
Journal of King Saud University – Computer and Information Sciences (2017) 29, 520–525
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A performance evaluation of in-memory databases
* Corresponding author. Fax: +90 3742534526.

E-mail address: talha.kabakus@ibu.edu.tr (A.T. Kabakus).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2016.06.007
1319-1578 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Abdullah Talha Kabakus a,*, Resul Kara b
aAbant Izzet Baysal University, IT Center, 14030 Bolu, Turkey
bDuzce University, Faculty of Engineering, Department of Computer Engineering, 81620 Duzce, Turkey
Received 1 April 2016; revised 6 May 2016; accepted 29 June 2016
Available online 2 July 2016
KEYWORDS

NoSQL databases;

In-memory databases;

Database performance
Abstract The popularity of NoSQL databases has increased due to the need of (1) processing vast

amount of data faster than the relational database management systems by taking the advantage of

highly scalable architecture, (2) flexible (schema-free) data structure, and, (3) low latency and high

performance. Despite that memory usage is not major criteria to evaluate performance of

algorithms, since these databases serve the data from memory, their memory usages are also

experimented alongside the time taken to complete each operation in the paper to reveal which

one uses the memory most efficiently. Currently there exists over 225 NoSQL databases that

provide different features and characteristics. So it is necessary to reveal which one provides better

performance for different data operations. In this paper, we experiment the widely used in-memory

databases to measure their performance in terms of (1) the time taken to complete operations, and

(2) how efficiently they use memory during operations. As per the results reported in this paper,

there is no database that provides the best performance for all data operations. It is also proved

that even though a RDMS stores its data in memory, its overall performance is worse than NoSQL

databases.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The key reasons behind regarding ‘‘data storage mechanism” as

the hearth of enterprise software systems can be listed as: (1) it
is the most major part of softwares that determines how quick
an application responds a request, and (2) the loss of data is

mostly unacceptable since the key business operations. Until
the rise of NoSQL (Not-only SQL) databases, the relational
database management systems (RDMS’) were the sole and

exclusive remedy. However, with the constant growth of stored
data, the limitations of relational database management sys-
tems such as scalability and storage, and efficiency losing of
query due to the large volumes of data, and the storage and

management of larger databases become challenging
(Abramova et al., 2014). At the time of writing, there exists over
225 NoSQL databases that provide different features and char-

acteristics (Edlich, 2016). NoSQL databases are more horizon-
tally scalable and flexible when they are compared to RDMS’
(Stonebraker, 2010). When it comes to processing vast amounts

of data quickly taking the advantage of schema-free data struc-
ture and distributed architecture, NoSQL databases are pre-
ferred instead of RDMS’ (Bartholomew, 2010; Li and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.06.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:talha.kabakus@ibu.edu.tr
http://dx.doi.org/10.1016/j.jksuci.2016.06.007
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.06.007
http://creativecommons.org/licenses/by-nc-nd/4.0/


A performance evaluation of in-memory databases 521
Manoharan, 2013). Also, performance of RDMS’ decrease
with increase in size of data, which causes deadlocks and con-
currency issues (Han et al., 2011). While RDMS relies on ACID

(Atomicity, Consistency, Isolation, Durability) consistency
model that ensures all the transactions are correctly committed
and do not corrupt database, and the data are consistent,

NoSQL databases are based on BASE (Basically Available,
Soft-state, Eventually Consistent) consistency model in order
to achieve scalability, high availability, and high performance

(Bartholomew, 2010; Carro, 2014; Cook, 2009; Gajendran,
2012; Pritchett, 2008). NoSQL databases serves the data from
volatile memory (i.e. random access memory – RAM) instead
of non-volatile memory (i.e. hard drive) in order to increase

the speed of querying since I/O (Input/Output) data access is
slow (Abramova et al., 2014).

The rest of the paper is organized as follows: Section 2

describes categories of in-memory databases and their
differences. Section 3 presents related works. Section 4
discusses the proposed experimental setup. Section 5 presents

the experimental results and discussion. Finally, Section 6
concludes the paper.

2. NoSQL databases

NoSQL databases can be categorized into four classes accord-
ing to different optimizations (Indrawan-Santiago, 2012):

� Key-value store: The data are stored as key-value pairs.
This data structure is also known as ‘‘hash table” where
the data are retrieved by keys. Most well-known examples

of key-value stores are Redis1, Memcached2.
� Document store: The data are stored in collections that
contain key-value pairs which encapsulate key value pairs

in JSON (Javascript Object Notation) or JSON like
documents (Hecht and Jablonski, 2011). Most well-known
examples of document stores are MongoDB3, CouchDB4.

Since values are not opaque to the system, data can be quer-
ied by values as well as keys (Hecht and Jablonski, 2011).

� Column family: The data are stored as a set of rows and

columns where columns are grouped according to the rela-
tionship of data (Abramova et al., 2014). Most well-known
examples of document stores are Cassandra5, HBase6.

� Graph database: This type of databases is best used to

represent data in the form of graph. The most well-known
example of graph databases is Neo4j7.

3. Related works

Bartholomew (Bartholomew, 2010) compares SQL and

NoSQL databases with providing a brief history and the use
case of each one. Tiwari provides a detailed introduction on
NoSQL databases with a comparison on the basis of following

features: (1) scalability, (2) transactional integrity and
1 http://redis.io.
2 https://memcached.org.
3 https://www.mongodb.org.
4 http://couchdb.apache.org.
5 http://cassandra.apache.org.
6 https://hbase.apache.org.
7 http://neo4j.com.
consistency, (3) data modeling, (4) query support, and (5)
access and interface availability (Tiwari, 2011). Hecht and
Jablonski present a use case oriented survey on NoSQL

databases (Hecht and Jablonski, 2011). They compare NoSQL
databases by their data models, query possibilities, concur-
rency controls, partitioning and replication opportunities.

Abramova et al. (2014) use Yahoo! Cloud Serving
Benchmark (Cooper et al., 2010) in order to evaluate and com-
pare the performance of NoSQL databases. They randomly

generate 600,000 records and used them with different work-
loads by changing ratios of read, update and insert operations.
The databases used in the experimental evaluation are Redis,
Cassandra, HBase, MongoDB, and OrientDB8. They report

that as overall the in-memory database Redis provides the best
performance. Also, they report that column family databases
Cassandra and HBase showed good update performance since

they are optimized for update operations.
Li and Manoharan (2013) compare performances of

NoSQL databases through five experiments: (1) Time to

instantiate database bucket, (2) time to read values
corresponding to given keys, (3) time to write key-value pairs,
(4) time to delete key-value pairs, and (5) time to fetch all keys.

These experiments are also tested for various data from 10
records to 100,000 records. The databases they tested are
MongoDB, RavenDB9, CouchDB, Cassandra, Hypertable10,
Couchbase11, and MS SQL Express12. They report that

Couchbase and MongoDB are the fastest two overall for read,
write, and delete operations. They also note that Couchbase
lacks fetching all keys from database.

Boicea et al. (2012)) compare MongoDB and Oracle13

databases in order to compare NoSQL and SQL database
performance through the three experiments: (1) Elapsed time

to insert data, (2) elapsed time to update data, and (3) elapsed
time to delete data. These experiments are also tested for
various data from 10 records to 1,000,000 records. They report

that for all operations, MongoDB provides better performance
than Oracle.

Our contribution in this paper is developing our own
software to measure performance of widely used in-memory

databases for various experiments. Despite that memory usage
is not a major criterion to evaluate performances of algo-
rithms, since these databases serve the data from memory, it

is necessary to reveal their memory usages especially when
the size of data gets bigger. For this reason, unlike the related
works, we also dig into the memory usages of in-memory data-

bases alongside their performances in term of the time taken to
complete different database operations.

4. Experimental setup

The in-memory databases that are experimented in this paper
are listed in Table 1 with their database models and versions.
There exists at least one database from each NoSQL database

category (key-value store, document store, column family,
8 http://orientdb.com.
9 https://ravendb.net.
10 http://www.hypertable.org.
11 http://www.couchbase.com.
12 https://www.microsoft.com/en-us/server-cloud/products/sql-ser-

ver/overview.aspx.
13 https://www.oracle.com/database/index.html.

http://redis.io
https://memcached.org
https://www.mongodb.org
http://couchdb.apache.org
http://cassandra.apache.org
https://hbase.apache.org
http://neo4j.com
http://orientdb.com
https://ravendb.net
http://www.hypertable.org
http://www.couchbase.com
https://www.microsoft.com/en-us/server-cloud/products/sql-server/overview.aspx
https://www.microsoft.com/en-us/server-cloud/products/sql-server/overview.aspx
https://www.oracle.com/database/index.html


Table 1 The in-memory databases that are experimented in

this paper.

Database name Database model Version

MongoDB Document store 3.2.4

Redis Key-value store 3.0.7

Memcached Key-value store 1.4.14

Cassandra Column store 2.2.5

H2 Relational database 1.4.191

Table 3 The calculated time to write key-value pairs (ms).

Database Number of records

1,000 10,000 100,000 1,000,000

Redis 34 214 1666 14.638

MongoDB 904 3482 26.030 253.898

Memcached 23 100 276 2813

Cassandra 1202 4487 15.482 140.842

H2 147 475 1648 7394

Table 4 Memory usages of in-memory databases for write

operation (MB).

Database Number of records

1,000 10,000 100,000 1,000,000

Redis 2.5 3.8 4.3 62.7

MongoDB 56.9 263.6 365 155.9

Memcached 5.3 27.2 211 264.9

Cassandra 5.3 7.5 208.1 102.6

H2 2.3 33.2 103.4 540

522 A.T. Kabakus, R. Kara
graph database) except graph database since it was discussed
by Armstrong et al. (2013), graph databases cannot be com-

pared with other NoSQL databases using the same experi-
ments. All the databases used with the experimental setup
are NoSQL databases except H2. We intentionally included

H2 into this list despite that it is a RDMS, H2 differs from
other RDMS by storing its data in the memory instead of hard
disk. Therefore, the experimental results reveal the effect of the

database model on the performance of database.
We developed our own software based on Java to measure

performance of in-memory databases for various experiments.
Execution time per operation is recorded by determining sys-

tem time at the start and end of the method using java.lang.
System class. Similarly, consumed memory per operation is
recorded by determining the free memory in bytes at the start

and end of the method using the java.lang.Runtime class which
allows Java applications to interface with the environment that
they run (Ricca, 2003). The execution time and consumed

memory are also calculated in this way by Bergmann et al.
(2010). During the experiments, all other processes of operat-
ing system (except the mandatory ones) are stopped in order
to reveal sole performance of databases. All the experiments

are evaluated on the same machine whose specifications are
described in the Table 2.

5. Experimental results and discussion

The performance of in-memory databases is measured by four
experiments: (1) performance to write a key-value pair, (2)

performance to read value corresponding to a given key, (3)
performance to remove the key-value pair corresponding to
a given key, and (4) performance to get all the data. For each

experiment, the size of data is exponentially increased in order
to reveal how the size of data affects performance of each
database.

5.1. Experiment 1 – performance to write a key-value pair

A service that generates random key-value pairs is imple-
mented in order to measure write performance of in-memory
Table 2 Specifications of the machine that is used to evaluate

experiments.

Operating system Ubuntu 14.04 (64-bit)

Memory 16 GB

CPU Intel Core i7-4710MQ 4-Cores; 6 MB L3;

2.50 GHz > 3.50 GHz

Java version 1.8.0_60

File system ext4
databases. The calculated time to write the generated
key-value pairs per each database is listed in Table 3. As it is
shown in the result, the list of databases can be sorted by over-
all performance of write operation: Memcached, H2, Redis,

Cassandra, MongoDB. It should be noted that there is a signif-
icant difference between Memcached and MongoDB. As the
size of data increases, the performance differences between

databases become evident. Performance of MongoDB signifi-
cantly decreases when the size of the data increases since Mon-
goDB uses locking mechanism as it is discussed by Abramova

et al. (2014).
Since in-memory databases serve the data from memory, it

is necessary to identify how much memory they consume dur-
ing write operations. Table 4 presents memory usage of each

database for write operation. As it is shown in the result,
unlike the elapsed time result, Redis provides the best perfor-
mance when it comes to efficient memory usage.

5.2. Experiment 2 – performance to read value corresponding to

a given key

Our second experiment measures the required time and con-
sumed memory to read the value corresponding to the given
key. As the experimental result is listed in Table 5, H2 provides
Table 5 The elapsed time to read value corresponding to a

given key per database (ms).

Database Number of records

1,000 10,000 100,000 1,000,000

Redis 8 6 8 8

MongoDB 8 10 11 13

Memcached 9 14 14 30

Cassandra 2 2 3 6

H2 25 26 60 171



Table 8 Memory usages of in-memory databases for delete

operation (MB).

Database Number of records

1,000 10,000 100,000 1,000,000

Redis 0 0 0 0

MongoDB 10 10 10 11.3

Memcached 2.2 2.1 2.2 2.2

Cassandra 0 0 0 0

H2 1.2 1.8 4.9 62.9

A performance evaluation of in-memory databases 523
the worst read performance in terms of elapsed time. Despite
that H2 also stores the data on memory like the other
databases, the architecture of database which is relational

database management system decreases the performance of
read operation. As it is shown in the result, the list of databases
can be sorted by overall performance of read operation:

Cassandra, Redis, Memcached, MongoDB, H2.
Cassandra provides the best read performance when it

comes to efficient memory usage. There is no significant

difference in memory usages between other databases except
H2. When the size of data increases, the read performance of
H2 dramatically decreases (see Table 6).

5.3. Experiment 3 – performance to delete key-value pair
corresponding to a given key

Our third experiment measures the required time to delete the

data corresponding to a given key. As Table 7 summarizes the
result, Redis clearly provides the best performance by
completing operations in less than 1 ms while MongoDB

provides the worst performance. Performance of Cassandra
for delete operation is calculated as very similar to Redis.

When it comes to efficient memory usage, Cassandra and

Redis provide better performance compared to other
in-memory databases, and H2 provides the worst for delete
operation (see Table 8).

5.4. Experiment 4 – performance to fetch all the data

Our forth experiment measures database performance while
fetching whole data. This experiment differs from the experi-

ment 2 since the read query ends as soon as the data corre-
sponding to the given key is found. Despite that the key is
randomly chosen during the experiment 2, we think that fetch-

ing the whole data makes these measures clearer: (1) how fast
Table 6 Memory usages of in-memory databases for read

operation (MB).

Database Number of records

1,000 10,000 100,000 1,000,000

Redis 1.3 1.3 1.3 1.3

MongoDB 1.3 2.5 2.5 1.3

Memcached 1.3 2.5 1.3 2.5

Cassandra 0 0 0 0

H2 1.2 1.2 9.8 60

Table 7 The elapsed time to delete the data corresponding to

a given key per database (ms).

Database Number of records

1,000 10,000 100,000 1,000,000

Redis 0 1 0 0

MongoDB 75 88 92 355

Memcached 17 17 16 13

Cassandra 2 2 1 2

H2 10 13 68 174
is the database while fetching all the data available, and (2)
how much memory does the database consume in order to

store and fetch the whole data. As the result is listed in Tables
9 and 10,MongoDB clearly provides the best performance with
consuming a lot less memory compared to Redis and H2. As

the size of data increases, the performance difference between
MongoDB and others becomes evident. Memcached is
excluded for this experiment since it does not support fetching

whole the data (Stackoverflow, 2016).
According to CAP (Consistency, Availability, Partition

Tolerance) theorem, which is the base of both ACID and
BASE consistency models, only two of three guarantees can

be achieved (Han et al., 2011; Rahman et al., 2015). While
RDMS mainly focus on consistency, the main idea behind
NoSQL databases is giving up some consistency in order to

provide more availability, scalability, and high performance
(Bartholomew, 2010). Another advantage of using RDMS is
that since they use a common language (which is SQL – Struc-

tured Query Language), migration from one relational
database management system to another is always more possi-
ble when it is compared to NoSQL databases which have its
own set of APIs to interact the data they contain

(Bartholomew, 2010).
Table 9 The elapsed time to fetch all the data per database

(ms).

Database Number of records

1,000 10,000 100,000 1,000,000

Redis 10 9 11 11

MongoDB 9 15 9 8

Cassandra 9 32 24 54

H2 9 14 18 20

Table 10 Memory usages of in-memory databases to get all

the data (MB).

Database Number of records

1,000 10,000 100,000 1,000,000

Redis 2.1 2.1 2.2 2.2

MongoDB 1.3 1.3 1.1 0.8

Cassandra 0.6 0.6 1.3 1.3

H2 1.2 1.1 9.7 10.6



524 A.T. Kabakus, R. Kara
6. Conclusion

NoSQL databases are based on BASE consistency model
instead of ACID consistency model which comes with the idea

of giving up some consistency in order to provide more avail-
ability, scalability, and high performance. The popularity of
NoSQL databases – which store the data in memory – has

increased due to the need of (1) processing vast amount of data
faster than the relational database management systems by
taking the advantage of highly scalable architecture, (2)
flexible (schema-free) data structure, and, (3) low latency and

high performance. Currently there exists over 225 NoSQL
databases that provide different features and characteristics.
In this paper, we evaluate at least one in-memory database

from each type: Redis and Memcached as key-value stores,
MongoDB as a document store, Cassandra as column family,
and H2 as an in-memory relational database management

system. Unlike the related works, alongside the time taken to
complete various data operations, the memory usages of
in-memory databases are also experimented in order to reveal

memory usages of each database. Results obtained from
experiments can be listed as:

� While Memcached clearly provides the best write

performance in term of elapsed time, Redis uses the memory
more efficiently than others. Performance of MongoDB
significantly decreases when the size of the data increases

due to locking mechanism of MongoDB.
� Redis fairly provides better performance than Memcached
and MongoDB for the read operation. H2 clearly provides

the worst read performance. We think that the architecture
of H2 which is relational database is the main reason
behind this difference.

� When it comes to delete a key-value pair corresponding to a
given key, Redis clearly provides the best performance while
MongoDB provides the worst performance. Redis and
Cassandra consume the memory more effective than other

databases for delete operation. H2 uses the memory less
efficiently than others and the difference becomes evident
when the size of data increases.

� MongoDB provides significantly the best performance to
fetch the whole data while Cassandra provides the worst
performance. The disadvantage of using H2 is that since

it stores the data in the memory, it is volatile. Redis and
MongoDB (when the indexes are created for the queries)
serve the data from memory while the hard disk is used
for storage. When it comes to memory consumption to

fetch whole the data, MongoDB uses the memory more
effective than others. H2 uses the memory much more than
others especially when the size of data increases. Mem-

cached does not support fetching the whole data.

SQL and NoSQL databases provide different

characteristics and one cannot replace another. If the system
is not flexible in terms of consistency, then the relational
database management system is the right choice. If the system

can give up some consistency, then NoSQL databases can be a
good choice in order to provide more availability, scalability,
and high performance.

As future work, the effect of document types on

performance for each database can be experimented. Also,
reasons of latencies that are experienced during the experi-
ments can be explained in detail by inspecting their architec-
tures. Effect of distributed and parallel environments on

database performances is another topic to be examined.

References

Abramova, V., Bernardino, J., Furtado, P., 2014. Which

NoSQL database? A performance overview. Open J. Databases 1,

17–24.

Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.,

2013. LinkBench: a database benchmark based on the Facebook

social graph. In: SIGMOD ’13 Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data.

ACM, New York, NY, USA, pp. 1185–1196. http://dx.doi.org/

10.1145/2463676.2465296.

Bartholomew, D., 2010. SQL vs. NoSQL. Linux J., 54–59 (doi:

FacetMap: A Scalable Search and Browse Visualization)

Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh,

Z., Ökrös, A., 2010. Incremental evaluation of model queries over

EMF models. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (Eds.),

Model Driven Engineering Languages and Systems, Lecture Notes

in Computer Science. Springer, Berlin Heidelberg, Berlin, Heidel-

berg, pp. 76–90. http://dx.doi.org/10.1007/978-3-642-16145-2.

Boicea, A., Radulescu, F., Agapin, L.I., 2012. MongoDB vs oracle –

database comparison. In: Proceedings – 3rd International Confer-

ence on Emerging Intelligent Data and Web Technologies, EIDWT

2012, pp. 330–335. http://dx.doi.org/10.1109/EIDWT.2012.32

(Bucharest, Romania).

Carro, M., 2014. NoSQL Databases. CoRR abs/1401.2.

Cook, J.D., 2009. ACID versus BASE for database transactions

[WWW Document]. URL <http://www.johndcook.com/blog/

2009/07/06/brewer-cap-theorem-base/> (accessed 29.03.16).

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.,

2010. Benchmarking cloud serving systems with YCSB. In:

Proceedings of the 1st ACM Symposium on Cloud Computing –

SoCC ’10. ACM, New York, NY, USA, pp. 143–154. http://dx.doi.

org/10.1145/1807128.1807152.

Edlich, S., 2016. NOSQL Databases [WWW Document]. URL

<http://nosql-database.org> (accessed 28.03.16).

Gajendran, S.K., 2012. A Survey on NoSQL databases..

Hecht, R., Jablonski, S., 2011. NoSQL evaluation: a use case oriented

survey. In: Proceedings – 2011 International Conference on Cloud

and Service Computing, CSC 2011, pp. 336–341. http://dx.doi.org/

10.1109/CSC.2011.6138544.

Indrawan-Santiago, M., 2012. Database research: are we at a

crossroad? Reflection on NoSQL. In: Proceedings of the 2012

15th International Conference on Network-Based Information

Systems, NBIS 2012, Melbourne, Australia, pp. 45–51. http://dx.

doi.org/10.1109/NBiS.2012.95.

Jing, Han, Haihong, E., Guan, Le, Jian, Du, 2011. Survey on NoSQL

database. In: 2011 6th International Conference on Pervasive

Computing and Applications. IEEE, Port Elizabeth, South Africa,

pp. 363–366. http://dx.doi.org/10.1109/ICPCA.2011.6106531.

Li, Y., Manoharan, S., 2013. A performance comparison of SQL and

NoSQL databases. IEEE Pacific RIM Conference on Communi-

cations, Computers, and Signal Processing – Proceedings., 15–19

http://dx.doi.org/10.1109/PACRIM.2013.6625441.

Pritchett, D., 2008. Base: an acid alternative. Queue 6, 48–55. http://

dx.doi.org/10.1145/1394127.1394128.

Rahman, M.R., Tseng, L., Nguyen, S., Gupta, I., Vaidya, N., 2015.

Characterizing and adapting the consistency-latency tradeoff in

distributed key-value stores. Distributed, Parallel, and Cluster

Computing.

Ricca, F., 2003. The DLV java wrapper. In: Proceedings ASP 2003 –

Answer Set Programming: Advances in Theory and Implementa-

tion. Messina, Italy, pp. 305–316.

http://refhub.elsevier.com/S1319-1578(16)30045-3/h0005
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0005
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0005
http://dx.doi.org/10.1145/2463676.2465296
http://dx.doi.org/10.1145/2463676.2465296
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0015
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0015
http://dx.doi.org/10.1007/978-3-642-16145-2
http://dx.doi.org/10.1109/EIDWT.2012.32
http://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/
http://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
http://nosql-database.org
http://dx.doi.org/10.1109/CSC.2011.6138544
http://dx.doi.org/10.1109/CSC.2011.6138544
http://dx.doi.org/10.1109/NBiS.2012.95
http://dx.doi.org/10.1109/NBiS.2012.95
http://dx.doi.org/10.1109/ICPCA.2011.6106531
http://dx.doi.org/10.1109/PACRIM.2013.6625441
http://dx.doi.org/10.1145/1394127.1394128
http://dx.doi.org/10.1145/1394127.1394128
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0080
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0080
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0080
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0080
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0085
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0085
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0085


A performance evaluation of in-memory databases 525
stackoverflow, 2016. retrieve all objects key store in memcached in java

– Stack Overflow [WWW Document]. URL <http://stackover-

flow.com/questions/8487153/retrieve-all-objects-key-store-in-mem-

cached-in-java> (accessed 30.03.16).
Stonebraker, M., 2010. SQL databases v. NoSQL databases. Com-

mun. ACM 53, 10–11. http://dx.doi.org/10.1145/1721654.1721659.

Tiwari, S., 2011. Professional NoSQL, 1st ed. John Wiley & Sons,

Indianapolis, Indiana.

http://stackoverflow.com/questions/8487153/retrieve-all-objects-key-store-in-memcached-in-java
http://stackoverflow.com/questions/8487153/retrieve-all-objects-key-store-in-memcached-in-java
http://stackoverflow.com/questions/8487153/retrieve-all-objects-key-store-in-memcached-in-java
http://dx.doi.org/10.1145/1721654.1721659
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0100
http://refhub.elsevier.com/S1319-1578(16)30045-3/h0100

	A performance evaluation of in-memory databases
	1 Introduction
	2 NoSQL databases
	3 Related works
	4 Experimental setup
	5 Experimental results and discussion
	5.1 Experiment 1 – performance to write a key-value pair
	5.2 Experiment 2 – performance to read value corresponding to a given key
	5.3 Experiment 3 – performance to delete key-value pair corresponding to a given key
	5.4 Experiment 4 – performance to fetch all the data

	6 Conclusion
	References


