introduces the principle notion and definition of PP. Section 3
presents the related works. Section 4 addresses the methodol-

ogy of the implemented techniques. Section 5 gives a global
presentation of EPP-Lab and its main features. Section 6
illustrates the EPP-Lab application and results using several

real and simulated data sets to determine clusters and detect
outliers, in addition to a small part of comparison studies
along with the convergence study. Section 7 tackles the compu-

tation time and the limitation of EPP-Lab. Finally Section 8
concludes this research work.

2. Projection Pursuit

PP method seeks to look for low- (one-, two-, three-) dimen-
sional projections that provide potential interesting structures

hidden in multidimensional and large data sets. The notion of
‘‘interesting” structures is defined by a suitable projection
index function IðaÞ, depending on a normalized projection vec-
tor a. This index tries to find the degree of nonlinear structure

present in the projected distribution. Let denote by X : N� P
the data set matrix of N cases and P variables. Let Xi is the ith
column vector in Rp associated with the ith observation. This

study focuses on one-dimensional projection. The projection
vector can be defined from Rp to R as z ¼ Xa; a is a
P-dimensional vector defining the linear transformation, and

z is a N-dimensional vector corresponding to the coordinates
of the projected observations. So, determining a projection is
equivalent to determining a. In other words, this matter is
equivalent to optimize a selected projection index.

The present work focuses on four particular one-
dimensional indices. The Friedman–Tukey index (Friedman
and Tukey, 1974) is the first index proposed in the context

of EPP and it is interesting for the detection of outliers. The
Friedman’s index (Friedman, 1987) belongs to the family of
the polynomial-based indices, it performs particularly well in

detecting separations or clusters compared with other indices
from the same family (Sun, 1993). The kurtosis index is based
on the fourth moment and has been studied in Peña and Prieto

(2001) and Achard et al. (2004). We also consider a new pro-
posal suited to the detection of clusters called ‘‘discriminant
index” (Berro et al., 2010). All these indices are well defined
and applied for the detection of clusters and/or outliers in

Berro et al. (2010) and Mari-Sainte et al. (2010).
One of the most important characteristic of PP method is

sphering the data. The sphering step is generally applied to data

before the PP step. It consists of eliminating scale and correla-
tion structure in the data sets in order to find other aspects of
the data. It also ensures the difference between any structures

found by PP and those found by Principal Components Anal-
ysis. This characteristic is implemented in EPP-Lab.

PP is less widely used compared with PCA but is more
powerful than PCA in many cases because PCA only considers

the second order moment and may miss interesting hidden
structures that can be easily discovered by another EPP tech-
nique (Jones and Sibson, 1987). Indeed, important aspects of

the data structure are likely to appear in none of the principal
subspaces as this may be seen in Fig. 1. Suppose that the whole
dimension is larger than 2 and the straight lines are parallel to

subspaces of dimension 2. The first principal plane of PCA,
roughly the horizontal axis in this example, is clearly unable



Figure 1 An illustration of EPP and PCA.

4 S.L. Marie-Sainte
to reveal the two clusters. These clusters could only appear by
chance on further projections, and outliers cannot appear on

any of the principal two-dimensional subspaces but only by
projecting on the oblique line.

3. Related works

Optimization procedures for PP have been developed by sev-
eral authors. Friedman and Tukey (1974) optimized their pro-

jection index using the Hill climbing optimization method.
However, the projected data changed smoothly with projection
direction due to the flatness disadvantage of ‘‘Hill clumbing”
(Jones and Sibson, 1987). Friedman (1987) used the steepest

ascent and the quasi-Newton optimization methods; and
(Morton, 1989; Sun, 1993) modified the Friedman algorithm.
Peña and Prieto (2001) proposed to use two optimization

methods: a modified version of the Newton’s algorithm and
an optimization method based on the first-order optimality
conditions. However, they showed that if the projections were

computed for only one direction, then some clusters might
mask the presence of others. For other projection indices such
as the ones proposed by Morton (1989); Yenyukov (1989);

Nason (1992); Posse (1995a); Posse (1995b), their suggested
methods are also based on gradient information (steepest
ascent, conjugate gradient methods, etc), while (Crawford,
1991; Achard et al., 2004) used heuristic optimization methods.

As highlighted above, the main goals of PP methods are the
detection and the visualization of several interesting projections
associated with different local optima of a projection index.

Most of existing PP optimization algorithms do not find more
than one optimum. Therefore, different alternatives have been
proposed to achieve this purpose. One alternative focused on

the optimization of the projection indices in successive orthog-
onal subspaces as in PCA (used in Peña and Prieto (2001)). In
fact, after finding an optimum for the projection index, the
index is re-optimized in the orthogonal subspace of the direc-

tion of the initial optimum and so on. More solutions in the ini-
tial space (oblique projections) may be interesting but
unfortunately they may be missed. Another alternative called

structure removal consists of applying a transformation to the
data that removes the structure present in the solution (projec-
tion) while preserving the multivariate structure that is not cap-

tured by it. The PP optimization algorithm is then applied to
these transformed data to find additional views that may yield
further insight. However, the transformation of the data is per-

formed each time a solution is found, which makes this alterna-
tive time consuming. This idea was first used by Friedman
(1987), and then employed by Morton (1989) and Sun (1993).

PP is used to solve real problems such as detecting outliers

in the field of pharmaceutical trials (Baker, 1991); relating soil
patterns to vegetation patterns in ecology (Clements and
Jones, 1991); hyperspectral imagery (Achard et al., 2004;
Malpika et al., 2008), bioinformatics (Faith and Brockway,

2006) and biometric identification (Ghodami and Larabi,
2015). So, such a method still needs to be developed
(Caussinus and Ruiz-Gazen, 2009) when noticing the few num-

ber of available softwares.
For the existing softwares, Jones and Sibson (1987) pro-

posed procedures written in Fortran to calculate the univariate

and bivariate improved index of Friedman and Tukey (1974).
Friedman (1987) also proposed a software written in Fortran.
Nason (1992) wrote an Splus function to calculate the three
dimensions index he proposed. All these procedures are avail-

able on the web site of Guy Nason about PP. Jiayang Sun also
implemented the Friedman index in Fortran and C and her
program can be installed as a library for S-Plus. The imple-

mentation used a steepest ascent approach and the structure
removal proposed by Friedman. The software is called Interac-
tive Projection Pursuit and is available on his web site (see

Caussinus and Ruiz-Gazen (2009)). PP technique is also pre-
sent in Matlab since 2001. Martinez andMartinez (2001) devel-
oped a computational statistics toolbox in Matlab with some

EPP procedures. The index they used is known as the chi-
square index and is developed in Posse (1995a,b)). Through
a random search, Posse succeeded in determining the global
optimum of the projection index and combining it with the

structure removal of Friedman (1987) in order to obtain a
sequence of interesting 2-dimension projections. Another data
analysis tool called Autonomous Projection Mapping (APM)

has been developed for the analysis of data from the semicon-
ductor environment (Rohatsch et al., 2006). It implements sev-
eral indices such as the one proposed by Posse and several

optimization algorithms such as genetic algorithms. Several
structure removal procedures are implemented: the one pro-
posed by Friedman and the projection on orthogonal sub-

spaces. The interface is written in Delphi but does not seem
to be available. All the above-mentioned implementations fol-
low the usual strategy based on iterating a local exact opti-
mization method and structure removal steps. XGobi and

GGobi are interactive and dynamic software systems for
high-dimensional data visualization where PP is implemented
dynamically (Swayne et al., 2003). GGobi is directly derived

from XGobi. GGobi contains several projection indices dedi-
cated to reveal different structures (clusters, outliers, holes,
. . .). The initial starting values are either chosen at random

or by the user who looks at the point cloud rotating. So the
strategy is different from the one used in the other implemen-
tations. The optimization algorithm searches for local optima
and there is no need for structure removal. However, for high

dimension data sets with complex structure, looking at rotat-
ing clouds for a long time in order to discover some potentially
interesting starting points may be tedious.

We noticed that the rare existing implementations for EPP
are not completely satisfactory. First, most of the optimization
algorithms rely on gradient information which imply regularity

conditions on the projection indices. Second, the optimization
algorithms are usually tuned to get only one ‘‘global” optimum
(always the same for different starting projections). Moreover,

the structure removal may miss some interesting projections
or/and is also time consuming. The GGobi/XGobi proposes
another strategy but as said previously, the data-analyst has
to stay in front of the computer during the whole pursuit
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process which also may be very time consuming for high-
dimensional data sets. In the following of this study, a different
strategy is addressed. We propose a new software including

algorithms that do not rely on regularity conditions of the
indices and provide different local optima. This research work
was part of the author’s Ph.D. thesis.

4. Projection Pursuit Algorithms based on Bio-inspired

Algorithms

PP relies on a projection index and an optimization method
called a projection pursuit algorithm. This optimization algo-
rithm should be efficient and flexible in finding out global

and local optima susceptible to reveal possible interesting pro-
jections at a reasonable time. Evolutionary and biologically
inspired algorithms are well known in solving hard and combi-

natorial optimization problems. In this work, Genetic Algo-
rithms (GA), Particle Swarm Optimization (PSO) and a
variant of the Particle Swarm Optimization called Tribes are
employed.

4.1. Genetic Algorithms

Genetic Algorithms (GA) are introduced by Holland (1975)

and consist of an evolutionary algorithm inspired by Dar-
winian evolution biology. GA includes inheritance, selection,
mutation and crossover.
Window 2
Indices, algorithms and 

   parameters choice.
   Data transformation.
   Graphics and display  
   frequency choice    
   Convergence curve.

Figure 2 Global presentati
The population of individuals is randomly generated in
order to cover the search space. These individuals must be rep-
resented in a specific encoding such as the binary encoding.

Each individual is evaluated by means of the fitness function
that represents the objective function to be optimized. At each
iteration, every individual is evaluated and may be selected and

modified (recombined with a possible mutation) to produce a
new population. This new population will be used in the next
iteration of the algorithm. Usually, the algorithm ends once a

maximum iteration number is reached.
In this study we focused on the arguments outlined in Fogel

et al. (1966), Rechenberg (1973), Schwefel (1981), and Holland
(1975). The initialization of the population is done randomly

and the population size is set in the experiment section. Each
individual is encoded in real numbers and represents the pro-
jection vector defined in Section 2. The fitness function is rep-

resented by the projection index also mentioned in Section 2.
To select an individual, the tournament selection of 3 partici-
pants is applied. Then, the 2-point crossover with pc ¼ 0:65
is applied to all the populations. After the selection and the
crossover are achieved, a new population of individuals is cre-
ated either directly copied or produced by crossover. In order

to ensure that the individuals are different, a mutation opera-
tor is employed to all the individuals with pm ¼ 0:05 by choos-
ing randomly one gene and replacing it by a random real value.
Algorithm 1 summarizes the proposed GA version. The
Window 1
Projection pursuit: 

     Mode and structure 
     choice.
     Data set.
  or Projection analysis 
  from a results file

Window 3
Outliers criterion.

    Input data.
    Graphics choice (histogram /  
    kernel density).
    Index, cosine and outliers plots.
    Projections using a selected part  
    of the data.

on of Epp-Lab software.
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choices of genetic operator parameters made in this study are
based on some experimentations.

Algorithm 1. Genetic algorithm pseudocode

The number of individuals and the number of training iter-
ations are chosen such that the optimum reached cannot be

improved easily (by several trials and experimentations). These
parameters depend on the data set and on the projection index
(Holland, 1975).

4.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) developed by Kennedy

and Eberhart (1995) is a population based stochastic optimiza-
tion technique inspired by social behavior of bird flocking or
fish schooling. PSO differs from GA in the way that it has

no evolution operators such as crossover and mutation. In
PSO, the swarm is composed of potential solutions called par-
ticles randomly initialized. Each particle is evaluated by the fit-
ness function to be optimized. The movement of the swarm is

directed by the particle itself, the best particle (a particle hav-
ing the best performance) and the velocity. In other words, at
each iteration each particle position is updated according to its

best position achieved so far (called pbest), the best position of
the best particle of the swarm (called global best and denoted
Algorithm 2. PSO pseudocode
by gbest) and the velocity. Moreover, the movement of a par-
ticle can be affected by its neighbors, especially the best neigh-
bor particle (called the local best and denoted by lbest). In this

case, the particles move in the search space in close proximity
to the local best into the neighborhood set and do not explore
the rest of the search space. The definition of the neighborhood

depends on the search purpose. Small neighborhoods lead to a
slower convergence (to the local best) while large neighbor-
hoods leads to a faster convergence (to the global best). With

a global best, the representation of a neighborhood consists of
the entire swarm. Furthermore, PSO algorithm needs utilizing
some parameters which their manipulation can cause surpris-
ing changes in the system’s behavior. PSO requires using either

the maximum velocity parameter (denoted by Vmax) or the
inertia parameter. Vmax is fixed to avoid a rapid moving of
particles from one region to the other in the search space. In

addition, it prevents explosion and scales the exploration
of the particle’s search. The inertia factor controls the influ-
ence of the velocity obtained in the previous step. A large

inertia factor causes a large exploration of the search space
while a small inertia factor concentrates the search on a small
space.

Many extensions have been suggested to improve PSO
algorithm. This study employs the original version introduced
by Kennedy and Eberhart (1995) and modified by Clerc
(2006). In this implementation, the particle represents the pro-

jection vector of P dimensions. The velocity and the particles
are randomly initialized. Vmax parameter is applied
Vmax ¼ ðprojectionmax � projectionminÞ=2 and Vmin ¼ �Vmax.

The fitness function is represented by the projection index as
well as in GA. In order to explore simultaneously several
regions of the search space to find local optima before finding

a global optimum, a new neighborhood version called the
Cosine neighborhood is proposed. The idea is to divide the
swarm into several groups such that the cosine angle between

each projection vector (particle) in the same group should not
exceed 30 degrees (for more detail see Berro et al., 2010). In
each group, the particle is strictly controlled and moves follow-
ing its best position (pbest) and that of its group (lbest). Once

all the particles positions are updated, this structure will be
updated by the creation of new groups. Algorithm 2 summa-
rizes the proposed PSO.



Table 1 Italian regions and areas for oils.

Regions Areas

Southern Italy Apulia, Calabria and Sicilia

Sardinia Sardinia

Northern Italy Liguria and Umbria
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4.3. Tribes

Tribes is a hybrid free parameter PSO method developed by
Clerc (2006). Tribes method involves a swarm of several sized
groups of particles called Tribes. In each Tribe, the particles

are interconnected to know the best particle of the tribe
(intra-tribe communication). The tribes are linked between
them to make a global decision (inter-tribe communication).
This structure can be developed and updated through creation,

evolution and deletion of particles and tribes. This develop-
ment depends on measures of quality of tribes (good or bad)
and particles (good or neutral) determined through the evalu-

ation of the fitness function. Contrary to PSO, the particles
move in the search space through certain moving strategies
based on hyperspherical probability distributions, which may

be with or without noise, or independent Gaussian. This con-
figuration allows exploring concurrently several promising
areas, usually around local optima before making a global

decision. For more details, the reader can refer to Mari-
Sainte et al. (2010) and Clerc (2006). This method has no
parameter to settle, it only requires the definition of a particle
(projection vector), the fitness function (the projection index)

and also the number of iterations. Algorithm 3 briefly
describes the whole method. Note that, position means the cur-
rent position of a particle, pbest is the best position memorized

by the particle, and gbest is the best position memorized by the
best particle of the swarm.
Algorithm 3.Tribes pseudocode
5. Global representation of EPP-Lab

EPP-Lab is a software dedicated to detect hidden non-linear

structures in high dimensional data sets. It is designed for han-
dling EPP by using bio-inspired optimization algorithms. It
contains three optimization methods (GA, PSO and Tribes)

addressed in the above section and five projection indices
(Friedman, Friedman Tukey, Discriminant, Maximum and
Minimum Kurtosis indices). For more details about the pro-
jection indices, the reader can refer to Berro et al. (2010),

Ruiz-Gazen et al. (2010), and Mari-Sainte et al. (2010). The
code of EPP-Lab is implemented in the JAVA6 language,
available on (https://www.researchgate.net/publication or

DOI: http://dx.doi.org/10.13140/RG.2.1.4522.2480).
The interface is a combination of graphical and numerical

representations. EPP-Lab includes three main windows and

each one has its principle role as shown in Fig. 2.
EPP-Lab gives the user the option to projection pursuit or

projection analysis. In the first case, the user can choose the
‘‘mode” (expert mode offers a wide choice to the user and

semi-automatic provides only the choice of parameters), the
structure to be looked for (clusters or outlying observations)
and can define the data set in addition to the projection index

and the optimization method. It gives the user the option to
sphere the data and to set parameters. In the second case,
EPP-Lab offers the user the option to show projection analysis

from a results file. It allows getting directly the analysis win-
dow without going through the projection pursuit and the
optimization step. Since the results file is saved, it can be ana-

lyzed in order to visualize the results at any time, which is a
great advantage for this application. The result file (in text for-
mat) includes all information about the input (such that the
date/time of creating the file, data file name, the data dimen-

sion, the selected projection index, the applied optimization
method and its parameters, the number of iterations and runs)
as well as the output such as the optimum value of the projec-

tion index and its associated solution (the provided projection
vector) for each iteration and for each run. Note that the input
file is a text file containing the data set matrix as described in

Section 2 and its dimensions.
The interesting structures obtained after the optimization

process is displayed by a graphic. This graphic is addressed

using the distribution of the projected data associated with
the optimum (or local optimum) for the projection index. It
may be a kernel estimator or a histogram. The histogram gra-
phic is built as follows. Once the data are projected, we set an

integer value of the minimum and maximum coordinates of the
projected data. Then we decide the number of segments to be
cut. The length of each segment depends on the number of ele-

ments in this segment. For the kernel estimator, we use the tri-
weight kernel (Klinke, 1997) defined in Eq. (1).

https://www.researchgate.net/publication
http://dx.doi.org/10.13140/RG.2.1.4522.2480


Table 2 Parameters of GA and PSO.

Methods Parameters Small data sets: Large data set:

Lubischew olive, reliability &

simulated

GA Individuals 50 100

Iterations 20 50

PSO Particles 20 50

Iterations 50 100

Fitness

evaluations

1000 5000
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KðzÞ ¼ 35

32
ð1� z2Þ3Rfjzj61g ð1Þ

where RX denotes the dummy variable associated with the set
X, and z is the coordinates of the projected data.

In order to analyze several projections and understand the
differences between several univariate representations of the
data, the projection index values and the cosines of the angles

between any two projection vectors are studied. The projec-
tions are ordered according to the decreasing values of the pro-
jection index and the values of the index are plotted so that the

local optima are easily detected. We recall that all the projec-
tion indices included in EPP-Lab are to be maximized except
the discriminant index and the kurtosis index offered to search

for clusters. Without loss of generality, we maximize the minus
kurtosis and the minus discriminant indices. The local optima
can reveal different structures. However in some cases, differ-
ent projection index values can correspond to the same struc-

ture. The correlation coefficient between two linear
combinations associated with both projection vectors can indi-
cate whether these two projection directions yield the same

projection or not. This coefficient is equal to the cosine of
the angle between these two projection vectors (provided that
the data are spherical and the projection vectors are normal-
Lubischew
MinKurtosis

PSO 

Lubischew
MinKurtosis

Tribes

Lubischew
Friedman

Tribes 

Lubischew
Friedman

PSO 

Lubischew
Discriminant

Tribes 

Lubischew
Discriminant

PSO 

Figure 3 Lubischew example: plots of the ranked indices (left plot) a

projection vector (right plot) using Tribes (left of each plot) and PSO

Friedman (middle curves) and the discriminant indices (bottom curve
ized) (Berro et al., 2010). Therefore, the cosines of the angle
between the chosen projection vector and the other projection
vectors are calculated. If the cosine value is close to 1, these

projection directions are likely to provide the same interesting
structure. The cosine values are plotted to visualize how far (in
terms of angle) two projection directions are.

Furthermore, usually the structure of the data set is quite
complex with a large number of classes. Discovering all of
them by using one-dimensional EPP is challenging. One possi-

bility offered by EPP-Lab is to identify other interesting pro-
jections by splitting the data set in two parts and analyzing
each part separately. This strategy is originated by Friedman
(1987) called ‘‘isolation method” and then applied in various

research studies with different designations such that PPTree
(Lee et al., 2013).

The second target of this study is outliers detection. EPP-

Lab software provides an effective way to achieve this objec-
tive. We propose a rule based on k-sigma principle that
involves considering an observation as outlying if its distance

to the mean (of the projected data) is larger than k times the
standard deviation ðk� rÞ of the projected data. When the
value of k increases the number of outliers decreases. This

parameter is set by the user and we recommend to be set at
least at 3.
6. EPP-Lab application and results

The purpose of this section is to show the efficiency of
EPP-Lab in the detection of local optima that correspond
to projections revealing interesting structures of the data sets.

To this, five data sets are tested. The data set is represented
by a matrix with N rows (samples) and P columns (variables
or features). The five projection indices are employed and

optimized using the three optimization methods. In order to
well visualize the solutions, a color is assigned to each
detected group.
ribes
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Figure 4 Lubischew example: histograms of the distribution of the projected data on the ‘‘best” projection (left) and on a second ‘‘best”

projection (right) with Tribes for the minimum kurtosis (top plots), the Friedman (middle plots) and the discriminant indices (bottom

plots).

optimum opt 76 opt 94

Figure 5 Olive data: histogram corresponding to the global optimum (left figure) and local optima (middle and right figures) for the

kurtosis index using Tribes.
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6.1. The data sets

Lubischew: it consists of N ¼ 74 insects and P ¼ 6 morpholog-

ical measures (Lubischew, 1969) that are structured in 3 clus-
ters. The first one (respectively the second and the third)
contains observations 1 to 21 (respectively 22 to 43 and 44

to 74). This data file has already been studied in the context
of EPP (see Friedman and Tukey, 1974; Caussinus and Ruiz-
Gazen, 2009).

Olive data: consists of the percentage composition of P = 8
fatty acids found in the lipid fraction of N ¼ 572 Italian olive
oils. The 572 samples come from 3 different Italian regions
(Southern Italy, Sardinia, Northern Italy) subdivided them-

selves into 6 areas as shown in Table 1. The structure of the
data set is quite complex with 6 clusters (see Table 1) which
have different shapes in a six-dimensional space.
Simulated datasets: we generated two data sets of N ¼ 1000
observations and P ¼ 5 variables. The observations are dis-
tributed according to various mixtures of normal distributions
defined as follows:

Normal4: contains four clusters of 250 observations with

gaussian distribution N 5ðli; I5Þ with i ¼ 1; . . . ; 4 where

l1 ¼ ð0; . . . ; 0ÞT; l2 ¼ ð10; 0; . . . ; 0ÞT; l3 ¼ ð0; 10; 0; 0; 0ÞT; l4 ¼
ð0; 0; 10; 0; 0ÞT are 5-dimensional vectors.

Normal10: contains ten clusters of 100 observations with

gaussian distribution N 5ðli; I5Þ with i ¼ 1; . . . ; 10 where

l1 ¼ ð0; . . . ; 0ÞT; l2 ¼ ð10; 0; . . . ; 0ÞT; l3 ¼ ð0; 10; . . . ; 0ÞT; l4 ¼
ð0; 0; 10; 0; 0ÞT, l5 ¼ ð0; . . . ; 0; 10ÞT; l6 ¼ �l1; l7 ¼ �l2; l8 ¼
�l3; l9 ¼ �l4, l10 ¼ �l5 are 5-dimensional vectors.

Reliability data: is a real data set from the industry under
confidential agreement. It consists of 996 high technology
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Figure 6 Olive data: plots of the ranked indices (top left) and the associated cosines (top right). Histogram (resp. kernel density

estimator) corresponding to the global optimum (middle left, resp. bottom left) and a local optimum (78th run, middle right, resp. bottom

right) for the kurtosis index using GA.
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Figure 7 Simulated data: plots of the ranked values of the minimum kurtosis index for the Normal4 (top curves) and the Normal10

(bottom curves) with GA (left curves), PSO (middle curves) and Tribes (right curves).
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chips and 10 variables. The purpose of the analysis is to detect
multivariate outlying observations that may represent flawed

chips. The chips were sold but there were some problems on
the chip number 262.
6.2. Results

GA and PSO require setting some parameters. For small data
sets like the Lubischew, the number of individuals for GA and
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Figure 8 Normal4 simulated data: histograms corresponding to the global optimum (top left) and local optima (top right and bottom

plots) for the discriminant index using Tribes.

optimum
I = -0.4669

cos = 1

optimum
I = -0.4669
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Figure 9 Normal10 simulated data: histograms (left) and kernal estimators (right) corresponding to the global optimum for the

discriminant index using GA.
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particles for PSO does not need to be large. For larger data sets

like the olive, reliability and simulated data sets, these values
are increased. The number of iterations has been obtained by
carrying out some preliminary runs on each data set and

checking the convergence of the indices. Table 2 summarizes
these values for both methods GA and PSO. In order to make
the results of GA and PSO comparable, the choice of the num-

ber of individuals/particles and iterations are set such that GA
and PSO lead to the same number of fitness evaluations given
in Table 2. Contrary to GA and PSO, the number of particles
varies in Tribes method which leads to no control of the num-

ber of fitness evaluations. The number of iterations is set to 100
after some preliminary runs on each data set and check of the
convergence of the projection indices. We ran 100 times each

optimization algorithm on the different data sets. We have
to stress that the results would not be exactly the same for dif-
ferent values of the number of individuals/particles and itera-

tions. But overall, when considering 100 runs (as we do), the
method is quite robust in the sense that the structures detected
in the five data sets are the same for different values of these
parameters.

6.2.1. Lubischew example

Fig. 3 plots the ranked indices and the associated cosines of

each projection vector with the ‘‘best” projection vector (asso-
ciated with the optimum) using Tribes (left curves of each plot)

and PSO (right curves of each plot) for the minimum kurtosis
(top curves), the Friedman (middle curves) and the discrimi-
nant indices (bottom curves). For the first two indices using

the two methods, the displays are quite similar. They reveal
that for more than 70 runs over 100, the obtained projection
vectors are the same (cosines equal to 1) but are different for

the other 30 runs (cosines different from 1) which means that
there are at least two potentially interesting views of the data.
This result is well shown in Tribes method through the two
landings of the index and the cosine curves. For the discrimi-

nant index, the curves are quite different. The values of the
index decrease much faster with PSO than Tribes. When look-
ing at the cosines curve, there is much more variability with

PSO than Tribes which leads us to look at 3 or 4 projections.
Recal that the large dot on the curves corresponds to the max-
imum of the indices over the 100 runs while the vertical line

corresponds to the objective value of a second best projection
that has been selected (see for example run 83 on top left
curve).

The histograms of the distribution of the projected data

corresponding to the maximum (resp. the second selected max-
imum) of the minimum kurtosis, Friedman and discriminant
indices are displayed on the left (resp. right) of Fig. 4 with

Tribes method. We notice that the three indices do not lead
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Figure 10 Scatter plot matrix for Normal10 simulated data

(var1 = the best projection, var2 = projection associated with the
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optimum, var5 = projection associated with the 76th local

optimum).
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to the identification of the same cluster(s). On the ‘‘best” pro-
jection (left histograms of Fig. 4), the Friedman index and the
minimum kurtosis (resp. the discriminant) index detect the
third (resp. the second) cluster as different from the other

two clusters. On the second ‘‘best” projection (right histograms
of Fig. 4), the minimum kurtosis and the Friedman indices
detect the second cluster while the discriminant index detects

the first cluster with Tribes and the second one with GA and
PSO. No cluster structure is detected using the Friedman–
Tukey and the maximum kurtosis indices. This result confirms

the fact that these indices are more adequate to detect outliers
than clusters.

The result of the index and the cosine curves (resp. the
interesting structures) obtained with GA (resp. GA and

PSO) on this example are very similar to the ones presented
with PSO (resp. Tribes except the projection obtained above
for the discriminant index) and are omitted.

From this result, we conclude that clusters are identified
with the Friedman, the minimum kurtosis and the discriminant
indices. Moreover, this example suggests the use of different

indices in a complementary manner for larger or more complex
data sets.

6.2.2. Olive data

For Olive data, the curves of the cosine and ranked values for
the kurtosis index using PSO and GA (resp. Tribes) yield one
landing (resp. three landings) which leads to one (resp. at least

three) potential interesting projection (s).
The Friedman and the discriminant indices give the same

curves as the kurtosis index with PSO and Tribes methods

but with GA these indices provide curves with at least three
landings (the plots are not displayed).
Fig. 5 displays three interesting projections corresponding
to different local optima for the kurtosis index with the Tribes
method using histogram graphics. On these plots the data are

split in two parts which correspond to different regions for the
oils. To be more precise, when looking at the histogram of the
left plot on Fig. 5, the group on the right corresponds to olive

oils from the southern region of Italy which contains 3 areas
while the group on the left corresponds to olive oils from Sar-
dinia and Northern Italy and contains 2 areas (see Table 1).

GA and PSO methods give the same projection. The middle
and right plots correspond to other projections; they lead us
to detect another group structure.

Note that it is also possible to identify other clusters by con-

sidering local optima of the other projection indices such as the
Friedman–Tukey or the discriminant indices.

Another possibility to identify other interesting structures

(clusters) is to apply data selection. The left part of the best
projection (associated with the optimum, see the left plot) pre-
sented on Fig. 5, is selected and analyzed using EPP-Lab.

Fig. 6 displays the 100 ranked indices (top left) and the associ-
ated cosine of each projection vectors with the best projection
vector (top right), and histogram (resp. kernel estimator) of the

best projection (middle left, resp. middle right) and another
projection (bottom left, resp. bottom right) for the kurtosis
with GA. The index and cosine curves indicate the existence
of at least two interesting projections. When looking at the his-

togram and the kernel estimator corresponding to both the
optimum and local optimum, the data are split in two groups.
For more detail, the projections come to separate the Northern

region of Italy from Sardinia (see the projection 78 on the
right).

6.2.3. Simulated data

In Fig. 7 we plot the 100 ranked values for the minimum kur-
tosis index with the ‘‘best” projection vector using the simu-
lated data with GA (left curves), PSO (middle curves) and

Tribes (right curves). While the PSO method leads to small
variability of the projection index values for the one hundred
launches, Tribes and GA supply different local optima.

For Normal4, the PSO method does not yield several land-
ings and so does not allow to detect the four clusters. On the
contrary, the Tribes and GA methods give several local optima
corresponding to the three landings of the left and right curves

in Fig. 7.
For Normal10 data set, the left and right curves (for GA

and Tribes) are composed of several landings which corre-

spond to different local optima susceptible to reveal interesting
structures.

For these particular examples, the Friedman and the dis-

criminant indices give the same curves (for the index and the
cosine values) as the kurtosis index using GA, PSO and Tribes
optimization methods except the Friedman index which gives

curves with two landings using PSO for Normal10.
In Fig. 8 we visualize four interesting projections corre-

sponding to the global optimum on top left and different local
optima on top right and bottom plots of the discriminant index

using Tribes method and Normal4 simulated data.
In each plot of Fig. 8, the data are clearly structured in

groups and one of them corresponds to one of the three known

clusters. Considering the four plots corresponding to the glo-
bal and local optima of the discriminant index, Tribes succeeds
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Figure 11 Reliability data: plots of the ranked indices (top curves) and the associated cosines (bottom curves) for the Friedman index

with PSO (left) and Tribes (right) methods.
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to visualize the four clusters of Normal4 data set on one
dimension. The kurtosis and the Friedman indices give projec-
tions that separate the data in clusters with Tribes, GA and
PSO. The discriminant index with GA gives the same results

as those presented with Tribes but when using PSO, the result
is like the one achieved by the kurtosis index.

For Normal10 data set, Fig. 9 presents interesting projec-

tion corresponding to the global optimum of the discriminant
index using GA. As seen, the data are divided in three parts.
The right and the left parts contain one cluster while the mid-

dle part is composed of different colors which correspond to
different clusters defined in the Normal10 simulated data.
Through the global and local optima of the discriminant index,

eight clusters among 10 are detected (not shown in this article).
The Friedman index with the three methods and the discrimi-
nant index with Tribes give the same result presented on Fig. 9.
The discriminant index with PSO only discovers four clusters

through two projections associated with the optimum and
the one local optimum. For the kurtosis index, the obtained
projections consist of three parts where each one contains at

least two groups using the three optimization methods.
The purpose of using the cosine notion is to identify differ-

ent projections having the same index value. In some cases, this

notion is not sufficient because we may have two different pro-
jections having the same index and cosine values.

Furthermore, when exploring the data set, we do not have
prior knowledge of its structure (contrary to our examples),

thus we cannot know whether these local optima give different
projections or not. For this, we can use a scatter plot matrix
for further analysis. This technique shows the relations among

the variables in the data and can be used for any number of
variables.

Now, in order to go further in the analysis of the EPP-Lab

results, we use the Normal10 data set with 5 variables, which
means the 4 projections (that detected the eight clusters) asso-
ciated with the global optimum and three local optima (num-

bers 26, 74 and 75) and another projection associated with the
local optimum number 76. This local optimum gives the same
projection as that associated with the 75th local optimum.
Fig. 10 shows that the first four projections (that detected
the eight clusters) are different contrary to projection 75 which
is like the projection 76 (see the scatter plot : moderately strong
(negative) correlations between projection 75 and 76). So, this

confirms our previous remarks.
We conclude that the three methods propose several local

optima which represent various interesting projections and

highlight the complex structure hidden in the Normal4 and
Normal10 data sets.

6.2.4. Outlying observations detection

The objective of this study is to demonstrate the efficiency of
EPP-Lab in detecting atypical chips set. Because of the high
number of dimensions of the reliability data set, we focus on

the kurtosis index that is fast to compute and dedicated to
the detection of outliers (Peña and Prieto, 2001) and the Fried-
man index that is also fast to compute. The automatic proce-

dure that leads to the identification of a certain percentage
of outliers is explained in the above section.

To save space, we only show the results of the Friedman
index with PSO and Tribes but we discuss the results of the rest

of the indices and the optimization methods.
The index and the cosine curves of the Friedman index with

PSO (left) and Tribes (right) on Fig. 11 show that there are at

least two interesting projections. The kurtosis index gives the
same result as the Friedman index with PSO and Tribes. For
GA method, the Friedman index leads to the same curves than

those found using the kurtosis index.
Fig. 12 displays projections obtained by Tribes using the

Friedman index. A few chips are very far from the main bulk

of the data when one looks at the histograms of the selected
projections (the outliers are colored in orange). These high
technology chips may be considered as outlying and may be
taken out of production. In order to determine all outlying

observations detected on one projection at each run, we plot
the outliers graphic as shown in Fig. 13.

We recall that the x-axis represents the number of runs and

y-axis includes the number of observations. At each run and
when the observation is outlying, it is represented by a black
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Figure 12 Reliability data: histogram corresponding to the global optimum (left figure) and a local optimum (right) for the Friedman

index using Tribes.
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Figure 13 Reliability data: outliers curves of 3-sigma (resp. 6-sigma and 8-sigma) principle (top, resp. middle and bottom) for the

Friedman index using PSO (left curves) and Tribes (right curves).
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dot on the graphic. In order to identify a percentage of out-
liers, we use a k-sigma criterion as defined in the above section.

We remember that the parameter k is set by the user. Fig. 13
presents the outliers curves of 3-sigma (resp. 6-sigma and 8-
sigma) principle (top, resp. middle and bottom) for the Fried-

man index with PSO (left curves) and Tribes (right curves).
The blue vertical line indicates the number of outliers obtained
on the selected run (14 outliers for the first run on top curves)

while the blue horizontal line points the number of times the
selected observation is discovered as outlying throughout the
100 runs. We observe that when the parameter k increases
the number of outliers becomes smaller. Table 3 summarizes

outlying observations and the number of times that have been
discovered as such (see frequency column) at each fixed-
parameter k for the Friedman index using Tribes optimization

method. We notice that the most outliers found by testing the
kurtosis index with GA were found using the Friedman index
with Tribes and in particular the observation number 262 even

setting the parameter k to 8. Arguably, both indices with the
three methods give eventually and roughly the same result.
The observation 262 is detected in all cases. The result is the

same using the Friedman–Tukey and the discriminant indices
with the three methods. This result is interesting because it is
favorably compared with the univariate detection methods
used in the industry which does not lead to the detection of

observation 262. These univariate methods are based on the
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k-sigma principle applied to the original variables and does not
take into account the multivariate structure of the data set.
Coherently, the company tries to detect as few as possible

defective chips and with complete assurance. EPP-Lab is an
interesting tool that meets their requirements. Indeed, first, it
provides a rule based on k-sigma principle to flag an observa-

tion as outlying. The parameter k, as we noted earlier, is adjus-
table and therefore the company can freely choose the number
of atypicals that suits their objectives. Secondly, running the

optimization algorithm several times allows us to assert that
the observation detected more than 50 times over 100 launches
is really outlying, especially if it has been discovered by several
methods and projection indices.

6.3. Comparison studies

6.3.1. Clustering techniques

In this section we tested K-means and PCA methods (using R
software) on Lubischev, olive and Normal4 data sets and com-

pared the obtained results with those obtained by EPP-Lab.
Figure 14 Scatter plot for Lubischev data.

Figure 15 Lubischev data set using the first (left) and second

(right) axes of PCA.

Table 3 Outlying observations and the number of times that

have been discovered over 100 runs by setting the k-sigma

principle for the Friedman index with the Tribes methods.

Standard deviation Observation number Frequency

3r 3 36

19 100

33 76

39 51

43 100

48 40

53 56

74 39

100 53

134 39

154 44

262 77

288 47

433 100

538 56

678 100

727 60

744 100

816 99

841 4

856 36

6r 33 62

43 100

262 63

433 100

678 100

727 3

744 100

816 56

8r 33 59

43 96

262 60

433 65

678 100

744 99

816 43
In order to show the dispersion of the Lubischev’s clusters,
Fig. 14 displays the scatter plot with the same representation
type used in EPP-Lab (the colors represent the same clusters
shown in EPP-Lab). K-means discovered the clusters 1 and 2

with an accuracy of 80%, the cluster 3 with an accuracy of
100%. PCA is not capable to well discover the three clusters
as displayed in Fig. 15.

Olive data set has been processed in various supervised and
unsupervised clustering techniques. For example, Caussinus



Figure 16 Lubischew example: histograms of the distribution of

the projected data on the ‘‘best” projection with PSO for the

Friedman index – No convergence case.
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and Ruiz-Gazen (2007) showed that PCA is far from giving
the above result, PCA is not able to separate the clusters. This
result has also been confirmed in Hou (2012) where the author

addressed a detailed comparison between PCA and two-
dimensional Projection Pursuit using the kurtosis index and
quasi-power optimization method. The results reported using

the two-dimensional Projection Pursuit are similar to those
displayed in Fig. 5 (see the interesting projection associated
with the optimum for the kurtosis index).

For Normal 4, nor K-means neither PCA are capable to
determine the clusters. In fact, K-means detects four clusters
of size (500, 114, 250, 136) respectively but they are not the

true clusters of Normal4 because: 1 – the true size of each clus-
ter is 250 and 2 – the content of each cluster doesn’t seem cor-
rect. PCA yields the same results as K-means.

6.3.2. Convergence of the projection index

Generally, the optimization methods require a suitable number
of iterations to allow the objective function to converge toward

the optimum. It is important to show the impact of choosing
an inadequate number of iterations. Let show you one case
of no convergence of PSO method with the Friedman index
when setting the number of iteration to 20 (instead of 50).

Fig. 16 shows the interesting projection associated with the
Figure 17 Comparison of computation times of the different indices

Frieman index) (P= 10 and N between 40 and 1000, resp. P = 10 an
optimum value for the Friedman index using PSO. The opti-
mum found in this case is far from the optimum found previ-
ously which clearly finds the clusters. This means that PSO

needs more iterations to reach the optimum. EPP-Lab pro-
vides a convergence projection index curve that shows to the
user the stability of the projection index while it is running.

This feature can be useful in helping the user to set the itera-
tions number.

7. Computation time and limitations

To estimate the limits of our application, an experimental plan
is performed. Simulated data sets are generated with different

sizes: a number of observations N between 40 and 100,000 and
a number of dimensions P between 2 and 50. The tested indices
are Friedman, kurtosis and discriminant and the tested meth-

ods are GA, PSO and Tribes. The experiments were performed
on a Dell Precision 2.54 GHz and each experiment was
restarted 100 times. In Fig. 17, the x-axis represents the num-
ber of observations N and the y-axis represents the computa-

tion time (in seconds) of 100 runs.
Regarding the computational times, the kurtosis is always

the fastest index while the discriminant and the Friedman

indices are slower. This can be explained because the indices
have a different computational complexity. For the largest
processed data set (100,000 observations and 50 variables),

the kurtosis takes only three hours to complete the 100 runs
with the PSO method. We remark on the left of Fig. 17 that
the kurtosis index does not exceed 10 s to perform 100 runs
on a data set containing 1000 observations and 10 variables

while the Friedman index takes about 100 s to calculate the
same data set. As for the discriminant index, its computational
time is greater than 100 s for a data set with only 100 observa-

tions and 10 variables.
Concerning the Friedman index, the computation times are

slightly longer than the kurtosis index, but it is still very

acceptable. On the other side, the discriminant index cannot
be used for large data sets because it is very slow. In fact, it
even had to be removed from the experimental plan because

it exceeded the maximum allowed time (3 h). For example,
with the PSO method, it took over 3 h and 30 min to calculate
the 100 runs of a data set containing only 1000 individuals and
(resp. methods) on the left (resp. right) using PSO methods (resp.

d N between 40 and 20,000).
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10 variables. With the same method, the kurtosis index has
taken only 10 s and the Friedman index 1 min and 40 s.

The PSO method is the slowest of the three methods but the

computation times are acceptable for the user. Although the
number of evaluations of the objective function is not the same
for the three methods (because the number of particles in the

Tribes method is variable), we observe that Tribes is faster
than PSO. In our implementation, GA is approximately 10%
faster than Tribes and 35% faster than PSO. For small data

sets, the computation times are negligible. Notice however that
in a context of large data sets, our application is suitable for
parallelization by simply considering a run as a task and dis-
tributing each task to a processor of a parallel computer.
8. Conclusion

EPP-Lab is a tool for finding several interesting projections
that contain clusters and/or outliers in large and multidimen-
sional data sets. We used bio-inspired optimization methods
to optimize five projection pursuit indices. We validated the

performance of the methods on real and simulated data sets
that are structured in clusters or contain outliers. EPP-Lab
achieves both targets: search and visualization of hidden struc-

tures in multidimensional data sets. The search is carried out
through the use of several projection pursuit indices, several
optimization methods and several runs. This strategy allows

to find several local optima corresponding to various struc-
tures for a data set. The visualization is performed through
the graphical interface of EPP-Lab that allows the user viewing
all the associated projections for all local optima using his-

tograms and kernal estimators. Moreover, EPP-Lab has vari-
ous features that permit to the users to well analyze the large
volume of the data and detect the hidden patterns.

As stated above, the code of EPP-Lab is available online.
One of the perspectives is to implement EPP-Lab in R software
and make it as a package of EPP method. In addition, EPP-

Lab is a modular software, it is easily possible to add new
mechanisms for example feature selection methods to reduce
the dimensionality of a data set. Furthermore, it would be

interesting to study the stopping tests of the number of itera-
tions for the detection of outliers.
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