Journal of King Saud University - Computer and Information Sciences 29 (2017) 164-170

agesudloldl
King Saud University

Journal of King Saud University -
Computer and Information Sciences

Contents lists available at ScienceDirect

Journal of
King Saud University -
Computer and.

Information Sciences.

journal homepage: www.sciencedirect.com

Enhancing Arabic stemming process using resources and benchmarking @ CroseMark

tools

Younes Jaafar **, Driss Namly ¢, Karim Bouzoubaa ?, Abdellah Yousfi®

2 Mohammadia School of Engineers, Mohammed Vth University - Rabat, Morocco

bFS]ES, Mohammed Vth University — Rabat, Morocco

ARTICLE INFO

Article history:

Received 16 April 2016

Revised 4 November 2016
Accepted 21 November 2016
Available online 2 December 2016

Keywords:

Arabic stemming
Evaluation
Benchmark
Evaluation corpus

ABSTRACT

Many approaches and solutions have been proposed for developing Arabic light stemmers. These stem-
mers are often used in the context of application-oriented projects, especially when it comes to develop-
ing information retrieval (IR) systems. However, Arabic light stemming, as the process of stripping off a
set of prefixes and/or suffixes, is a blinded task suffering from problems such as incorrect removal, vocal-
ization ambiguity, single solution, etc. Moreover, each researcher claims that his/her stemmer reached a
level of strength and accuracy quite high. However, in most cases, these stemmers are black boxes and it
is not possible to access neither their source codes to verify their validity, nor the evaluation corpora that
were used to claim such accuracy. Since these stemmers are very important for researchers, their com-
parison and evaluation is then essential to facilitate the choice of the stemmer to use in a given project.
In this paper, we propose a new Arabic stemmer that gives solutions to the above mentioned drawbacks.
In addition, we propose an automatic approach for the evaluation and comparison of Arabic stemmers
that takes into account metrics related to the accuracy of results as well as the execution time of
stemmers.
© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Stemmers are basic tools used for many tasks that require text
preprocessing, such as text categorization systems, text summa-
rization systems, information extraction systems, etc. The stem-
ming process includes the identification and the removal of
affixes from a derived or inflected words and reducing them to
their stems/roots. Different stemming approaches have been pro-
posed for many languages including English, French, Turkish, and
Chinese. Concerning the Arabic Language, there are two main
stemming approaches (Otair, 2013): the root-based approach and
the light stemming approach. Arabic is one of the Semitic lan-
guages, that differs from English, French, German, etc. Therefore,

* Corresponding author.
E-mail addresses: jayounes@yahoo.fr (Y. Jaafar), namly_driss@yahoo.fr
(D. Namly), karim.bouzoubaa@emi.ac.ma (K. Bouzoubaa), yousfi2Z40ma@yahoo.fr
(A. Yousfi).

Peer review under responsibility of King Saud University.

ELSEVIER Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2016.11.010

some Arabic stemmers reduce Arabic words to their roots instead
of their stems (Al-Kabi and Al-Mustafa, 2006). In this article, we
propose a third stemming approach that uses deeper validation
of stems using lexicon resources.

The stemming process is important for researchers since it
brings together words based on their lexico-semantic similarity.
For example the words: “<S” (he wrote), “/si” (they wrote),
“ciw” (he will write), “~si” (have you written?) have the same
lexico-semantic content as “<<” (he wrote) which leads to “the
concept of writing”. Thus, instead of dealing with four words, Ara-
bic Natural Language Processing (ANLP) systems can handle one
single word after reducing the list of words to the same stem.
Therefore, queries or documents in IR systems can be represented
using stems or roots rather than using the full original words. This
operation reduces enormously the size of indexes of IR systems,
which leads to a gain of space storage and processing time.

However, Arabic light stemming as the process of stripping off a
set of prefixes and/or suffixes, is a “blinded” task suffering from
problems such as:

e Incorrect removal: words starting with a string similar to a pre-
fix, or ending with a string similar to a suffix will be truncated
by mistake. For example, the analysis of the word “sa5” (“his

1319-1578/© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.11.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2016.11.010
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jayounes@yahoo.fr
mailto:namly_driss@yahoo.fr
mailto:karim.bouzoubaa@emi.ac.ma
mailto:yousfi240ma@yahoo.fr
http://dx.doi.org/10.1016/j.jksuci.2016.11.010
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

Y. Jaafar et al./Journal of King Saud University - Computer and Information Sciences 29 (2017) 164-170 165

father”) with the Light10 stemmer (Larkey et al., 2007) gives the
stem “Y’ considering “Js” as a prefix and “+” as a suffix, whereas
removing “Js" is an incorrect choice because it is a part of the
stem.
e Vocalization ambiguity: removal of diacritic marks from the
stemming output could lead to an ambiguous meaning of
words. For example, analysis of the word “4i$4” gives the stem
“os” considering “<” as a prefix and “»” as a suffix, but the
stem “<s” allows several alternatives such as “<” (school or
authors), “<€” (book), ... etc.
Single solution: most of the available Arabic stemmers provide
one solution in the stemming output, but according to Arabic
language morphology, a word admits one or more different
stems. For instance, the word “»” (for them) must return: the
verb “z” (greed), the noun “sl” (glutton), the verb “i”
(interested) and the empty stem for the combination of the pre-
fix “J” (la) and the suffix “s” (they).

Moreover, it is important for researchers to make an optimal
choice when choosing a stemmer in the context of a larger project.
To help researchers making this choice, it is essential to propose
tools and approaches to evaluate and compare Arabic stemmers.
The literature shows that researchers classify metrics for evaluat-
ing stemmers into two categories: (1) metrics related to the
“strength” which describe changes made to words in order to pro-
duce stems, i.e. stronger stemmers are intended to make more
changes to words to produce stems by removing characters, (2)
and those related to the accuracy which describe how much these
stems are correct. However, the Arabic content in the digital world
has become so large that is difficult to neglect execution time in
running text processing software. To our knowledge, there is no
research that takes into account execution time for evaluating Ara-
bic stemmers.

Therefore, our objective in this paper is twofold:

e Propose a new Arabic stemmer: SAFAR-Stemmer. This new
stemmer is a stem-based one with a stem validation process
using a lexical resource. SAFAR-Stemmer gives answers to the
above cited drawbacks through the “multi-solution” concept.
By offering multiple possible stems, it resolves the three afore-
mentioned troubles. First, to correct the “Incorrect removal”
deficiency, SAFAR-Stemmer comes up with a stems collection
including all possible alternatives. Secondly, to satisfy the
“Vocalization ambiguity” SAFAR-Stemmer provides a dia-
critized output. Thirdly, it offers several possible solutions
according to the stemmed word composition in compliance
with the morphological particularities guiding affixes aggluti-
nation, which resolves the “Single solution” problem. It should
be noted that in stemming coherent texts, a word can always
be assigned a unique stem, as the context provides the clues
needed for disambiguation. However, there are many other
cases where researchers need to stem words out of their con-
texts. That's why we believe that an Arabic stemmer should
return all possible stems for a given word. Let us also mention
that both of these two aspects (multiple solutions and vocaliza-
tion) are not taken into consideration while evaluating stem-
mers in this article. This is because all other stemmers do not
provide this information and it will be not fair to perform a
benchmark in this case. That is to say, in this special case of
evaluation, there is no added value if a stemmer returns one
or multiple solutions. The evaluation is performed based only
on the common form of output of all stemmers.

e Present a new reusable and generic solution to evaluate and
compare Arabic stemmers. This is achieved using an evaluation
corpus dedicated specifically to this purpose. We propose also a
new metric of evaluation that combines metrics related to the

accuracy of stemmers as well as their execution time. This
new metric will allow researchers to make the optimal choice
even if the metrics returned by stemmers are disproportionate.
To give a concrete example of our evaluation, we selected three
light stemmers namely: Light10 (Larkey et al., 2007), Motaz
stemmer (Saad and Ashour, 2010), Tashaphyne (Zerrouki,
2016) in order to be compared with our new stemmer
(SAFAR-Stemmer). It should be noted that our benchmarking
solution can also handle root-based stemmers’ benchmark.

The rest of this paper is organized as follows. The next section
presents some stemming approaches and algorithms. In Section 3,
we present our approach for the new Arabic stemmer. In Section 4,
we present some works that deal with evaluating and benchmark-
ing Arabic stemmers. We present also the evaluation corpus and
some common metrics. Then we present our new metric for eval-
uating stemmers. Experiments and results are presented in Sec-
tion 5. Finally, we present the conclusion and future works in
Section 6.

2. Related works

In this article, we focus on Arabic light stemmers rather than
root-based ones. Indeed, researches have shown that light stem-
mers give better results comparing to root-based approaches
(Larkey et al., 2002). Therefore, it would be more appropriate to
focus on more promising approaches.

Several Arabic light stemmer approaches and algorithms have
been already proposed. They consist of removing the most com-
mon affixes from words and producing stems. Below are some
examples of Arabic light stemmers.

Larkey et al. (2007) proposed several Arabic light stemmers and
assessed their effectiveness for information retrieval using stan-
dard TREC data. The light stemmer, Light10, outperformed the
other approaches. It has been widely used in Arabic information
retrieval (Larkey et al., 2007).

Aljlayl and Frieder (2002) studied the stemming impact in
improving Arabic information retrieval systems. For this, they have
proposed two stemmers: a root algorithm based on the work of
Khoja and a light stemming (LS) algorithm. Authors affirm that
the LS algorithm significantly outperforms the root algorithm in
IR. However, they do not provide evaluations for the two stemmers
themselves.

Chen and Gey (2002) proposed also two Arabic stemmers for
information retrieval: a Machine Translation (MT) based stemmer
and a light stemmer. The test shows that the light stemmer per-
formed better than the MT based stemmer in IR, but no evaluations
were made to compare the two stemmers in terms of accuracy of
their stemming results.

Rogati et al. (2003) presents an unsupervised learning approach
for building an Arabic light stemmer. Authors compare results of
their stemmer to GOLD which is a proprietary Arabic stemmer
built using rules, affix lists and human annotated text. They claim
their approach results in 87.5% agreement with GOLD.

Saad and Ashour (2010) proposed a light Arabic stemming algo-
rithm to address the impact of text preprocessing on Arabic text
classification. The system was integrated into WEKA (Hall et al.,
2009) and RapidMiner (Hofmann and Klinkenberg, 2013)
platforms.

We have selected three light stemmers: Light10, Motaz stem-
mer and Tashaphyne in order to compare their results with our
stemmer and give a concrete example of use of our benchmarking
system. It should be noted that we have focused in this article only
on stemmers and not on morphological analyzers (benchmarking
Arabic Morphological Analyzers has been done elsewhere (Jaafar

166 Y. Jaafar et al./Journal of King Saud University - Computer and Information Sciences 29 (2017) 164-170

et al., 2016). Moreover, we have selected stemmers that are free in
order to integrate them within SAFAR framework. In the literature,
other papers Al-Kabi et al. (2011), Majdi and Atwell (2008), Al-
Shawakfa et al. (2010) were found but presented only in terms of
approaches but no corresponding program to download is
proposed.

3. Presentation of our Arabic stemmer

To gain more flexibility while developing our SAFAR-Stemmer,
we decided to integrate it within the SAFAR (Software Architecture
for Arabic language pRocessing) framework (Souteh and
Bouzoubaa, 2011; Jaafar and Bouzoubaa, 2015) which is an inte-
grated framework dedicated to ANLP. SAFAR has several layers:
(1) the utilities layer includes a set of technical services, (2) the
resources layer provides services for consulting language resources
such as lexica, (3) the basic layer contains the three regular layers
(morphology, syntax and semantics), (4) the application layer con-
tains high-level applications that use the layers listed above, (5)
and finally the client applications layer which interacts with all
other layers providing users with web applications, web services,
etc. Several articles about SAFAR and its different layers can be
found in SAFAR website." It should be noted that SAFAR-Stemmer
is a new Arabic stemmer that we have included within the morphol-
ogy layer of the SAFAR framework.

In the analysis of a word, SAFAR-Stemmer generates all likely
possible combinations of clitics through querying the “clitics” API
of SAFAR framework that returns a list of proclitic-enclitic couples.
The list of clitics obtained is filtered in a second step by removing
duplicates and invalid combinations. Then, the list of likely stems
is generated. For instance, the word ‘x& has two likely stems.
The first stem is ‘3¢ “to tie” for which the first char in the word
‘< is a likely proclitic. The second stem is ‘2 “missing” in which
the first char in the word ‘<’ is part of the stem. After this step,
the role of the lexical resource “lexicon of stems” comes into play,
which acts as a validator of obtained stems list to give two sub
lists: list of checked stems “found in the lexicon” and list of non
checked stems “not found in the lexicon”. These steps are summa-
rized in the example illustrated in Fig. 1.

With respect to SAFAR layered architecture Jaafar and
Bouzoubaa (2015) composed of the Resources Services, Basic Ser-
vices and Applications, the SAFAR-Stemmer belongs to the Basic
Services layer and its process is made up out of four steps as
explained in the figure above. The end user queries the service
exploiting a dedicated application. For illustration purpose, we
assume the user types “4<i” (and his book) as a stemming input.
In the first step, the stemmer extracts from the clitics resource
layer a list of all likely possible combinations of clitics ([-] “the
empty clitic”, [¢ - <] “the conjunction ‘then’ and the pronoun ‘his’
" [-<8] “the conjunction “then” and the “kaf’ of comparison”,
etc), then the stemmer as part of the Basic layer, filters this list
of clitics in the second step by removing doubling and diacritics
([= 1[>- <] [&-] [« - <] [- ¢] [<]) and extracts a list of likely
stems in the third step («t<é “and his book”, < “his book”, 41
“tAbh”, << “a book”, < “forsake”, i “and a book”). This is the
particular feature offered by SAFAR-Stemmer and neglected by
other stemmers that provide only a single solution. The fourth step
in the SAFAR-Stemmer calls again the resource services layer to
check the existence of obtained stems in the stems lexicon, to
finally provide the application layer with a list of checked stems
(<< “a book” and <t “forsake”) and a list of non checked stems
(s “and his book”, 4 “his book”, 4 “tAbh”, << “and a book”).

1 http://arabic.emi.ac.ma/safar/?q=publications.

Step1 Step 2 Step3 Step4

N

Applications
H

Basic
Services
v
SAFAR
Stemmer

.
:
i

b
3

Resources
Services

.

Figure 1. SAFAR-Stemmer steps workflow.

4. Stemmers evaluation and benchmark

Arabic stemmers are widely used in many text processing tasks
such as text categorization, information extraction, text summa-
rization and search engine indexing. Therefore, evaluating and
benchmarking these stemmers are crucial for researchers to select
the best stemmer that suits their needs in a given context. In addi-
tion, authors are generally supposed to compare their stemmers
with other works in order to demonstrate their contributions and
enhancements. That is to say, ANLP community should have com-
mon tools and resources to make fair evaluations of stemmers.
However, in most cases authors present their stemmers and pro-
vide some evaluations statistics based on their own evaluation cor-
pora without providing any open source tools or resources to verify
the accuracy and strength of their stemmers. Most of them claim
that their stemmers reach high rate of accuracy. Nevertheless,
given the lack of fair common evaluation, we cannot be sure that
such claims are true for all cases, independently of the used evalu-
ation corpora.

Given this situation, some researchers tried to propose evalua-
tions and benchmarks of several stemmers.

Majdi and Atwell (2008) proposed an evaluation of three
root-based Arabic stemming algorithms namely: Khoja stemmer,
Buckwalter morphological analyzer and Tri-literal root Extraction
algorithm. The experiments were done by running the three
stemmers on the chapter number 29 of the holy Qur'an “Sourat
Al-Ankaboot” and a newspaper text taken from the Corpus of Con-
temporary Arabic. The results show that Khoja stemmer reaches the
highest accuracy, followed by the tri-literal root extraction algo-
rithm and finally the Buckwalter morphological analyzer. It should
be noted that authors have used only metrics related to the accu-
racy of results in their experiments: errors, fault rate and accuracy.

Al-Kabi et al. (2011) proposed a work on benchmarking and
accessing the performance of four root-based Arabic stemmers
namely: Al-Mustafa stemmer, Al-Sahran stemmer, Rabab’ah stem-
mer and Taghva stemmer. The corpus used for this benchmark
was randomly collected from 15 collections of Arabic documents
taken from the internet. The experiments show that the stemmers
are ranked as follows starting from the good one to the weakest:
Rabab’ah, Al-Sahran, Al-Mustafa and finally Taghva. For that study,
authors have used metrics related to the accuracy of results as well
as metrics related to the “strength” of stemmers (stronger stemmers
are intended to make more changes to words to produce stems).

Al-Shawakfa et al. (2010) presented a comparison study of six
Arabic root-based stemmers algorithms. Authors unified the test-
ing process by building a corpus of 3823 triliteral roots, obtained
by combining 73 triliteral patterns with 18 affixes, to produce
around 27.6 million words. The results of the evaluation were
lower than what is reported by authors of the six stemmers. The
comparison has shown that the best algorithm was that of Ghwan-
meh et al., which achieved an accuracy rate of 39%, followed by

http://arabic.emi.ac.ma/safar/?q=publications

Y. Jaafar et al./Journal of King Saud University - Computer and Information Sciences 29 (2017) 164-170 167

Khoja and Garside (34%), Al-Shalabi (32%), Sonbol et al. (24%),
Taghva et al. (20%), and finally Al-Shalabi et al. (14%).

Maabid et al. (2015) proposed assessment criteria for bench-
marking Arabic morphological analyzers and stemmers. In this
study, authors do not propose any approach or tool for evaluating
stemmers, they just try to sum up some assessment criteria to
measure the accuracy and strength of stemmers.

These researches give evaluations of selected stemmers and
provide fair comparisons based on new corpora. However, they
do not offer any reusable and generic solution for benchmarking
Arabic stemmers; they propose only examples of evaluating some
known stemmers without any possibility of extension of their solu-
tions to evaluate other stemmers or even changing the evaluation
corpus. Thus, they should provide new solutions or alter their own
ones every time they have to evaluate a new stemmer, which is not
suitable for this kind of benchmarking.

Moreover, all of them neglect the execution time of stemmers
when evaluating them. They only focus on metrics related to the
accuracy and “strength” of stemmer. However, with the growing
digital Arabic content, authors should optimize the execution time
of their stemmers in order to process more data in less time.

Therefore, developing a new automatic, flexible and reusable
evaluation system, which takes into account metrics related to
accuracy and “strength” as well as the execution time of stemmers,
will be very useful for the ANLP community.

4.1. Evaluation corpora

In order to perform the evaluation and benchmark process, the
results returned by Arabic stemmers should be compared to results
of an evaluation corpus that is annotated with some morphological
information such as the stem or root. This corpus should be verified
manually by linguists to maximize its precision and provide confi-
dence in its content.

However, building these kinds of corpora is time consuming
and requires experts with linguistic knowledge in Arabic language.
It has been realized nowadays that the effort needed to build such
corpora may exceed largely the effort needed to build tools that
use those corpora. This justifies the lack of a gold standard for
benchmarking the different Arabic tools.

Given this situation, we reused other works in order to propose
an evaluation corpus for benchmarking both root-based and light
Arabic stemmers. For this reason, we used the Quranic Arabic Cor-
pus (Dukes and Habash, 2010). This latter is an online annotated
linguistic resource with multiple layers of annotation including
morphological segmentation, Part-Of-Speech tagging, syntactic
analysis using dependency grammar. It consists of the holy Qur’an
annotated according to the context of words. The main morpholog-
ical information returned by this corpus is the stem, root, lemma,
Part-Of-Speech, prefixes and suffixes. We processed this corpus
in order to keep only the stem and root of words. The new corpus
(Fig. 2) is in XML format and can be used to evaluate Arabic stem-
mers. It can be downloaded from our team website.?

For example, the word « ¢s«» » (“They believe”) has one
manually checked analysis according to its context. This analysis
has three tags: the root “c«”, the stem “c«%” (“he believes”) and
the lemma “o<ls” (“he believed”).

4.2. Common metrics of performance used to evaluate stemmers
In the literature, authors separate metrics used to evaluate

stemmers into two main categories namely: metrics related to
the accuracy of results and metrics related to the “strength” of

2 http://arabic.emi.ac.ma/ibtikarat/?q=Resources.

<?xml version="1.0" encoding="UTF-8"?>
<stemmerAnalysis total words="18352">
<word w_id="1" value="¢la>Ji">
<analysis root="as>)" stem="gla>)" lemma="{la>)y" />
</word>
<word w_id="2" value="u4uisi">
<analysis root="u.ws" stem-"w=3" lemma-"wtis" />
</word>
<word w_id="3" value="(gisj3a">
<analysis root="gw!" stem="(gwoj=" lemma="gol " />
</word>

</stemmerAnalysis>

Figure 2. Example of the evaluation corpus used to compare Arabic stemmers.

stemmers. For our benchmark solution, we use both types of
metrics:

Accuracy (Flores and Moreira, 2016): The accuracy of results
returned by a stemmer expresses how these results are correct.
Unlike classical precision and recall scores, accuracy is equal to
100% only if the stemmer returns all correct stems for all words,
and in addition to that, it returns no additional incorrect stems. If
the accuracy is equal to 100%, this means that the stemmer is perfect.
In the case of stemmers, the accuracy can be calculated as follows:

TP
Accuracy = 555N

where TP is the total number of correct stems, FP is the total num-
ber of incorrect ones and FN is the total of correct stems not
returned by the stemmer.

Number of Words Per Conflation Class (WCC) (Galvez et al., 2005):
it is the average number of words that match the same stem. For
example if the words “4ss.” (“library”) “csa8" (“they write”) and
“AE” (“book”) are stemmed to the same root “—iS”, then the
WCC score is three. The value of the number of words per confla-
tion class reflects the strength of the stemmer. The higher the value
is, the stronger the stemmer becomes. The WCC metric is calcu-
lated as follows:

C
WCC = S
where C refers to the total number of distinct corpus words before
stemming, or number of word types. In the same way, S refers to the
number of distinct stems returned by the stemmer.

Index compression factor (ICF) (Frakes and Fox, 2003): it repre-
sents the average decrease in index size achieved through the
stemming process. For example, a corpus with 100,000 words
and 80,000 stems would have an index compression factor of
20%. Stronger stemmers will tend to have higher ICF value. It is cal-
culated as follows:

C-S
ICF = <
where C refers to the total number of corpus word types and S refers
to the number of unique stems returned by the stemmer.

Word change average (WCA) (Al-Kabi et al., 2011): stemmers
often leave words unchanged. For example, a stemmer might not
alter the verb “—x<” (“he wrote”) because it is already a root
word. Stronger stemmers will change words more often than
weaker stemmers in order to obtain the correct root/stem. This
metric is calculated as follows:

Cc-U
WCA = <
where C refers to the total number of corpus word types and U
refers to the number of unique words that have not been changed
after the stemming process.

http://arabic.emi.ac.ma/ibtikarat/?q=Resources

168 Y. Jaafar et al./Journal of King Saud University - Computer and Information Sciences 29 (2017) 164-170

Average number of removed characters after stemming (ARC) (Al-
Kabi et al., 2011): stronger stemmers tend to remove more charac-
ters from words to form stems. For example, if the following words
“i” (“library”), “osiS” (“they write”), “<S” (“book”) and “wiss”
(“office”) are stemmed to the same root “—<”, then the ARC value
would be (2 +3 +1 +1)/4=1.75 characters.

4.3. New metric for evaluating Arabic stemmers

When evaluating stemmers, researchers often use the usual
metrics presented above. However, Arabic data on the digital world
has become so large that it becomes impossible to neglect the
execution time of tools. For example, indexing the huge amount
of data available in the internet for information retrieval purposes
is time consuming. Thus, researchers should take into account not
only metrics related to the accuracy and strength of stemmers, but
also their execution time. To remedy this, our solution of bench-
marking calculates all the above metrics and also the execution
time of each stemmer. It should be noted that we have previously
developed a similar tool for benchmarking Arabic morphological
analyzers (Jaafar et al., 2016). Therefore, researchers will have an
idea about how long stemmers take to accomplish their stemming
process.

However, returning separate metrics makes the selection of the
best stemmer difficult for researchers. Indeed, the accuracy of the
results and the execution time are two metrics that vary dispropor-
tionately. This causes a problem of comparison in the case where
we have two stemmers that return asymmetric metrics.

Thus, in order to introduce the execution time while evaluating
stemmers and to overcome the problem of metrics that vary dis-
proportionately, we propose a new global metric called Gs-Score
(for Global Stemming Score) which can be calculated as follows:

o. > Ty

Gs — Score = m.

where T,, is the time taken by the stemmer to stem the word “W”,
and Accuracy,, is the accuracy of results returned by the stemmer
for the word “W”. The « and g parameters are used to adjust the
weights of execution time and accuracy. Researchers can change
their values in order to make one element more important than
the other. For example, if the accuracy matters more for a
researcher, he/she can set o to a low value and B to a high value.
For our experiments, we have set both « and g to 1.

Indeed, execution time and accuracy are two metrics that
reflect the real performance of the stemmer and the relevance of
its results. A stemmer with high rate of accuracy and reduced exe-
cution time is considered a good stemmer. In contrast to this, a
stemmer with a high number of Words per Conflation Class
(WCC) and a high index compression factor (ICF) is not necessarily
a good stemmer since these kinds of metric describe only how
many changes were made to words in order to produce stems
(number of added/removed characters), and do not reflect the
accuracy. That is why we believe that both the execution time
and the accuracy should be taken into account when evaluating
Arabic stemmers. A fast and accurate stemmer is better than a fast
and not accurate stemmer. If two stemmers have the same execu-
tion time, then their accuracies will determine which one is the
best. If two stemmers have the same accuracy, then their execution
times will determine which one is the best. That is to say that both
accuracy and execution time should be considered when compar-
ing and benchmarking stemmers.

It should be noted that our Gs-Score metric is considered better
when its value tends to 0, and vice versa. Therefore, this new met-
ric will help researchers make the optimal choice even if the met-
rics returned by stemmers are disproportionate.

wordl : steml[, stem2, stem3...]
wordZ2 : steml[, steml2, stem3...]
word3 : steml[, stem2, stem3...]

]

word4d : steml[, =stemZ, stem3d...

Figure 3. Example of input stemming results to evaluate.

4.4. Presentation of our benchmarking solution

Our solution for the benchmark is integrated in the utilities
layer of SAFAR framework. This solution can be called and reused
easily in any other project without any modification (only the inte-
gration of a new stemmer to benchmark will be required). It should
be noted that SAFAR proposes a layer for Arabic stemmers with
several models and utilities to facilitate the development or the
integration of new Arabic stemmers within the framework.

The selected stemmers presented in this article were integrated
in SAFAR in order to gain more flexibility while benchmarking
them. The benchmark over these stemmers can be run directly
since they are already taken into account by the system. For eval-
uating and benchmarking new stemmers, researchers have then
two possibilities: (1) integrate the new stemmer in SAFAR mor-
phology layer and benefit from its flexibility, the system of bench-
marking can then be called as usual without any modification, (2) if
for any reason the researcher prefers not to integrate his/her stem-
mer within SAFAR, he/she can simply provide a text file (Fig. 3)
containing the results of the stemmer, the system of benchmarking
will then compare it against other stemmers results.

Each line of the custom stemmer results concerns one word. For
example, in line 1, the word “word1” could have at least one stem
“stem1” and probably other stems according to all word contexts:
“stem2”, “stem3”, etc. Stems of each word are separated by a
comma.

Thus, every stemmer can be evaluated and benchmarked with
others either by integrating it within SAFAR or by providing its
results in a separate file. There are no changes to make on the
benchmark system side.

In addition, any other annotated corpus can be used to evaluate
the Arabic stemmers. Researchers have only to normalize their cor-
pora according to the XML file in Fig. 4. Therefore, researchers will
have a large choice of Arabic stemmers to compare and evaluation
corpora to use without having to change the benchmark system
every time they want to evaluate a new stemmer.

Moreover, researchers have the possibility to run the bench-
mark system using the web application.® This solution can be used
either by developers or by linguists without writing any line of code.

Fig. 5 gives an overview of the proposed benchmarking solution
and its different steps.

In step 1 of Fig. 5, all stemmers process the input text of the
evaluation corpus. The results of each stemmer are then retrieved
as memory objects in step 2. In step 3, the utility compares the
results of each stemmer with those of the evaluation annotated
corpus in order to calculate the accuracy of each stemmer.

5. Experiments and results

In order to give concrete examples of using our benchmark
solution, we have selected three light stemmers (Light10, Motaz
stemmer and Tashaphyne) and compared their results with our
SAFAR-Stemmer. We selected these stemmers since they are
available for download and are open source. The evaluations were

3 http://arabic.emi.ac.ma:8080/SafarWeb_V2/BenchmarkController.

http://arabic.emi.ac.ma:8080/SafarWeb_V2/BenchmarkController

Y. Jaafar et al./Journal of King Saud University - Computer and Information Sciences 29 (2017) 164-170 169

<?xml version="1.0" encoding="UTF-8"?2>

<stemmer analysis>

<word v ="wordl" =stem="steml[,stem2...]" />
<word ¥ word2" stem="steml[,stem2...]" />
<word ¥ word3" stem="steml[,stem2...]" />
<word v 'wordd" =stem="steml[,stem2...]" />

</stemmer_analysis>

Figure 4. Example of custom XML evaluation corpus.

Input evaluation corpus

v
Executing each stemmer on the)

evaluation corpus

(Step 1

Lightl0 SAFAR
stemmer stemmer

Motaz
stemmer

Tashaphyne
stemmer

(e

Get stemming results >

#l

Stemming
results

Cstep 3

Annotated
evaluation corpus

¥

Evaluating results using the
evaluation corpus

'

Benchmarking
results

Figure 5. Stemmers benchmarking steps.

performed using the Quranic Arabic Corpus (Dukes and Habash,
2010) which contains 18,350 unique words.

Although SAFAR-Stemmer outputs several possible stems for
one word, we modified our stemmer for it to output one stem
per word form only. This made it possible to benchmark it against
stemmers that return one stem only. However, we encourage
researchers to consider the multiple stem solution also in their
works.

Table 1
Results of comparing four Arabic stemmers using the quranic Arabic corpus.

Experiments were executed on a computer having the following
characteristics: CPU = Core 2 Duo @2.13 GHZ, RAM = 4 GB, Operat-
ing System = Win7, 64bits. The following table gives an overview of
the results.

Table 1 presents the results of comparing the four light stem-
mers using the Quranic Arabic Corpus as evaluation corpus. The
results show that our SAFAR-Stemmer achieves the highest rate
of accuracy with 33.7%, followed by Motaz stemmer with 18.59%,
Light10 with 14.96% and finally Tashaphyne stemmer with
10.95%. For the execution time, Motaz stemmer takes less time
with 0.36 s, followed by Light10 with 1.77 s, SAFAR-Stemmer with
3.73 s and finally Tashaphyne stemmer with 5.69 s. It should be
noted that our stemmer takes more time than Motaz stemmer
and Light10 due to the lexicon resource verification, which
increases both accuracy and execution time. Otherwise we could
have had a similar reduced execution time as other stemmers. Con-
cerning the Gs-Score metric that combines accuracy with execu-
tion time, Motaz stemmer comes in first position with 0.02,
followed by SAFAR-Stemmer with 0.1, Light10 with 0.11 and
finally Tashaphyne stemmer with 0.52.

Given these results, we can suggest using Light10 and Motaz
stemmers in application-oriented tasks, like information retrieval,
where execution time matters more than accuracy of results. Con-
cerning SAFAR-stemmer, it will be more suitably used in tasks like
Part-of-Speech tagging, parsing, etc. to enhance their performance,
as the accuracy of these systems depends on the accuracy of the
stemming process.

6. Conclusion

In this article, we presented a new Arabic stemmer that uses
lexical resources in order to enhance the accuracy of results.
Indeed, Arabic light stemming as the process of stripping off a
set of prefixes and/or suffixes from a derived or inflected word, is
a blinded task suffering from problems such as incorrect removal,
vocalization ambiguity, single solution, etc. We used the SAFAR
framework resource API in order to strip off all possible prefixes/-
suffixes from a word; the remaining stems are then verified
according to a lexical resource containing 181 k words with their
stems and diacritization. Experiments show that this verification
has improved the accuracy of results.

On the other hand, we presented an automatic solution of
benchmarking light Arabic stemmers. We presented some evalua-
tions that were made in order to compare some specific stemmers.
In these evaluations, authors only provide examples of compara-
tive assessment of some known stemmers, but they do not offer
the possibility of extending their solutions to evaluate other stem-
mers. Our solution of benchmarking overcomes this by providing a
reusable and flexible system. It should be noted that researchers

Metrics Light10 Motaz Tashaphyne SAFAR-Stemmer
Correct stems (TP) 4777 5755 3622 9252
Incorrect stems (FP) 13,573 12595 14,728 9098
Unique stems (S) 8976 11735 5515 9500
Words not changed (U) 3513 8384 2343 6872
Removed characters 28944 11820 37,174 20,471
Accuracy 14.96% 18.59% 10.95% 33.70%
Words per Conflation Class (WCC) 2.04 1.56 3.32 1.93
Index compression factor (ICF) 51.08 36.04 69.94 48.22
Word change average (WCA) 80.85 54.31 87.23 62.55
Average removed characters (ARC) 1.57 0.64 2.02 1.11
Execution time (in seconds) 1.77 0.36 5.69 3.7
Gs-Score 0.11 0.02 0.52 0.10

Best scores of Accuracy and Gs-Score metrics are made in bold.

170 Y. Jaafar et al./Journal of King Saud University - Computer and Information Sciences 29 (2017) 164-170

use two categories of metrics when evaluating stemmers: metrics
related to the accuracy and those related to the strength. However,
they neglect execution time, which is an important element given
the huge amount of available data nowadays. To remedy this, we
presented a new metric called Gs-Score (for Global Stemming
Score) that combines execution time with the accuracy of stem-
mers. This new metric will allow researchers to make the best pos-
sible choice of the stemmer to use in their projects. We have
selected three light stemmers in order to compare their results
with our stemmer and give a concrete example of our system of
benchmarking. The results show that our stemmer achieves the
highest rate of accuracy with 33.7% and comes in the second posi-
tion in terms of Gs-Score metric with 0.1.

It should be noted that most of stemmers are designed for infor-
mation retrieval systems where the execution time matters more
than the accuracy of results. It would be then useful to distinguish
an intrinsic evaluation, measuring the accuracy at which a stem-
mer performs its task, from an extrinsic evaluation, measuring
how useful the output of a stemmer is for a specific NLP task.
Despite our stemmer is more accurate than the others, at the
moment it is not intended to be used in systems such as IR. How-
ever, it will enhance results in other NLP tasks where accuracy is
important, such as Part-of-Speech tagging, parsing, etc. since the
accuracy of these systems depends on the accuracy of the stem-
ming process.

It has also to be underlined that the Holy Quran is a very special
text, and that we must be cautious when using and generalizing its
results. That is to say, experiments done in this article could be
enriched by using other evaluation corpora in order to give
extended benchmarking results. Some more efforts should be put
into producing these kinds of corpora.

In the future, we plan to enrich our lexicon resource with new
words in order to cover more stems and enhance results. We plan
also to evaluate new stemmers in order to present weaknesses and
strengths of most available Arabic stemmers so that researchers
can identify which ones to use in their projects. Moreover, we plan
to further optimize our stemming process for it to take less time,
and to publish it online on our research group website.

References

Aljlayl, M., Frieder, O., 2002. On Arabic search: improving the retrieval effectiveness
via a light stemming approach. In: Proceedings of the Eleventh International
Conference on Information and Knowledge Management, McLean, VA.

Al-Kabi, M.N., Al-Mustafa, R.S., 2006. Arabic root based stemmer. In: Proceeding of
the International Arabic Conference on Information Technology. ACIT, Jordan.

Al-Kabi, M.N., Al-Radaideh, Q.A., Akkawi, KW., 2011. Benchmarking and assessing
the performance of Arabic stemmers.]. Inform. Sci. 37 (2), 111-119.

Al-Shawakfa, E., Al-Badarneh, A., Shatnawi, S., Al-Rabab’ah, K., Bani-Ismail, B., 2010.
A comparison study of some Arabic root finding algorithms. J. Am. Soc. Inform.
Sci. Technol. 61 (5), 1015-1024.

Chen, A, Gey, F.C,, 2002. Building an Arabic stemmer for information retrieval. In:
Proceedings of the 11th Text Retrieval Conference (TREC).

Dukes, K., Habash, N., 2010. Morphological annotation of quranic Arabic. In:
Proceedings of the International Conference on Language Resources and
Evaluation, LREC 2010, Valletta, Malta, 2010.

Dukes, K. Habash, N., 2010. Morphological annotation of quranic Arabic. In:
Language Resources and Evaluation Conference (LREC), Malta.

Flores, F.N., Moreira, V.P., 2016. Assessing the impact of stemming accuracy on
information retrieval. Inf. Process. Manage. 52 (5), 840-854.

Frakes, W.B., Fox, CJ., 2003. Strength and similarity of affix removal stemming
algorithms. ACM SIGIR Forum 37 (1), 26-30.

Galvez, C., de Moya-Anegon, F., Solana, V.H., 2005. Term conflation methods in
information retrieval: non-linguistic and linguistic approaches. J. Document. 61
(4), 520-547.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., 2009. The
WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11 (1),
10-18.

Hofmann, M., Klinkenberg, R., 2013. RapidMiner: Data Mining Use Cases and
Business Analytics Applications. CRC Press.

Jaafar, Y., Bouzoubaa, K., 2015. Arabic natural language processing from software
engineering to complex pipeline. In: First International Conference on Arabic
Computational Linguistics (ACLing), Egypt, Cairo, 2015.

Jaafar, Y., Bouzoubaa, K., Yousfi, A., Tajmout, R., Khamar, H., 2016. Improving Arabic
morphological analyzers benchmark. Int.]. Speech Technol. 19 (2), 259-267.

Larkey, L.S., Ballesteros, L., Connell, M.E., 2002. Improving stemming for Arabic
information retrieval: light stemming and co-occurrence analysis. In:
Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Tampere, Finland.

Larkey, L.S., Ballesteros, L., Connell, M.E, 2007. Light stemming for Arabic
information retrieval. In: Arabic Computational Morphology: Knowledge-
based and Empirical Methods. Springer, Netherlands, pp. 221-243.

Maabid, A.M., Elghazaly, T., Ghaith, M., 2015. An enhanced rule based Arabic
morphological analyzer based on proposed assessment criteria. In: Advances in
Swarm and Computational Intelligence. Springer International Publishing, pp.
393-400.

Majdi, S., Atwell, E., 2008. Comparative evaluation of Arabic language
morphological analysers and stemmers. In: International Conference on
Computational Linguistics - COLING, Manchester, UK, 2008.

Otair, M.A., 2013. Comparative analysis of Arabic stemming algorithms. Int.]J.
Manag. Inform. Technol. 5 (2).

Rogati, M., McCarley, S., Yang, Y., 2003. Unsupervised learning of Arabic stemming
using a parallel corpus. In: Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics-Volume 1, Stroudsburg, USA, 2003.

Saad, M.K,, Ashour, W., 2010. Arabic morphological tools for text mining. In: 6th
International Conference on Electrical and Computer Systems (EECS'10), Lefke,
North Cyprus, 2010.

Souteh, Y., Bouzoubaa, K., 2011. SAFAR platform and its morphological layer. In:
Proceeding of the Eleventh Conference on Language Engineering (ESOLEC'2011),
Cairo, Egypt.

Zerrouki, T., 2016. Tashaphyne 0.2 (Online). Available: <https://pypi.python.org/
pypi/Tashaphyne> (Accessed 14 April 2016).

http://refhub.elsevier.com/S1319-1578(16)30123-9/h0010
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0010
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0015
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0015
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0020
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0020
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0020
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0040
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0040
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0045
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0045
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0050
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0050
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0050
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0055
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0055
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0055
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0060
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0060
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0070
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0070
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0080
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0080
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0080
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0085
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0085
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0085
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0085
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0095
http://refhub.elsevier.com/S1319-1578(16)30123-9/h0095
https://pypi.python.org/pypi/Tashaphyne
https://pypi.python.org/pypi/Tashaphyne

	Enhancing Arabic stemming process using resources and benchmarking tools
	1 Introduction
	2 Related works
	3 Presentation of our Arabic stemmer
	4 Stemmers evaluation and benchmark
	4.1 Evaluation corpora
	4.2 Common metrics of performance used to evaluate stemmers
	4.3 New metric for evaluating Arabic stemmers
	4.4 Presentation of our benchmarking solution

	5 Experiments and results
	6 Conclusion
	References

