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Abstract Cloud computing is one of the most popular and pragmatic topics of research nowadays.

The allocation of cloudlet(s) to suitable VM(s) is one of the most challenging areas of research in the

domain of cloud computing. This paper highlights a new cloudlet allocation algorithm which

improves the performance of a cloud service provider (CSP) in comparison with the other existing

cloudlet allocation algorithms. The proposed Range wise Busy-checking 2-way Balanced (RB2B)

cloudlet allocation algorithm optimizes few basic parameters associated with the performance anal-

ysis. An extensive simulation is done to evaluate the proposed algorithm using Cloudsim to attest its

efficacy in comparison to the other existing allocation policies.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cloud computing is the newest trend in the field of computer

science and it is said to be the future of modern technology.
Cloud computing is popular mostly for its special ability to uti-
lize shared resources most efficiently. The allocation of the

cloudlets to the suitable resources known as the virtualmachines
or VMs (Fu andZhou, 2015) is an essential requirement in cloud
computing environment. In a typical Cloud environment there is
amodule known as datacenter broker (DCB) which controls the
entire datacenter including the cloudlet allocation to VMs. So,
like any normal computing performance optimization and

improvement of the allocation algorithm is always a possibility.
Engineering an efficient cloudlet allocation algorithm

(Zhang et al., 2007) is a challenging research area and many

such policies have been proposed, analyzed and compared on
heterogeneous parallel computing environments. A new mech-
anism had been introduced, known as effective aggregated

computing power (EACP) (Radulescu and Van Gemund,
1999) that improves the performance. The Adaptive weighted
factoring (AWF) (Carino and Banicescu 2008) is used for

scheduling parallel loops. The dynamic loop scheduling with
reinforcement learning (Rashid et al., 2008) (DLS-with-RL) is
very much effective for use in time stepping scientific applica-
tions with many steps. The scheduling (Aziz and El-Rewini,

2008) policies for Grid environment use several methods which
are similar yet different to themechanisms of cloudlet allocation
policies. Genetic Algorithms (Pop, 2008) are also used for
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scheduling. The Opportunistic Load Balancing (OLB) heuristic
(Braun et al., 2008) (Makelainen et al., 2014) (Iordache et al.,
2007) chooses a cloudlet from the batch of cloudlets arbitrarily

and allocates it to the next VM which is estimated to be
available, not considering the cloudlet’s expected execution
time on that VM, resulting in very poor makespan (Wang

et al., 2006). The Minimum Execution Time (MET) (George
Amalarethinam and Muthulakshmi, 2011) allocates each
cloudlet chosen arbitrarily to the VM with the least possible

execution time resulting in the severe imbalance of load across
the VMs. The Minimum Completion Time (MCT) (George
Amalarethinam and Muthulakshmi, 2011) heuristic allocates
each cloudlet to the VM with the minimum completion time

for that cloudlet. It literally combines the advantages of OLB
and MET. The QoS (Quality of Service) guided Min–min (He
et al., 2003) assigns cloudlets which require higher bandwidth.

The QoS priority grouping scheduling (Dong et al., 2006) gives
importance to deadlines. The QoS Sufferage (Ullah Munir
et al., 2007) considers network bandwidth as a major factor

and schedules tasks based on their bandwidth requirement.
The Grid-JQA (Khanli and Analoui, 2007, 2008) scheduling
solution uses an aggregation formula which combines the

parameters together with weighting factors to calculate QoS.
The proposal of a dissimilar and new scheduling algorithm
(Afzal et al., 2008) that tries to minimize the cost of the execu-
tion as well as satisfying the QoS constraints, views the schedul-

ing environment as a queuing system. Another user oriented
scheduling algorithm which uses an advanced reservation and
resource selection techniques (Elmroth and Tordsson, 2008)

minimizes the execution time of individual cloudlets without
considering the make span. The multiple resources scheduling
(MRS) (Benjamin Khoo et al., 2007) algorithm considers both

the system capabilities and the resource requirements of cloud-
lets as majority factors. In cloud computing environment, most
of the allocation policies load some specific resources compar-

atively more heavily, leaving other resources either idle or least
loaded (Livny and Melman, 2011). As a result, load balancing
is an important issue in cloud computing which affects the
performance of the cloud service provider.

The objective of this paper is to improve the existing alloca-
tion policies in this domain by devising a new cloudlet alloca-
tion algorithm RB2B that focuses mostly on reducing waiting

time and make span, at the same time optimizing VM (Marisol
Garcı́a-Valls et al., 2014) utilization to a remarkable amount
by distributing the number of cloudlets to the VMs in a most

uniform way. The proposed algorithm is incorporated in the
datacenter broker (DCB) module. The DCB policy is enhanced
with this proposed work and termed as advanced datacenter
broker (ADCB) module in this study.
Table 1 RRA allocation style.

Cloudlet VM

C0 VM0

C1 VM1

C2 VM2

C3 VM0

C4 VM1
2. Related works

In this paper, few existing allocation policies are taken into

account to analyze and compare the advantages of the pro-
posed RB2B. They are described as follows.

2.1. Min–min (Parsa and Entezari-Maleki, 2009; Kumar and
Dutta Pramanik, 2012; El-kenawy et al., 2012)

Initially a matrix is taken for all unassigned cloudlets. There are

two phases in Min–min. In the first phase the set of minimum
computation time for each cloudlet in the matrix is calculated
and found. In the second phase, the cloudlet with the overall
minimum expected computation time is chosen from the matrix

and assigned to the corresponding VM. Then the assigned
cloudlet is removed from thematrix and the entries of thematrix
are modified accordingly. This process of Min–min is repeated

until there is no cloudlet left in the matrix, that is, all cloudlets
in the matrix are mapped. This algorithm takes O(mn2) time
wherem is the number of VMs and n is the number of cloudlets.

2.2. Max–min (Parsa and Entezari-Maleki, 2009)

This algorithm is almost similar to Min–Min, but there is a dis-
tinct difference in the second phase. This Max–Min first
chooses the cloudlet with maximum computation time from
the matrix and assigns it to the VM on which the chosen cloud-

let gives minimum time to compute. This algorithm also takes
O(mn2) time where m is the number of VMs and n is the
number of cloudlets.

2.3. RASA (Parsa and Entezari-Maleki, 2009)

This algorithm actually combines the advantages of both Min–

min and Max–min. If the number of available VMs is odd, the
Min–min algorithm is applied to allocate the first cloudlet,
otherwise theMax–min algorithm is applied. The whole process

can be divided into a number of rounds where in each round two
cloudlets are allocated to appropriate VMs by one of the two
strategies, alternatively. The rule is, if the first cloudlet of the
current round is allocated to a VM by the Min–min strategy,

the next cloudlet will be allocated by the Max–min strategy. In
the next round, the cloudlet allocation begins with an algorithm
different from the last round. For example if the first round

beginswith theMax–min algorithm, the second roundwill begin
with the Min–min algorithm. Experimental results show that if
the numbers of available resources are odd then starting with

applying theMin–min algorithm in the first round gives the bet-
ter result. Otherwise, it is better to apply themax–min strategy at
first. Min–min and Max–min are exchanged alternatively to

result in consecutive execution of small and large cloudlets on
different VMs and therefore, the waiting time of the small cloud-
lets in Max–min algorithm and the waiting time of the large
cloudlets in Min–min algorithm are ignored. As RASA doesn’t

consist of any time consuming instruction, the time complexity
of RASA (Maheswaran et al., 1999) is O(mn2) where m is the
number of VMs and n is the number of cloudlets.

2.4. Round Robin Allocation (RRA) (Parsa and Entezari-

Maleki, 2009; Bhatia et al., 2010; Banerjee et al., 2015)

It allocates the cloudlet to first available VM. For example, con-
sider there are four cloudlets (C0, C1, C2, C3, and C4) and three
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VMs (VM0, VM1, and VM2) present in the system. Table 1 illus-
trates the allocation fashion. According to this policy, cloudlet
C0 allocated to VM0, C1 allocated to VM1, C2 allocated to VM2,

C3 allocated to the VM0 and C4 allocated to VM1.

2.5. Conductance Algorithm (CA) (Chatterjee et al., 2014)

This algorithm considers the capacity of each VM as a pipe. It
calculates the Conductance (processing capacity) as per Eq. (1)
of each VM as the ratio of its processing speed to the sum of

the processing speeds of all the VMs present in the system.
The processing speed of VMj is measured in million instruc-
tions per second (MIPS) and is presented as MIPSj. The

Conductance of VMj is denoted by Conductancej.

Conductancej ¼ MIPSj

Xn

j¼1
MIPSj

.
ð1Þ

After the calculation of conductance, the number of cloud-
lets that should be allocated to VMj is calculated by multiply-

ing the Conductancej of that particular VMj with the length of
the cloudlet list. To determine the strip length of each VM
where the strip length of VMj is denoted by Striplengthj, (2)

is used. It determines the number of cloudlets the VM can
process.

Striplengthi ¼ Conductancei � ðlength of cloudlet listÞ ð2Þ
Few limitations of existing algorithms & proposition of the

new algorithm:

Min–min algorithm lacks uniform resource utilization in a
way that it chooses smaller cloudlets first which makes use of
VMs with higher processing speed. Therefore, the scheduling is

not optimal when the number of smaller cloudlets is greater
than the large ones. To overcome this drawback (Armbrust
M et al., 2010), Max–min algorithm schedules larger cloudlets

at first. But sometimes, due to the prior execution of larger
cloudlets the makespan may increase. Max–min also increases
the waiting time of smaller cloudlets. RASA has disadvantages

of both Min–min and Max–min, although it approaches to
reduce them. In RRA, large cloudlets are often assigned to
the VMs with low MIPS and hence take a longer time to exe-
cute as well as increasing the waiting time and the response
Table 2 A comparative study of existing policies.

Min–min Max–min RASA

Nature of

allocation

Static Static Static

Advantages The idle time of the

VMs is almost zero

Removes the

disadvantages of

Min–min

Advantage

both Min–

& Max–m

Disadvantages (i) Lacks uniform

resource

utilization

(ii) Not optimal

when the num-

ber of smaller

cloudlets is

greater

(i) Makespan

is greater

than the

others

(ii) Increases

the waiting

time of

smaller

cloudlets

Disadvant

of both M

min & Ma

min

Time

complexity

O(mn2) O(mn2) O(mn2)
time of the cloudlets. Moreover, sometimes it may also happen
that the most powerful VMs get the smaller cloudlets and
hence its resource utilization gets wasted and at the same time

decreasing the overall performance and in case of CA the low
MIPS VMs sometimes get free too quickly thus wasting its
resources and the high MIPS VMs sometimes get overloaded

when the length of the longest cloudlets assigned to them are
very large. Table 2 depicts a comparative briefing of the five
existing algorithms described in this section.

To minimize these drawbacks and to improve the analytical
parameters a new cloudlet allocation algorithm is proposed in
this paper which is Range wise Busy-checking 2-way Balanced
(RB2B) allocation algorithm. The proposed RB2B works in

such a way that a cloudlet will always be allocated to a suitable
VM according to the cloudlet’s size and the number of cloud-
lets allocated to the VMs are almost uniformly distributed,

maximizing the percentage of resource utilization and optimiz-
ing the finish time for each cloudlet so that they get minimized
in comparison with the other policies. As a consequence of

minimizing the finish time, the make span of the cloudlets is
also minimized.

3. CloudSim

Several Grid simulators (George Amalarethinam and
Muthulakshmi (2011)) such as GridSim, SimGrid, and Gang-

Sim are used to simulate the Grid application in a distributed
environment, but don’t support the infrastructure and
application-level requirements to simulate Cloud computing
paradigm (Khanli and Analoui, 2008). A Cloud computing

environment simulator must support for real-time trading of
services between customers and providers. The CloudSim
framework (Belalem et al., 2010) which is an open source cloud

computing environment simulator is developed on GridSim
toolkit (Bhatia et al., 2010). The CloudSim supports resource
management and application scheduling simulation and imple-

mentation of new policies. The CloudSim provides a series of
extended classes and methods. It also helps to analyze new
cloudlet allocation policies and scheduling criteria at different

levels. The CloudSim supports modification of in built classes,
module deployment techniques and performance analysis by
RRA Conductance

Dynamic Static

s of

min

in

Much simpler to implement Makespan is lesser

than other four

policies

ages

in–

x–

Large cloudlets are often assigned to

the VMs with low MIPS increasing

waiting time and the response time

Resource utilization is

highly non-uniform

and wastage of

resource

O(mn) O(mn2)



Figure 1 RB2B workflow model.
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implementing few interfaces. The present study aims at
utilizing CloudSim 3.0.3 by modifying the datacenter broker
algorithm. The Datacenter Broker algorithm plays a key role

in cloud service management. Few other important modules
of CloudSim 3.0.3 toolkit are given below.

3.1. Cloud Information Service (CIS)

CIS is nothing but database level match-making service. User
requests are mapped by CIS to suitable cloud providers. CIS

and Datacenter Broker of CloudSim perform resource
discovery and information interaction, it is the core of
simulated scheduling (Belalem et al., 2010; Bhatia et al.,

2010; Calheiros R. N et al., 2009).

3.2. Data center (DC)

Data center consists of hosts or physical (Buyya et al., 2009a,b)

nodes.

3.3. Cloudlet

It is a package of processes or tasks. A cloudlet is sent from the
user for processing (Calheiros et al., 2010) to the DC. It
consists of fields such as cloudlet ID, cloudlet length, arrival

time etc. The cloudlet length of cloudlets should be greater
than or equal to one (Gulati and Chopra, 2013).

3.4. Virtual machine (VM)

A virtual machine is an image of shared resource that imitates
the characteristics of an individual processing element.

3.5. Datacenter Broker (DCB)

This class encapsulates the properties of a broker, which is
capable of mediating between service providers and users,

depending on users’ requirements (Buyya et al., 2009a,b).
Service tasks are deployed across clouds by the brokers. New
and developing scheduling algorithms and cloudlet allocation

policies are implemented in Datacenter Broker method.

3.6. VM scheduler

VM scheduler is an abstract class. It is implemented by a Host
component. It represents and specifies the policies whether it is
space-shared or time-shared, according to the requirements of
allocating cloudlets to VMs.

3.7. VM allocation

It is used as the default VM allocation to the host in CloudSim.

4. Range wise Busy-checking 2-way Balanced (RB2B)

The proposed RB2B is developed in such a way that it over-
comes several drawbacks of the previous works to improve
the performance.
4.1. A brief description

It’s a three phase allocation algorithm. The phases are as fol-
lows: (a) VM categorization phase, (b) Two round busy
checking phase and (c) Cloudlet still not allocated (CSNA)
phase. Also, there are two balancing conditions known as

two way balancing conditions to balance the cloudlet distribu-
tion among the VMs as uniformly as possible. A VM is con-
sidered suitable only when it is not busy and it satisfies two

way balancing conditions. The process of RB2B is described
as follows:

In a nutshell, the VMs are created and allocated to the

host(s) and are arranged in increasing order of processing
speed. A cloudlet arrives from the global queue (GQ) to the
ADCB where the proposed cloudlet allocation algorithm is

implemented. The block diagram of the whole process how
RB2B works is portrayed in Fig. 1.

In the first phase, ADCB measures the length (million
instructions) of the cloudlet and accordingly chooses a VM

(termed as targeted VM) following a cloudlet size acceptability
range which is described in Section 4.3 in detail. If the chosen
VM is available then ADCB will check it for a condition

defined as Balance threshold which will be discussed in detail
in 4.3. If the condition is satisfied the cloudlet will be allocated
to the targeted VM. If the targeted VM is not available or the

Balance threshold condition is not satisfied the ADCB will
search for another VM which satisfies this condition. If such
suitable VM is available, the cloudlet is allocated. But if still

no suitable VM is found then the third phase of RB2B will
commence. In this phase ADCB will search for a VM accord-
ing to EFT (Bittencourt et al., 2010) which also satisfies the
two-way balancing conditions i.e. Balance threshold and Local

queue (LQ) length limitation, and the cloudlet will be queued
to the local queue of this VM.

4.2. Phases of RB2B

There are three phases in RB2B. They are described in this
section in detail.

4.2.1. VM categorization phase

In this phase, the VMs are categorized following the suitable
acceptability length of cloudlet(s).

Assume, the total number of VMs created is ‘m’. Now the
first priority of RB2B is to choose a suitable VM of certain
MIPS for the arriving cloudlet according to the cloudlet

length. So, ADCB will initially define a cloudlet length accep-
tance range for each VM. The distribution of different ranges
is calculated in the manner described forthwith. Suppose Cmin



Table 3 Cloudlet length acceptability ranges for each VM.

VM Lower limit Upper limit

VM0 Cmin Cmin + f0x

VM1 Cmin + f0x+ 1 Cmin + f0x + f1x

� � � � � � � � �
VMm Cmin + f0x+ f1x+ � � �

+ fm�1x+ 1

Cmin + f0x + f1x + � � �
+ fmx

� � � � � � � � �
VMn�1 Cmin + f0x+ f1x+ � � �

+ fn�2x + 1

Cmin + f0x + f1x + � � �
+ fn�1x= Cmax

Figure 2 Range distributions among VMs.

0 2 4 6 8 10

C1

C1

VM2

VM1

Figure 5 Cloudlets in CSNA phase.

Figure 3 1st round of Busy Checking.

Figure 4 2nd round of busy checking.
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and Cmax are the minimum and maximum cloudlet length
(In MI). MIPSi is the processing speed of VMi. So, the total

of the processing speeds of the VMs is

MIPSTotal ¼
Xn�1

i¼0

MIPSi ð3Þ

Now, if the ratio of the difference of maximum and mini-
mum cloudlet length and MIPSTotal be x, then the calculation

of x will be as per (4).

x ¼ ðCmax � CminÞ=MIPSTotal ð4Þ
Let fi denote the MIPS of VMi, since VMs are arranged in

increasing order of processing speed so MIPSi+1 > MIPSi.

The distribution of the MIPS ranges is shown in Fig. 2.
The lower limit and upper limits of cloudlet length accept-

ability of VMm are respectively:

Cmin þ f0xþ f1xþ � � � þ fm�1xþ 1 and

Cmin þ f0xþ f1xþ � � � þ fmx ð5Þ

The cloudlet length acceptability ranges for the VMs are
depicted in Table 3.

After the arrival of a cloudlet, the ADCB finds a suitable
VM considering the cloudlet’s length and the VM chosen in

this phase is termed as targeted VM.

4.2.2. Two round busy checking phase

This is the second phase of VM selection. After completion of

the first phase the ADCB checks whether that targeted VM is
available or not. If that VM is available the ADCB will check
the Balance threshold condition. If the condition has been

satisfied the cloudlet will be allocated to that VM.
Otherwise, ADCB searches for the other VMs following the

two rounds:

(i) If the targeted VM is not the VM with the highest MIPS,
then ADCB checks whether the next VM with higher

MIPS is busy and whether it satisfies Balance threshold
condition or not. If this VM is found to be suitable, the
cloudlet is allocated to it. Otherwise, the next VM with
higher MIPS will be checked in the same way. This
round of busy checking will continue until either the
cloudlet is allocated or the VM with the highest MIPS

is checked. This round is illustrated in Fig. 3.
(ii) If the cloudlet is still not allocated after the first round,

then the second round of checking will commence. At

first the VM with the lower MIPS which is next to the
targeted VM is checked whether it is suitable or not. If
it is suitable then the cloudlet is allocated to it. Other-
wise, the next VMs with lower MIPS are checked in a

similar manner until the cloudlet is allocated to a suit-
able VM or the VM with the lowest MIPS is checked.
This round is illustrated in Fig. 4.

4.2.3. Cloudlet-still-not-allocated phase (CSNA)

It is the last phase of RB2B. After the first two phases if the bal-

ancing factors decide to allocate the arriving cloudlet to a VM,
ADCB will move on to the next cloudlet. But if the arriving
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Figure 8 Variation of local queue length of VMs.
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cloudlet is still not allocated then the ADCB will search for the
VM with earliest finish time for that cloudlet, provided that the
two-way balance conditions described in 4.3 are satisfied as well.

In Fig. 5, arriving cloudlet C1 arrives and ADCB finds both
of the VMs busy. Now it is clear from the Fig. that VM1

becomes free at 3 and VM2 becomes free at 5. So the VM1

becomes free earlier than VM2 but the finish time of VM2

for C1 is lesser than that of the VM1. Hence, C1 is allocated
to VM2. If two or more VMs show the same amount of finish

time for a cloudlet, then the VM which becomes free earlier is
chosen for that cloudlet.

4.3. Two-way balancing condition for cloudlet distribution

There are two mechanisms introduced for uniformly balanced
cloudlet distribution. They are:

(a) Balance threshold

A variable ‘‘Balance” is maintained for balancing or distri-

bution of cloudlets among the VMs. The variable Balance is
initialized with a certain value.

If the total number of cloudlets initially present in global

queue is GQinit and total number of VMs initially deployed
is n, then the initial value of Balance is set in such a manner –

Balanceinit ¼ ðGQinit=nÞ þ 1 ð6Þ
When the number of cloudlets allocated to a VM reaches

the Balance value, that VM stops receiving new cloudlets.
When the total number of cloudlets allocated to all the VMs
reaches the current Balance value then the ADCB increments
the value of Balance by its initial value. This process goes on

until the global queue becomes empty.
In Fig. 6, at first assume the initial value of Balance is set to

2. After allocating cloudlets C0 to C5 to the VMs the number

of cloudlets allocated to each VM becomes equal to the current
Balance value but still new cloudlet C6 arrives. Then ADCB
0

1

2

3
Balance=2

C3 C4

C0 C2 C1

VM0 VM1 VM2

Figure 6 Before increment of ‘‘Balance” value.

0

1

2

3

4 Incremented Balance = 4

C6

C5 C3 C4

C0 C2 C1

VM0 VM1 VM2

Figure 7 After increment of ‘‘Balance” value.
checks and increases the value of Balance to 2 + 2 = 4. This
process is illustrated in Fig. 7.

(b) Local queue length limitation

The local queues of the VMs are not of equal lengths. The
local queue length of a VM is set in following manner.

Let us consider, the total number of VMs be n. If n is even,
set the ((n/2) + 1)th VM as median VM, and if n is odd, then

set the ((n + 1)/2)th VM as the same. Let Mth VM be the
median VM.

The local queue (LQ) length of all VMs from the 1st one to

the Mth VM is set to the initial value of Balance.
The local queue lengths of the remaining VMs will be in

decreasing order with a common difference of d, where

d ¼ Balance=ðn�Mþ 1Þ ð7Þ
In Fig. 8 the local queue lengths of three VMs are illus-

trated. Assume the initial value of Balance is 2. The number
of VMs is 3. So the median VM is the ((3 + 1)/2)th VM or

the second VM which is VM1. So the local queue lengths of
VM0 and VM1 are set to the value of Balance which is 4,
and the common difference d = (2/(3 � 2 + 1)) = 1. So the
local queue length of the third VM is set to 2–1 = 1.

This helps to balance the cloudlet distribution because it is
obvious that at most of the times the VMs with higher MIPS
get exhausted sooner. This phenomenon could lead to an

increase of the finish time. So to prevent the scenario the local
queue length of the VM with higher MIPS will be shorter. This
will distribute the cloudlets in a more balanced way at worst

case scenario all of the local queues are exhausted then the
arriving cloudlets will wait in the global queue.

5. Flow chart & time complexity

The entire procedure of the proposed RB2B is explained using
a flowchart in Fig. 9.

5.1. Time complexity

The time complexity of RB2B is O(mn) where m is the number
of cloudlets and n is the number of VMs.

6. A small example of how RB2B works

To explain the working methodology of the RB2B a small

example has been considered in this paper. Due to space con-
straint ten cloudlets and three VMs with limited length and
processing speed respectively have been considered to demon-

strate the working fashion of the proposed RB2B as shown in
Table 4 and Table 5.



Figure 9 Flow Chart of RB2B.
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Table 6 Cloudlet length acceptability ranges of VMs.

VM Lower limit Upper limit

VM0 10 10 + 15 = 25

VM1 25 + 1 = 26 25 + 30 = 55

VM2 55 + 1 = 56 55 + 45 = 100

Table 7 RB2B allocation procedure.

Cloudlets Targeted

VM

Targeted VM

busy? (Y/N)

Allocated?

(Y/N)

Queued Finish

time

C0 VM2 No Yes – 33.33

C1 VM0 No Yes – 10

C2 VM1 No Yes – 25

C3 VM1 Yes No VM0 40

C4 VM2 Yes No VM2 63.33

C5 VM0 Yes No VM1 35

C6 VM0 Yes No VM1 45

C7 VM1 Yes No VM1 65

C8 VM2 Yes No VM2 89.99

C9 VM0 Yes No VM0 50

Table 5 Reference VM.

VM0 VM1 VM2

Processing speed (MIPS) 1 2 3

Table 4 Reference cloudlet.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Arrival time 0 1 1 2 2 3 5 6 8 9

Size (MI) 100 10 50 30 90 20 20 40 80 10
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The initial value of balance = (10/3) + 1 = 4 following
Eq. (6).

So, maximum four cloudlets can be allocated to each VM.

Here, Cmin = 10 and Cmax = 100 and MIPSTotal = 1 + 2
+ 3 = 6 according to Eq. (3).

So, the required ratio = (100 � 10)/6 = 90/6 = 15 as per

Eq. (4).
Following the first phase of the RB2B Table 6 depicts the

cloudlet acceptability length range for three VMs as per
Eq. (5).

There are three VMs, so the median VM is (3 + 1)/2 = 2nd
VM. So, the local queue length of first VM and the second VM
are set to the initial value of Balance which is 4. The remaining

VM i.e. the third VM will have a local queue length of
(4 � (4/(1 + 1))) = 2 as discussed in 4.4.

Now, the length of the first cloudlet C0 is 10 so VM2 is pri-

marily selected for it. After busy checking and checking of the
balancing factor C0 will be allocated to VM2. Similarly C1 and
C2 will be allocated to VM0 and VM1 respectively then C3 will

arrive and VM1 is primarily selected for it. After all the
checking ADCB will find that all the VMs are busy at that time
so the VM with the earliest finish time is selected for C3 to
be queued in the local queue, provided that the Two-way
balancing conditions are maintained, i.e. VM1. This process
will continue until the global queue becomes empty. The work-
ing procedure is shown in the following table (Table 7).

7. Performance evaluation

This section deals with analyzing the improvement of the

results of the RB2B compared to RASA, Max–min, Min–
min, RRA and CA. A reference stream of 1000 cloudlets with
cloudlet length varying from 1000 MI to 100,000 MI and 10

VMs with processing speed varying from 1000 MIPS to
10,000 MIPS is used for the comparison. Due to space con-
straints, only this experimental scenario is being considered,

but in experiments with larger number of cloudlets and VMs
identical results have been found. The simulated results are
evaluated and analyzed in several aspects. The performance

was measured by setting up simulation environments (36) in
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CloudSim 3.0.3. The improvement of completion time and
makespan is explained with an interpretation of the graphs
in tabular form. Due to space constraint, the details of the

reference cloudlet string and the VMs could not be given here.
The improvement in the result of the proposed work indicates
the efficiency of RB2B. Five parameters are taken into account

to compare and analyze the performance of these algorithms.
They are average waiting time (AWT), average turnaround
Table 8 Comparison result for performance evaluation.

Parameters RB2B RASA Max–

AWT 47.17 729.0 761.5

ATAT 57.68 743.4 776.5

Average make span 1373.3 4567.2 5046

AVMUR (%) 75 30 29

VMSD 2 2.63 3.5

Table 9 Percentage of Improvement.

Parameters RASA Max–min

AWT (%) 93.5 93.8

ATAT (%) 92.2 92.5

Average make span (%) 69.9 72.8

AVMUR (%) 45 46

VMSD (%) 23.9 42.9
time (ATAT), average make span, average VM utilization rate
(AVMUR) and VM allocation standard deviation (VMSD).

Fig. 10 shows the comparison of average wait time. Aver-

age wait time is the average of each cloudlet’s waiting time
before getting allocated to a VM. An optimal algorithm will
definitely try to minimize this parameter. The result clearly

shows that AWT of RB2B is much less than five other algo-
rithms. So RB2B gives better result for AWT.

Fig. 11 shows the average turnaround time comparison.

This parameter is measured as the average of the turnaround
time of all cloudlets, which is the time taken from a cloudlet’s
arrival to its completion. ATAT should also be minimized and
the figure shows that RB2B again gives far better results than

the other five algorithms.
The comparison result for average makespan has been men-

tioned in Fig. 12. The total time taken for a number of cloud-

lets to complete their execution is known as the makespan.
This parameter should also be minimized and RB2B again
proves its efficiency as per Fig.12.

Fig. 13 shows that the average VM utilization rate of RB2B
is far better than that of the others. The AVMUR is a param-
eter which should always be maximized.RB2B gives more than

70% AVMUR where the 2nd best result given by CA doesn’t
even reach 40% of AVMUR.

The standard deviation of the number of Cloudlets
allocated to the VMs is used to measure the deviations of

the cloudlet distribution. Let zi be the number of Cloudlets
allocated to VMi and l be the mean of the number of allocated
cloudlets to different VMs (zi). So the standard deviation of

cloudlet distribution for ‘n’ number of VMs is measured as:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞ

Xn�1

i¼0

ðzi � lÞ2
vuut ; l ¼ ð1=nÞ

Xn�1

i¼0

ðziÞ ð8Þ

Fig. 14 shows the comparison of VM allocation standard

deviation. If the total number of cloudlets arrived is
((g � n) + h), where g and h are two arbitrary integer con-
stant, then the VMSD of RRA would be
min Min–min RRA Conductance

730.3 337.3 479.6

745.1 352.1 486.

.3 4954.2 4976.2 1678.8

29 29 38

3.5 0 52.3

Min–min RRA Conductance

93.5 86.0 90.2

92.3 83.6 88.1

72.2 72.4 18.2

46 46 37

42.9 – 96.2



Table 10 A comparative study of existing algorithms & proposed RB2B algorithm.

Min–min Max–min RASA RRA Conductance RB2B

Nature of

Allocation

Static Static Static Dynamic Static Dynamic

Advantages The idle time of

the VMs is

almost zero

Removes the

disadvantages of

Min–min

Advantages of

both Min–min

& Max–min

Much simpler to

implement

Makespan is

lesser than

other four

policies

Better in every case

compared to other

five policies

Disadvantages (i) Lacks

uniform

resource

utilization

(ii) Not opti-

mal when

the num-

ber of

smaller

cloudlets

is greater

(i) Makespan

is greater

than the

others.

(ii) Increases

the waiting

time of

smaller

cloudlets

Disadvantages

of both Min–

min & Max–

min

Large cloudlets are often

assigned to the VMs with

low MIPS increasing

waiting time and the

response time

Resource

utilization is

highly non-

uniform and

wastage of

resource.

A little bit

complicated and

implementation

might not be as

simple as the other

five policies

Time

Complexity

O(mn2) O(mn2) O(mn2) O(mn) O(mn2) O(mn)
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rRRA ¼ ð1=nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhðn� hÞÞ

p
ð9Þ

It can be shown that the maximum value of VMSD for

RRA will be 0.5. However, RB2B gives the second best result
here.

Table 8 depicts the performance analysis based on the

parameter values.
Table 9 shows the rate of improvement of RB2B over the

other algorithms in terms of different performance metrics.
The Table 10 shows a comparative summary of the six

algorithms.

8. Conclusions and future scope

The cloud computing is an immense area of research and
cloudlet allocation plays a key role in good service delivery.
There is a huge scope of development in this area. This paper

presents a three phase cloudlet allocation algorithm which
overcomes the major drawbacks of existing allocation policies
very efficiently. The proposed RB2B works in a layered

approach associated with two major balancing conditions
where every layer tries to maximize the chances of better allo-
cation. It measures the length of the cloudlet and accordingly

chooses a VM following a cloudlet size acceptability range. If
the chosen VM is available then the Balance threshold condi-
tion will be checked. If the condition is satisfied the cloudlet
will be allocated to the targeted VM. If such suitable VM is

available, the cloudlet is allocated. But if still no suitable
VM is found then the third phase of RB2B will commence.
Then it searches for a suitable VM and allocates the cloudlet

to the local queue of this VM. Thus, the goal of cloudlet allo-
cation and better resources manipulation could be achieved.

We are planning for developing this proposed RB2B policy

with non-linear optimization technique as future work in
association with soft computing. That will deal the challenges
associated with cloudlet allocation in an intelligent way by
adopting the performance learning mechanism. Some factors
like the ratio of VMs and cloudlets, two balancing factors,
the distribution pattern of size of the incoming cloudlets can
be trained and analyzed so that the overall performance can
be highly upgraded. Eventually this may also improve the cost

and round trip time of the entire system.
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