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Abstract The paper presents a low complexity recurrent Functional Link Artificial Neural Net-

work for predicting the financial time series data like the stock market indices over a time frame

varying from 1 day ahead to 1 month ahead. Although different types of basis functions have been

used for low complexity neural networks earlier for stock market prediction, a comparative study is

needed to choose the optimal combinations of these for a reasonably accurate forecast. Further sev-

eral evolutionary learning methods like the Particle Swarm Optimization (PSO) and modified ver-

sion of its new variant (HMRPSO), and the Differential Evolution (DE) are adopted here to find

the optimal weights for the recurrent computationally efficient functional link neural network

(RCEFLANN) using a combination of linear and hyperbolic tangent basis functions. The perfor-

mance of the recurrent computationally efficient FLANN model is compared with that of low com-

plexity neural networks using the Trigonometric, Chebyshev, Laguerre, Legendre, and tangent

hyperbolic basis functions in predicting stock prices of Bombay Stock Exchange data and Standard

& Poor’s 500 data sets using different evolutionary methods and has been presented in this paper

and the results clearly reveal that the recurrent FLANN model trained with the DE outperforms

all other FLANN models similarly trained.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Financial time series data are more complicated than other sta-

tistical data due to the long term trends, cyclical variations, sea-
sonal variations and irregular movements. Predicting such
highly fluctuating and irregular data is usually subject to large
errors. So developing more realistic models for predicting

financial time series data to extract meaningful statistics from
it, more effectively and accurately is a great interest of research
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in financial data mining. The traditional statistical models used
for financial forecasting were simple, but suffered from several
shortcomings due to the nonlinearity of data. Hence research-

ers have developed more efficient and accurate soft computing
methods like Artificial Neural Network (ANN); Fuzzy Infor-
mation Systems (FIS), Support VectorMachine (SVM), Rough

Set theory etc. for financial forecasting. Various ANN based
methods like Multi Layer Perception (MLP) Network, Radial
Basis Function Neural Network (RBFNN), Wavelet Neural

Network (WNN), Local Linear Wavelet Neural Network
(LLWNN), Recurrent Neural Network (RNN) and Functional
Link Artificial Neural Network (FLANN) are extensively used
for stock market prediction due to their inherent capabilities to

identify complex nonlinear relationship present in the time ser-
ies data based on historical data and to approximate any non-
linear function to a high degree of accuracy. The use of ANN to

predict the behavior and tendencies of stocks has demonstrated
itself to be a viable alternative to existing conventional tech-
niques (Andrade de Oliveira and Nobre, 2011; Naeini et al.,

2010; Song et al., 2007; Lee and Chen, 2007; Ma et al., 2010).
A system of time series data analysis has been proposed in

Kozarzewski (2010) for predicting the future values, based on

wavelets preprocessing and neural networks clustering that has
been tested as a tool for supporting stock market investment
decisions and shows good prediction accuracy of the method.
MLP neural networks are mostly used by the researchers for

its inherent capabilities to approximate any non-linear func-
tion to a high degree of accuracy (Lin and Feng, 2010;
Tahersima et al., 2011). But these models suffer from slow con-

vergence, local minimum, over fitting, have high computa-
tional cost and need large number of iterations for its
training due to the availability of hidden layer. To overcome

these limitations, a different kind of ANN i.e. Functional Link
ANN (Proposed by Pao (1989)) having a single layer architec-
ture with no hidden layers has been developed. The mathemat-

ical expression and computational calculation of a FLANN
structure is evaluated as per MLP. But it possesses a higher
rate of convergence and lesser computational load than those
of a MLP structure (Majhi et al., 2005; Chakravarty and

Dash, 2009). A wide variety of FLANNs with functional
expansion using orthogonal trigonometric functions (Dehuri
et al., 2012; Mili and Hamdi, 2012; Patra et al., 2009), using

Chebyshev polynomial (Mishra et al., 2009; Jiang et al.,
2012; Li et al., 2012), using Laguerre polynomial (Chandra
et al., 2009) and using Legendre orthogonal polynomial

(Nanda et al., 2011; George and Panda, 2012; Rodriguez,
2009; Das and Satapathy, 2011; Patra and Bornand, 2010)
has been discussed in the literature. The well known Back
Propagation algorithm is commonly used to update the

weights of FLANN. In Yogi et al. (2010), a novel method
using PSO for training trigonometric FLANN has been dis-
cussed for equalization of digital communication channels.

In this paper, the detailed architecture and mathematical
modeling of various polynomial and trigonometric FLANNs
have been described along with a new computationally efficient

and robust FLANN, and its recurrent version. It is well known
that the recurrent neural networks (RNNs) usually provide a
smaller architecture than most of the nonrecursive neural net-

works like MLP, RBFNN, etc. Also their feedback properties
make them dynamic and more efficient to model nonlinear sys-
tems accurately which are imperative for nonlinear prediction
and time series forecasting. Many of the Autoregressive
MovingAverage (ARMA) processes have been accuratelymod-
eled by RNNs for nonlinear dynamic system identification. One
of the familiar approaches of training the RNNs is the Real-

Time Recurrent Learning (RTRL) (Ampolucci et al., 1999),
which has problems of stability and slow convergence. In non-
linear time series forecasting problems it gets trapped in local

minima and cannot guarantee to find global minima. On the
other hand, evolutionary learning techniques such as Differen-
tial Evolution, particle swarm optimization, genetic algorithm,

bacteria foraging, etc. have been applied to time series forecast-
ing successively. DE is found to be efficient among them and
outperforms other evolutionary algorithms since it is simpler
to apply and involves less computation with less function

parameters to be optimized as compared to other algorithms.
DE is chosen because it is a simple but powerful global optimiza-
tion method and converges faster than PSO. A comparative

study between Differential Evolution (DE) and Particle Swarm
Optimization (PSO) in the training and testing of feed-forward
neural network for the prediction of daily stock market prices

has shown that DE provides a faster convergence speed and bet-
ter accuracy than PSO algorithm in the prediction of fluctuated
time series (Abdual-Salam et al., 2010). Differential Evolution

based FLANN has also shown its superiority over Back Propa-
gation based Trigonometric FLANN in Indian Stock Market
prediction (Hatem and Mustafa, 2012). The convergence speed
is also faster to find a best global solution by escaping from local

minima even for multiple optimal solutions.
Thus, in this paper various evolutionary learning methods

like PSO, HMRPSO, DE for improving the performance of dif-

ferent types of FLANN models have been discussed. Compar-
ing the performance of various FLANN models for predicting
stock prices of Bombay Stock Exchange data and Standard &

Poor’s 500 data set, it has been tried to find out the best FLANN
among them. The rest of the paper is organized as follows. In
Sections 2 and 3, the detailed architecture of various FLANNS

and various evolutionary learning algorithms for training has
been described. The simulation study for demonstrating the pre-
diction performance of different FLANNS has been carried out
in Section 4. This section also provides a comparative result of

training and testing of different FLANNS using PSO,
HMRPSO, and DE (Mohapatra et al., 2012; Qin et al., 2008;
Wang et al., 2011) based learning for predicting financial time

series data. Finally conclusions are drawn in Section 5.

2. Architecture of low complexity neural network models

The FLANN originally proposed by Pao in 1992 is a single
layer single neuron architecture, having two components:
Functional expansion component and Learning component.

The functional block helps to introduce nonlinearity by
expanding the input space to a higher dimensional space
through a basis function without using any hidden layers like
MLP structure. The mathematical expression and computa-

tional calculation of a FLANN structure is same as MLP.
But it possesses a higher rate of convergence and lesser
computational cost than those of a MLP structure. A wider

application of FLANN models for solving non linear problems
like channel equalization, non linear dynamic system
identification, electric load forecasting, prediction of earth-

quake, and financial forecasting has demonstrated its viability,
robustness and ease of computation. The functional expansion
block comprises either a trigonometric block or a polynomial
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block. Further the polynomial block can be expressed in terms
of Chebyshev, Laguerre, or Legendre basis functions. Trigono-
metric FLANN (TRFLANN) is a single layer neural network

in which the original input pattern in a lower dimensional
space is expanded to a higher dimensional space using orthog-
onal trigonometric functions (Chakravarty and Dash, 2009;

Dehuri et al., 2012; Mili and Hamdi, 2012). With the order
m any n dimensional input pattern X= [x1, x2 . . .xn]

T is
expanded to a p dimensional pattern TX by Trigonometric

functional expansion as TX= [1, TF1(x1), TF2(x1) . . .TFm(x1),
TF1(x2), TF2(x2) . . .TFm(x2) . . .TF1(xn), TF2(xn) . . .TFm(xn)]

T

where p = m * n+ 1. Each xi in input pattern is expanded
using trigonometric functions with order m as {1sin(p*xi) cos
(p*xi) sin(2p*xi) cos(2p*xi) . . . sin(mp*xi)cos(mp*xi)}.

Trigonometric function:

TF0ðxÞ ¼ 1;TF1 ¼ cos px;TF2 ¼ sin px;TF3 ¼ cos 2px;

TF4 ¼ sin 2px;TF5 ¼ cos 3px;TF6 ¼ sin 3px ð1Þ
Chebyshev polynomial:

The recursive formula to generate higher order Chebyshev
polynomials is given by

Chpþ1ðxÞ ¼ 2xChpðxÞ � Chp�1x;

Ch0ðxÞ ¼ 1;Ch1ðxÞ ¼ x;Ch2 ¼ 2x2 � 1;Ch3 ¼ 4x3 � 3x;

Ch4ðxÞ ¼ 8x4 � 8x2 þ 1;Ch5ðxÞ ¼ 16x5 � 20x3 þ 5x;

Ch6 ¼ 32x6 � 48x4 þ 18x2 � 1:

ð2Þ
Laguerre polynomials:
The recursive formula to generate higher order Laguerre

polynomials is given by

Lpþ1ðxÞ ¼ 1
pþ1

½ð2pþ 1ÞLpðxÞ � pLp�1ðxÞ�
La0ðxÞ ¼ 1;La1ðxÞ ¼ 1� x;La2 ¼ 0:5x2 � 2xþ 1;

La3 ¼ �x3=6þ 3x2=2� 3xþ 1;

La4ðxÞ ¼ x4=24� 2x3=3þ 3x2 � 4xþ 1;

La5ðxÞ ¼ �x5=120þ 5x4=24� 5x3=3þ 5x2 � 5xþ 1

ð3Þ

Legendre polynomials:
The Legendre polynomials are denoted by Lep(X), where p

is the order and �1 < x < 1 is the argument of the polyno-

mial. It constitutes a set of orthogonal polynomials as solu-
tions to the differential equation:

d

dx
ð1� x2Þ dy

dx

� �
þ pðpþ 1Þy ¼ 0

The zeroth and the first order Legendre polynomials are
respectively given by, Le0(x)= 1 and Le1(x)= x. The higher
order polynomials are

Le2ðxÞ ¼ 3x2=2� 1=2;Le3ðxÞ ¼ 5x3=2� 3x=2;

Le4 ¼ 35x4=8� 15x2=4þ 3=8

Le5ðxÞ ¼ 63x5=8� 35x3=4þ 15x=8;

Le6 ¼ 231x6=16� 315x4=16þ 105x2=16� 5=16

ð4Þ

The predicted sample x(t+k) can be represented as a
weighted sum of nonlinear polynomial arrays, Pi(xj). The
inherent nonlinearities in the polynomials attempt to accom-

modate the nonlinear causal relation of the future sample with
the samples prior to it.

Using trigonometric expansion blocks and a sample index

k, the following relations are obtained:
uðkÞTrigono ¼ dð0ÞðkÞ þ

dð1;1ÞðkÞ
dð2;1ÞðkÞ
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ð5Þ

and this FLANN is named as TRFLANN.
Using Chebyshev polynomials, the CHFLANN output is

obtained as

uðkÞChebyshev ¼ að0ÞðkÞ þ

að1;1ÞðkÞ
að2;1ÞðkÞ
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Using Laguerre polynomials, the LAGFLANN output is
found as

uðkÞLaguerre ¼ bð0ÞðkÞ þ
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Figure 1 Computationally efficient FLANN models.
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Using Legendre polynomials, Eq. (8) gives the LEG-
FLANN output

uðkÞLegendre ¼ cð0ÞðkÞ þ
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Finally the output from each of the FLANN model is

passed through an activation block to give the output as

yðkÞ ¼ qSðuðkÞTrigonoÞ
or yðkÞ ¼ qSðuðkÞChebyshevÞ;
or yðkÞ ¼ qSðuðkÞLaguerreÞ;
or yðkÞ ¼ qSðuðkÞLegendreÞ

9>>>>>=
>>>>>;

ð9Þ

where q controls the output magnitude and S is a nonlinear
function given by

SðuðkÞÞ ¼ 2

1þ e�2uðkÞ � 1 ð10Þ

To obtain the optimal d, a, b and c values, an error mini-

mization algorithm can be used.

2.1. Computationally efficient FLANN (CEFLANN)

Computationally efficient FLANN is a single layer ANN that
uses trigonometric basis functions for functional expansion.
Unlike earlier FLANNS, where each input in the input pattern
is expanded through a set of nonlinear functions, here all the

inputs of the input pattern passes through a few set of nonlin-
ear functions to produce the expanded input pattern; the new
FLANN comprises only a few functional blocks of nonlinear

functions for the inputs and thereby result in a high dimen-
sional input space for the neural network. This new architec-
ture of FLANN has much less computational requirement

and possesses high convergence speed. Fig. 1 depicts the single
layer computationally efficient FLANN architecture.

In this architecture a cascaded FIR element and a func-
tional expansion block are used for the neural network. The

output of this network is obtained as

yðkÞcef ¼ qSðuðkÞÞfW1ðkÞXðkÞ þW2ðkÞ:FEðkÞg; ð11Þ

and XðkÞ ¼ ½x1ðkÞ; x2ðkÞ . . . . . . ; xnðkÞ�T

FEðkÞ ¼ ½FE1ðkÞ;FE1ðkÞ;FE1ðkÞ; . . . . . . ;FEpðkÞ�T; ð12Þ
and

FEi ¼ tanh ai0 þ
Xn
j¼1

aijxj

 !
; i ¼ 1; 2; . . . . . . ; p ð13Þ

where W1 and W2 are weight vectors for the linear part and
functional expansion part, and p is the total number of expan-

sions with n number of inputs; S0 is the derivative of the acti-
vation function S.

2.2. Adaptation of weights of the FLANN models

The weights and associated parameters of the four FLANN
models and the CEFLANN model are updated at the end of

each experiment by computing the error between the desired
output and the estimated output. The error at the kth time step
of the Lth experiment is expressed as eðkÞ ¼ ydesðkÞ � yðkÞ; and
the ydes is the desired FLANN output. The cost function is

EðkÞ ¼ 1

2
e2ðkÞ ð14Þ

Using gradient descent algorithm, the weights

WTri;WChe;WLag;WLege of Trigonometric, Chebyshev,

Laguerre, and Legendre FLANN model, respectively are
updated as
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WFLðkÞ ¼ WFLðk� 1Þ þ gqS0ðuðkÞÞðXFLðkÞÞ0

þ #ðWFLðk� 1Þ �WFLðk� 2ÞÞ ð15Þ
where g and # are the learning rate and momentum terms, and

WFL is the weight vector for the corresponding FLANN

model; and XFL stands for the functional expansion terms of

the input. With trigonometric expansions XFL becomes

XFL ¼ ½1/1/2/3 . . . . . ./mn�2/mn�1/mn�T

¼ ½1x1 cos px1 sin px1 . . . . . . xn cospxn sinpxn�T

with total number of terms being equal to mnþ 1. For the first

four FLANN models, the weight vector WFL is given by

WTri ¼ ½dð0Þ; dð1;1Þ; . . . ; dðm;nÞ�T; WChe ¼ ½að0Þ; að1;1Þ; . . . ; aðm;nÞ�T
WLeg ¼ ½bð0Þ; bð1;1Þ; . . . ; bðm;nÞ�T; WLege ¼ ½cð0Þ; cð1;1Þ; . . . ; cðm;nÞ�T

ð16Þ
For the CEFLANN model

W1ðkÞ ¼ W1ðk� 1Þ ¼ qS0ðuðkÞÞeðkÞXT

W2ðkÞ ¼ W2ðk� 1Þ ¼ qS0ðuðkÞÞeðkÞFET
ð17Þ

and the coefficients of the ith functional block are obtained as

ai0ðkÞ ¼ ai0ðk� 1Þ þ qW2;iS
0ðuðkÞÞ sec2 h ai0 þ

Xn
j¼1

aijxj

 !
ð18Þ

aijðkÞ ¼ aijðk� 1Þ þ qW2;iS
0ðuðkÞÞ sec2 h ai0 þ

Xn
j¼1

aijxj

 !
xj ð19Þ
2.3. Computationally efficient recurrent FLANN
(RCEFLANN)

In conventional FLANN models since no output lagging terms

are used there is no correlation between the training samples.
However, when lagged output samples are used as inputs, a
correlation exists between the training samples and hence an
incremental learning procedure is required for the adjustment

of weights. A recurrent version of this FLANN is shown in
Fig. 1, where one step delayed output samples are fed to the
input to provide a more accurate forecasting scenario. As

shown in Fig. 1 the input vector contains a total number
mþ nþ p inputs comprising n inputs from the delayed out-
puts, m inputs from the stock closing price indices, p inputs

from the functional expansion. Thus the input vector is
obtained as

VðkÞ ¼ ½RTðkÞ;XTðkÞ;FETðkÞ� ð20Þ
which is written in an expanded form as

VðkÞ ¼ ½y1ðk� 1Þ; yðk� 2Þ; . . . ; y1ðk� nÞ;
x1; x2 . . . ; xm;/1:/2 . . . ;/p� ð21Þ

and for a low complexity expansion /i takes the form

/i ¼ tanhðwi0 þ wi1x1 þ wi2x2 þ . . .þ wimÞ; i ¼ 1; 2; . . . ; p

Thus the output is obtained as

yðkÞ ¼ cSðucefðkÞÞ
¼ cSðW1ðkÞRðkÞÞ þW2ðkÞXðkÞ þW3ðkÞ:FEðkÞ ð22Þ
where

W1 ¼ ½a1a2a3 . . . an�T;W2 ¼ ½b1b2a3 . . . bm�T;
W3 ¼ ½c1c2c3 . . . cp�T ð23Þ

The most common gradient based algorithms used for on-
line training of recurrent neural networks are BP algorithms
and real-time recurrent learning (RTRL) (Ampolucci et al.,

1999).
The RTRL algorithm is shown in the following steps:
Using the same cost function for the recurrent FLANN

model, for a particular weight wðkÞ; the change of weight is
obtained as

DwðkÞ ¼ �g
@eðkÞ
@wðkÞ ¼ geðkÞS0ðucefðkÞÞ @yðkÞ

@wðkÞ ð24Þ

where g is the learning rate.
The partial derivative of the above Eq. (24) is obtained in a

modified form for the RTRL algorithm as

@yðiÞ
@ak

¼ yði� kÞ þ
Xn
j¼1

aj
@yði�jÞ
@ak

; k ¼ 1; 2; . . . ; n

@yðiÞ
@bk

¼ xk þ
Xn
j¼1

aj
@yði�jÞ
@bk

; k ¼ 1; 2; . . . ;m

@yðiÞ
@ck

¼ /k þ
Xn
j¼1

aj
@yði�jÞ
@ck

; k ¼ 1; 2; . . . ; p

@yðiÞ
@wk0

¼ ck sec
2 /k þ

Xn
j¼1

aj
@yði�jÞ
@wk0

; k ¼ 1; 2; . . . ; p

@yðiÞ
@wkr

¼ ckxk sec
2 /k þ

Xn
j¼1

aj
@yði�jÞ
@wkr

; k ¼ 1; 2; . . . ; p; r ¼ 1; 2; . . . ; p

ð25Þ
The weight adjustment formulas are, therefore, obtained as

(with k taking values n, m, and p for the weights of the recur-
rent, input, functional expansion parts, respectively):

akðiÞ ¼ akði� 1Þ þ geðkÞS0ðucefðkÞÞ @yðiÞ
@ak

bkðiÞ ¼ bkði� 1Þ þ geðkÞS0ðucefðkÞÞ @yðiÞ
@bk

ckðiÞ ¼ ckði� 1Þ þ geðkÞS0ðucefðkÞÞ @yðiÞ
@ck

wkrðiÞ ¼ wkrði� 1Þ þ geðkÞS0ðucefðkÞÞ @yðiÞ
@wkr

ð26Þ

where ujðkÞ ¼
Ppþqþr

j¼1 wjðkÞvj, and di;j is a Kronecker delta

equal to 1 when j= k and 0 otherwise.

Further if the learning rate is kept small, the weights do not
change rapidly and hence

@yði� 1Þ
@ak

� @yði� 1Þ
@akði� 1Þ ð27Þ

Denoting the gradient

pkðiÞ ¼ @yðiÞ
@wk

and the gradient values in successive iterations are generated

assuming

pkð0Þ ¼ 0 ð28Þ
In both these algorithms gradient descent based on first

order derivatives is used to update the synaptic weights of

the network. However, both these approaches, exhibit slow
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convergence rates because of the small learning rates required,
and most often they become trapped to local minima. To avoid
the common drawbacks of back propagation algorithm and to

increase accuracy, different methods have been proposed that
include additional momentum method, self-adaptive learning
rate adjustment method, and various search algorithms like

GA, PSO, DE algorithm in the training step of the neural net-
work to optimize the parameters of the network like the net-
work weights and the number of hidden units in the hidden

layer. In Section 3, the various evolutionary learning methods
like Particle Swarm Optimization, Differential Evolution and
Hybrid Moderate Random Search PSO have been described
for training various FLANN models. Evolutionary algorithms

act as excellent global optimizers for real parameter problems.

3. Evolutionary learning methods

The problem described can be formulated as an objective func-
tion for error minimization using the equation below.

ERROR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

dðkÞ � yðkÞffiffiffiffi
N

p
� �2

vuut ð29Þ

where prediction is done k days ahead and y(k) is represented
as a function of weights and the prior values of the time series:

yTrigonoðkÞ ¼ f dð0Þ; dð1;1Þ; . . . ; dðm;nÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variables

; xðtÞ; . . . ; xðk�nþ1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
constants

0
B@

1
CA ð30Þ

yChebyshevðkÞ ¼ f að0Þ; að1;1Þ; . . . ; aðm;nÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variables

; xðtÞ; . . . ; xðk�nþ1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
constants

0
B@

1
CA ð31Þ

yLaguerreðkÞ ¼ f bð0Þ; bð1;1Þ; . . . ; bðm;nÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variables

; xðtÞ; . . . ; xðk�nþ1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
constants

0
B@

1
CA ð32Þ

yLegendreðkÞ ¼ f cð0Þ; cð1;1Þ; . . . ; cðm;nÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variables

; xðtÞ; . . . ; xðk�nþ1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
constants

0
B@

1
CA ð33Þ

The dimension of the problem to be solved by the evolu-
tionary algorithm would be (m+ n+ 1).

The objective function for optimization is chosen as

J ¼ 1

1þ ERROR2
ð34Þ
3.1. DE based learning

Differential Evolution (DE) is a population-based stochastic
function optimizer, which uses a rather greedy and less

stochastic approach for problem solving in comparison to
classical evolutionary algorithms, such as genetic algorithms,
evolutionary programing, and PSO. DE combines simple

arithmetical operators with the classical operators of recombi-
nation, mutation, and selection to evolve from a randomly
generated starting population to a final solution. Here, a
self-adaptive strategy for the control parameters of DE like
F and Cr is adopted to improve the robustness of the DE algo-
rithm. The pseudo code for DE implementation is given below:

3.1.1. Pseudo code for DE implementation

Input: population size Np, No. of variables to be optimized
(Dimension D), initial scaling and mutation parameters

F;F1;F2, and Cr. G = total number of generations, X= target
vector, Strategy candidate pool: ‘‘DE/rand/2”

Population Pg ¼ fX g
ðiÞ; . . . . . . ;X

g
ðNpÞg; X g

ðiÞ ¼ fxg
ði;1Þ; x

g
ði;2Þ; . . . ;

xg
ði;jÞ; . . . ; x

g
ði;DÞg uniformly distributed.

1. While stopping criterion is not satisfied do

2. for i ¼ 1 to Np

F1 ¼ FL1 þ ðFU1 � FL1Þ � randð0; 1Þ
F2 ¼ FL2 þ ðFU2 � FL2Þ � randð0; 1Þ ð35Þ

Generate the mutant vector

Vg
ðiÞ ¼ fmgði;1Þ; mgði;2Þ; . . . ;mgði;jÞ; . . . ; mgði;DÞg

Vg
ðiÞ ¼ Xg

ðlÞ þF1 � Xg
ðdÞ �Xg

ðcÞ

� 	
þF2 � Xg

ðfÞ �Xg
ðgÞ

� 	 ð36Þ

The indices, l; d; c; n; g 2 [1,Np]end for

3. for i ¼ 1 to Np
jrand ¼ rndinitð1;DÞ
for j ¼ 1 to D

The crossover rate is adapted as

Cr ¼ CrL þ ðCrU � CrLÞ � rand3 ð37Þ
where rand3 is a random number between [0,1].

Generate trial vector Ug
ðiÞ using the target vector

Ug
ðiÞ ¼ fug

ði;1Þ; u
g
ði;2Þ; . . . ; u

g
ði;jÞ; . . . ; u

g
ði;DÞg

ug
ði;jÞ ¼

vg
ði;jÞ ifðrandði;jÞ 6 CrÞor j ¼ jrand

xg
ði;jÞ otherwise

( )
ð38Þ

end for

end for

4. for i ¼ 1 to NpEvaluate the objective function of the trial

vector

Ug
ðiÞ ¼ fug

ði;1Þ; u
g
ði;2Þ; . . . ; u

g
ði;jÞ; . . . ; u

g
ði;DÞg ð39Þ

The objective function is obtained from Eq. (34) as

fðUg
ðiÞÞ ¼ J

If fðUg
ðiÞÞ < fðXg

ðiÞÞ; Then Xgþ1
ðiÞ ¼ Ug

ðiÞ; fðXgþ1
ðiÞ Þ ¼ fðUg

ðiÞÞ
If fðUg

ðiÞÞ < fðXg
ðbestÞÞ;Then Xg

ðbestÞ ¼ Ug
ðiÞ; fðXg

ðbestÞÞ ¼ fðUg
ðiÞÞ
ð40Þ

end ifend forg = g + 1
5. end While
3.2. Adaptive HMRPSO based learning

In the conventional PSO algorithm the particles are initialized
randomly and updated afterward according to:
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Figure 2 RMSE errors of Legender and computationally efficient FLANNs for S&P500 and BSE stock market indices using different

Evolutionary algorithms.
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xkþ1
ij ¼ xk

ij þ Vkþ1
ij

Vkþ1
ij ¼ xVk

ij þ c1r1 pbestkij � xk
ij

� 	
þ c2r2 gbestkj � xk

ij

� 	 ð41Þ

where w, c1, c2 are inertia, cognitive and social acceleration

constants respectively, r1 and r2 are random numbers within
[0,1]. pbest is the best solution of the particle achieved so far
and indicates the tendency of the individual particles to repli-
cate their corresponding past behaviors that have been success-

ful. gbest is the global best solution so far, which indicates the
tendency of the particles to follow the success of others (Lu,
2011; Sanjeevi et al., 2011; Ampolucci et al., 1999). HMRPSO

is a new PSO technique using the moderate random search
strategy to enhance the ability of particles to explore the solu-
tion spaces more effectively and a new mutation strategy to

find the global optimum (Gao and Xu, 2011). This new
method improves the convergence rate for the particles by
focusing their search in valuable search space regions. The

mutation operator is a combination of both global and local
mutation. The global mutation enhances the global search
ability of MRPSO, when the difference of a particle’s position
between two successive iterations on each dimension has
decreased to a given threshold value. The momentum for this
particle to roam through the solution space is maintained by

resetting the particle in a random position. The local mutation
operator enhance the particles to search precisely in the local
area of the pbest found so far, which compensates the weaker

local search ability, which results from the use of a global
mutation operator. Like PSO it does not require any velocity
update equation. Using MRS strategy the position update

equation is as follows:

xkþ1
ij ¼ pj þ ac mbestij � xk

ij

� 	
ð42Þ

where

mbest ¼
Xnp
i¼1

pbesti
np

ð43Þ

pj ¼ r1� pbestij þ ð1� r1Þgbestj; c ¼ ðr2� r3Þ=r4 ð44Þ
The attractor p is the main moving directions of particles

and r1; r2; r3 are the uniformly distributed random variables

within [0, 1], where as r4 is a random variable within [�1, 1].
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Figure 3 RMSE and MAPE Errors for different FLANNS and DE.
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The mbest term gives step size for the movement of particles
and also makes the contribution of all pBest to the evolution

of particles. The inertia factor a controls the convergence rate
of the method. If the absolute value of the difference between

xkþ1
ij and xk

ij is smaller than a threshold value Tj, then the

current particle can use a mutation operator on dimension j.
A suitable value is chosen for threshold, such that neither
the algorithm spent more time in mutation operator and less

time to conduct MRS in solution space, nor it gets a little
chance to do mutation such that the particles will need a rela-
tively long time to escape from the local optima. Again a gra-

dient descent method is used to control the value of Tj using
the following formula:
If ðFj ¼ kÞ then Fj ¼ 0 and Tj ¼ Tj=m ð45Þ
Parameter m controls the decline rate of Tj and k controls

the mutation frequency of particles. Fj denotes the number
of particles that has used the mutation operator on dimension

j. Fj is updated by the following equation:

FjðkÞ ¼ Fjðk� 1Þ þ
Xnp
i¼1

bkij ð46Þ

where

bkij ¼
0 if ðabsðxk

ij � xk�1
ij Þ > TjÞ

1 if ðabsðxk
ij � xk�1

ij Þ 6 TjÞ

(
ð47Þ



Figure 4 Comparison of actual and predicted S&P500 stock indices with different FLANN models.
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Fj is initially set to zero and Tj is initially set to the maximum
value taken for the domain of particles position. To enhance
the global search ability of the HMRPSO, a global mutation

operator is applied using the following formula:

mutateðxijÞ ¼ ðr5 � rangeÞ ð48Þ
r5 is a random variable within [�1,1] and range is the
maximum value set for the domain of particles position. Again
the weaker local searching ability caused using the global
mutation operator is compensated using a local mutation
operator as follows:

pbest0tj ¼ pbesttjð1�mutðrÞÞ ð49Þ
where t is the index of the pbest that gives best achieve-

ment among all other pbest positions and mutðrÞ returns
a value within (0, 1), which is drawn from a standard
Gaussian distribution. finding the variance of the popula-
tion fitness as



Figure 5 Comparison of actual and predicted BSE stock indices with different FLANN models.
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n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNp

i¼1

Ji � Javg

F0

� �2

vuut ð50Þ

where Javg is the average fitness of the population of particles

in a given generation. Fi is the fitness of the ith particle in the
population, M is the total number of particles.

F0 ¼ fmaxð Fi � Favgjj Þg; i ¼ 1; 2; 3 . . . . . .M ð51Þ
In the equation given above Fn is the normalizing factor,

which is used to limit n. If n is large, the population will be
in a random searching mode, while for small n or n ¼ 0, the
solution tends toward a premature convergence and will give
the local best position of the particles. To circumvent this
phenomenon and to obtain gbest solution, the factor a in
(42) controls the convergence rate of the HMRPSO, which is

similar with inertia weight used in the PSO. On the one
hand, a larger a value enables particles to have a stronger
exploration ability but a less exploitation ability, while on

the other hand, smaller a allows particles a more precise
exploitation ability.

The factor a in Eq. (42) is updated using a fuzzy rule base

and fuzzy membership values of the change in standard
deviation Dn in the following way:

l1 l arg eðnÞ ¼ e�jnj2 ; l1 smallðnÞ ¼ 1� e�jnj2 ð52Þ
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Figure 6 Comparison of actual and predicted S&P500 and BSE stock indices with RBF.
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Change in standard deviation

DnðkÞ ¼ nðkÞ � nðk� 1Þ ð53Þ
The fuzzy rule base for arriving at a weight change is

expressed as

R1: If jDnj is Large Then Da ¼ rand1 ð Þ Dn
R2: If jDnj is Small Then Da ¼ rand2 ð ÞDa

ð54Þ

where the membership functions for Large and Small are
given by

lLðnÞ ¼ jDnj; lSðnÞ ¼ 1� jDnj ð55Þ
where rand1ð Þ and rand2ð Þ are random numbers between 0
and 1, and

0 6 jDnj 6 1 ð56Þ

Da ¼ jDnj: rand1 ð Þ Dnþ rand2 ð Þ Dn:ð1� jDnjÞ: ð57Þ
Thus the value of the new weight is obtained as

aðkÞ ¼ aðk� 1Þ þ Da ð58Þ
3.2.1. Steps of adaptive HMRPSO based learning

Step 1: Expand the input pattern using functional expansion
block

Step 2: Initialize the position of each individual within a
given maximum value

Step 3: Find the fitness function value of each particle i.e.
the error obtained by applying the weights

specified in each particle to the expanded input and
applying the nonlinear tanh () function at the output
unit

Step 4: Initialize the pbest, gbest, pbestt positions of the
particles

Step 5: Update the particle’s position using the updated

value of a using Eq. (58)
Step 6: For each dimension j

Step 7: if ðabsðxkij � xk�1
ij Þ < T jÞ
Step 8: if (Fj 6 k/2)
Step 9: Apply global mutation operator on xij using Eq. (48)
Step 10: else

Step 11: Apply local mutation operator on best pbest position
i.e. pbesttj

Step 12: end if

Step 13: end if

Step 14: Update the Fj and Tj using Eqs. (47) and (46)
Step 15: end for

Step 16: Update the pbest and gbest positions by comparing
the fitness value of new mutant particles obtained
using global mutation with the fitness value of
particles of last iteration

Step 17: Update the position of pbestt and accordingly the
gbest position by comparing the fitness value of
pbestt obtained using location mutation with its pre-

vious fitness value
Step 18: Repeat step 5–17 for each particle in the

population until some termination condition is

reached, such as predefined number of iterations is
reached or the error has satisfied the default
precision value

Step 19: Fixed the weight equal to the gbest position and use

the network for testing

4. Experimental result analysis

In this study the sample data set of Bombay Stock Exchange
(BSE) and Standard’s &Poor’s 500(S&P500) collected from

Google finance comprising the daily closing prices has been
taken for experiment to test the performance of different
FLANNmodels trained using evolutionary methods. The total

no. of samples for BSE is 1200 from 1st January 2004 to 31st
December 2008 and for S&P500 are 653 from 4th January
2010 to 12th December 2012. Both the data sets are divided

into training and testing sets. For BSE data set; the training
set consists of initial 800 patterns and the following 400 data
are set for testing and for S&P500 dataset the training set



Figure 7 Comparison of actual and predicted S&P500and BSE stock indices with the recurrent CEFLANN model (3–15 days ahead).
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consists of initial 400 patterns leaving the rest for testing.
To improve the performance initially all the inputs are scaled
between 0 and 1 using the min–max normalization as follows:

y ¼ x� xmin

xmax � xmin

ð59Þ

where y= normalized value.
x = value to be normalized

xmin = minimum value of the series to be normalized
xmax = maximum value of the series to be normalized

The Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) has been used to compare the per-

formance of different evolutionary FLANNs for predicting
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Figure 8 Computed variances of the S&P 500 and BSE stock

indices.
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the closing price of the BSE and S&P500 index in 1 day,

3 days, 5 days, 7 days, 10 days, 15 days advance with
different learning algorithms. The RMSE and MAPE are
defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
k¼1

yk � ŷkð Þ2
s

ð60Þ

MAPE ¼ 1

n

Xn
k¼1

yk � ŷk
yk










� 100 ð61Þ

where yk = actual closing price on kth day

ŷk = predicted closing price on kth day
n= number of test data.

In order to avoid the adverse effect of very small Stock
indices over a long period of time, the AMAPE defined in

(62) is adopted and compared for all the learning models:
AMAPE ¼ 1

N

XN
i¼1

j yi � ŷi

ð1=NÞPN
i¼1yi

j � 100 ð62Þ

Before using a single model or a combination of models to
predict the future stock market indices, it is assumed that there

is a true model or a combination of models for a given time
series. In this paper, the variance of forecast errors is used to
measure this uncertainty of the neural network model. The
smaller the variance, the less uncertain is the model or more

accurate is the forecast results. The variance of the forecast
errors over a certain span of time is needed and this parameter
is obtained as

r2
E ¼ 1

ND

XND

i¼1

jyi � ŷij

ð1=NDÞ
XN
i¼1

yi

�
XND

i¼1

jyi � ŷij
ð1=NDÞPN

i¼1yi

8>>>><
>>>>:

9>>>>=
>>>>;

2

ð63Þ

Further the Technical indicators seem to predict the future
price value by looking at past patterns. A brief explanation of
each indicator is mentioned here:

Technical Indicators

(i) Five days Moving Average(MA)Moving average (Eq.

(64)) is used to emphasize the direction of a trend and
smooth out price and volume fluctuations that can con-
fuse interpretation.

MAðnÞ ¼
Pt

i¼t�nyi
n

ð64Þ
MA of the n days and yi the closed price of the ith -day.

(ii) Five days bias (BIAS)The difference between the closing

value and moving average line, which uses the stock
price nature of returning back to average price to ana-
lyze the stock market in (Eq. (65)).

BIAS for n days ;BIASðnÞ ¼ yi �
yi �MA5ðnÞ

MAðnÞ : ð65Þ
(iii) Standard Deviation(SD)

SDðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyi � lÞ2
s

where l ¼ 1

n

Xn
i¼1

yi ð66Þ
The no. of input layer node for the FLANNmodels has been
set to 8 to express the closing index of 5 days ago and the tech-
nical indicators mentioned above and the number of output

node to 1 for expressing the closing index of 6th day. The 8
dimensional input patterns have been expanded to a pattern of
dimension 33 using order 4 and the corresponding basis func-

tions for TRFLANN, LAGFLANN, CHFLANN, and
LEFLANN. For CEFLANN using two nonlinear tanh() func-
tions for expansion, the input pattern has been expanded to pat-

tern of 10 dimensions. The samemodel also is used in the case of
the recurrent CEFLANNmodel with three lagged output terms
fed into the input. Initially the performance of each FLANN
model having the same network structure and same data sets

trained using PSO, HMRPSO, and DE with different mutation
strategy has been observed. The same population having size 20
with maximum training times kmax = 100 has been used for all

the evolutionary learning basedmethods. Each individual in the
population has width 33 i.e. equal to the no. of weights for train-
ing TRFLANN, CHFLANN, LAGFLANN, LEFLANN



Table 1 Performance comparison of different FLANN models with different evolutionary learning methods for 1-day ahead

prediction.

Type of FLANN Evolutionary learning method S&P500 BSE

RMSE test MAPE test RMSE test MAPE test

Recurrent CEFLANN PSO 0.0411 1.3876 0.0259 3.1120

HMRPSO 0.0332 1.0895 0.0210 2.4883

DE current to best 0.0308 1.0197 0.0152 1.8180

CEFLANN PSO 0.0441 1.5158 0.0282 3.2834

HMRPSO 0.0343 1.1362 0.0224 2.6905

DE current to best 0.0328 1.0849 0.0184 2.2441

LEFLANN PSO 0.0479 1.7231 0.0301 3.3398

HMRPSO 0.0438 1.5243 0.0272 3.0531

DE current to best 0.0340 1.1594 0.0258 2.8172

LAGFLANN PSO 0.0567 2.0437 0.0622 7.0308

HMRPSO 0.0527 1.8557 0.0576 6.1226

DE current to best 0.0506 1.7729 0.0568 5.9825

CHFLANN PSO 0.0545 1.9178 0.0524 5.7065

HMRPSO 0.04200 1.4166 0.0425 4.3535

DE current to best 0.0371 1.3099 0.0415 4.2276

TRFLANN PSO 0.1041 3.4783 0.0791 8.3051

HMRPSO 0.0883 3.0075 0.0699 7.2520

DE current to best 0.0738 2.5679 0.0688 7.1153

Recurrent CEFLANN RTRL 0.0563 2.579 0.0712 5.862

CEFLANN Gradient Descent 0.0513 2.456 0.0451 4.685

Bold values are the outputs from the proposed method.

Table 2 Comparison of convergence speed of CEFLANN models with different evolutionary learning methods.

Type of FLANN Evolutionary learning method S&P500 BSE

Time elapsed in sec during training Time elapsed in sec during training

Recurrent CEFLANN PSO 66.28 154.26

HMRPSO 155.85 270.65

DE current to best 49.94 148.31

CEFLANN PSO 40.07 96.57

HMRPSO 108.17 229.43

DE current to best 35.09 92.65

Bold values are the outputs from the proposed method.

Table 3 MAPE errors during testing of S&P500 data set using different evolutionary FLANN models.

Days ahead TRFLANN LAGFLANN CHFLANN LEFLANN CEFLANN RCEFLANN RBFNN WNN

1 2.8264 2.1865 1.7922 1.4662 1.1212 0.9958 1.8565 1.9432

3 3.4751 2.3116 2.6464 2.3718 1.7768 1.7672 2.9070 3.112

5 3.0419 2.5902 3.8075 3.1018 2.1164 2.1064 3.1682 3.323

7 4.2072 2.8144 4.8223 4.1813 2.4299 2.4093 3.2899 3.425

10 5.3751 3.0774 6.1739 5.2114 2.6965 2.6951 4.1729 4.0867

15 6.6261 3.4447 6.4565 6.3137 3.2343 3.1429 5.2024 4.9326
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structure using evolutionary methods. But the individual has

width 28 i.e. equal to the total no. of associated parameters
and theweights when used for training theCEFLANNnetwork.
For PSO the values of c1 and c2 are set at 1.9 and the inertia

factor has linearly decreased from 0.45 to 0.35. For DE
the mutation scale has been fixed to FU1 ¼ 0:95;FL1 ¼ 0:4
FU2 ¼ 0:8;FL2 ¼ 0:3; and the crossover rate to
CrU ¼ 0:9;CrL ¼ 0:6. For HMRPSO the inertia factor has lin-
early decreased from 0.4 to 0.1. The RMSE error has taken as

the fitness function for all the evolutionary learning algorithms.



Table 4 MAPE errors during testing of BSE data set using different evolutionary FLANN models.

Days ahead TRFLANN LAGFLANN CHFLANN LEFLANN CEFLANN RCEFLANN RBFNN WNN

1 7.1153 5.9825 4.2276 3.8741 2.2441 1.8180 2.8752 2.924

3 7.8761 6.5576 5.4677 5.2244 4.4055 3.4747 4.8619 4.976

5 8.3101 6.9390 5.4759 5.5157 4.8933 4.6082 5.3918 5.281

7 8.7211 7.2503 7.4708 6.4177 5.2592 5.2263 7.7466 7.612

10 9.8088 7.8726 7.6583 8.3432 6.3007 6.2692 7.8579 7.986

15 10.6614 9.0252 9.3138 9.5982 7.8549 7.8364 9.6480 9.610

Table 5 Variances of the predicted S&P 500 stock indices on specific days.

Stock

market

Dates (from 23rd

July 2010 to 13th

Aug. 2010)

Variances (from

23rd July 2010 to

13th Aug. 2010

Dates (from 29th

Oct. 2010 to 19th

Nov. 2010)

Variances (from 29th

Oct. 2010 to 19th

Nov. 2010)

Dates (from 9th

Feb. 2011 to 3rd

Mar. 2011)

Variances (from 9th

Feb. 2011 to 3rd

Mar. 2011)

dvo(400:415)

1.0e�03*
dvo(470:485)

1.0e�03*
dvo(540:555)

1.0e�03*

S&P

500

23-07-2010 0.0399 29-10-2010 0.2379 09-02-2011 0.0245

26-07-2010 0.0430 01-11-2010 0.3299 10-02-2011 0.0293

27-07-2010 0.1077 02-11-2010 0.2383 11-02-2011 0.0270

28-07-2010 0.1302 03-11-2010 0.1290 14-02-2011 0.0372

29-07-2010 0.1674 04-11-2010 0.0229 15-02-2011 0.1269

30-07-2010 0.1168 05-11-2010 0.0321 16-02-2011 0.2620

02-08-2010 0.0089 08-11-2010 0.0830 17-02-2011 0.3279

03-08-2010 0.0113 09-11-2010 0.0904 18-02-2011 0.2261

04-08-2010 0.0101 10-11-2010 0.2536 22-02-2011 0.0789

05-08-2010 0.2518 11-11-2010 0.2301 23-02-2011 0.0947

06-08-2010 0.4284 12-11-2010 0.1159 24-02-2011 0.0917

09-08-2010 0.5153 15-11-2010 0.1184 25-02-2011 0.1228

10-08-2010 0.3136 16-11-2010 0.1187 28-02-2011 0.1240

11-08-2010 0.0365 17-11-2010 0.1054 01-03-2011 0.1104

12-08-2010 0.0520 18-11-2010 0.0630 02-03-2011 0.0877

13-08-2010 0.0738 19-11-2010 0.0663 03-03-2011 0.0557
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Fig. 2 shows a comparison of RMSE errors of S&P500 and
BSE data sets during training of the two better performing

FLANN models like the LEFLANN and CEFLANN using
PSO, HMRPSO (adaptive version), DE/current to best meth-
ods, etc. From these figures it is quite clear that the RMSE

converges to the lowest value for the two FLANN models
using DE current to best variant during the training period
in comparison to other evolutionary methods like the PSO,

and HMRPSO. Comparing the performance of each FLANN
using various evolutionary learning methods like PSO,
HMRPSO, DE with different mutation strategies, it has been
observed that each FLANN trained using DE/current to best

mutation provides good result than other learning methods.
Thus for producing the final forecast of the stock indices the
DE current to best is used to reduce the prediction errors of

the stock market indices. The RMSE and MAPE values for
the two stock indices like the S&P500 and BSE obtained dur-
ing training with different models and DE current to best evo-

lutionary approach are shown in Fig. 3. From this figure it is
seen that the both the CEFLANN and its recurrent version
produce the least RMSE and MAPE errors during training
in just 20 iterations. The RMSE and MAPE values for all

the FLANNmodels using different evolutionary training para-
digms are shown in Table 1, from which it can be concluded
that the recurrent CEFLANN produce the least errors when

trained with DE current to best technique. Again to compare
the convergence speed of the evolutionary learning algorithms
on the CEFLANN models the time elapsed during training is

also specified in Table 2. From the table it is also clear that DE
method has a faster convergence speed compared to the other
two methods.

Figs. 4 and 5 show the actual and predicted closing price
values of BSE and S&P500 data sets during testing with differ-
ent FLANN models, and from this figure it is quite clear that

the CEFLANN and recurrent adaptation produce accurate
forecasts in comparison to all other FLANN models like the
TRFLANN,LAGFLANN, CHFLANN, and LEGFLANN,
etc. Also the LAG FLANN and TRFLANN show the worst

forecast results for one day ahead stock closing price for both
S&P500 and BSE stocks. A comparison of the evolutionary
approaches with the well known gradient descent algorithm

is also shown in Table 1 showing clearly the superior forecast-
ing performance of the former in comparison to the gradient
descent algorithms. Further Tables 3 and 4 show the forecast

results from one day ahead to 15 days ahead, in which the
RCEFLANN has a MAPE varies for nearly 1–3.15% in com-
parison with CEFLANN and LEGFLANN and LAG-
FLANN from nearly 1.15–6%, respectively (Fig. 7).

Tables 3 and 4 provide a comparison of MAPE values with
other neural network models like the RBF neural network
(Fig. 6), and Wavelet neural network (WNN), when trained

with DE/current to best variant. From these tables it is clearly



Table 6 Variances of the predicted BSE stock indices on specific days.

Stock

Market

Dates (from 07th

Mar. 2007 to 29th

Mar. 2007)

Variances (from 07th

Mar. 2007 to 29th

Mar. 2007)

Dates (from 19th

Dec. 2007 to 11th

Jan. 2008)

Variances (from

19th Dec. 2007 to

11th Jan. 2008)

Dates (from 29th

Jul. 2008 to 20th

Aug. 2008)

Variances (from

29th Jul. 2008 to

20th Aug. 2008)

dvo(800:815)

1.0e�03*
dvo(1000:1015)

1.0e�03*
dvo(1150:1165)

1.0e�03*

07-03-2007 0.0970 19-12-07 0.8897 29-07-08 0.3438

08-03-2007 0.1210 20-12-07 0.6140 30-07-08 0.2138

BSE 09-03-2007 0.1382 24-12-07 0.0864 31-07-08 0.2537

12-03-2007 0.1827 26-12-07 0.0073 01-08-08 0.1802

13-03-2007 0.1359 27-12-07 0.0321 04-08-08 0.1679

14-03-2007 0.0343 28-12-07 0.0269 05-08-08 0.1247

15-03-2007 0.1121 31-12-07 0.0827 06-08-08 0.0861

16-03-2007 0.3349 01-01-08 0.1456 07-08-08 0.0821

19-03-2007 0.2909 02-01-08 0.1522 08-08-08 0.2340

20-03-2007 0.1897 03-01-08 0.1464 11-08-08 0.3754

21-03-2007 0.1107 04-01-08 0.0482 12-08-08 0.2549

22-03-2007 0.1031 07-01-08 0.0436 13-08-08 0.1315

23-03-2007 0.0688 08-01-08 0.0454 14-08-08 0.1107

26-03-2007 0.2121 09-01-08 0.1863 18-08-08 0.0972

28-03-2007 0.1963 10-01-08 0.4594 19-08-08 0.0783

29-03-2007 0.1901 11-01-08 0.7512 20-08-08 0.0732
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apparent that the RCFLANN is the simplest neural model
which is quite robust and provides superior forecasting perfor-

mance when trained with DE algorithm in comparison to the
well established neural networks like the RBF and the wavelet
neural network. After it is observed that the RCEFLANN per-

forms the best in predicting the future stock indices, it is
important to calculate the day to day variances and variances
over a given time frame. Fig. 8 depicts the variances showing

clearly the accuracy of the forecasting model, since their mag-
nitudes are quite small over a large time frame (more than one
year). Further the day to day variances shown in Tables 5 and
6 completely validate this argument.

5. Conclusion

Functional Link Artificial Neural Network is a single layer

ANN structure, in which the hidden layers are eliminated by
transforming the input pattern to a high dimensional space
using a set of polynomial or trigonometric basis functions giving

rise to a low complexity neural model. Different variants of
FLANN can be modeled depending on the type of basis func-
tions used in functional expansion. In this paper, the detailed

architecture and mathematical modeling of different FLANNs
with polynomial and trigonometric basis functions have been
described to predict the stock market return. Further for

improving the performance of different FLANNS, a number
of evolutionary methods have been discussed to optimize their
parameters. Comparing the performance of each FLANNusing
various evolutionary learning methods like PSO, HMRPSO,

DE, etc. with different mutation strategies, it has been observed
that each FLANN trained using DE/current to best mutation
provides good result in comparison to other learning methods.

Again the performance comparison of various evolutionary
FLANN models to predict stock prices of Bombay Stock
Exchange and Standard & Poor’s 500 data set for 1 day, 7 days,

15 days and 30 days ahead, shows that performance of stock
price prediction can significantly be enhanced usingCEFLANN
and recurrent CEFLANN models trained with DE/current to

best method in comparison with the well known RBF and
WNNmodels. The recurrent CEFLANNexhibits very low vari-
ances and can also be used to predict the volatility of stock

indices and the trends for providing trading decisions.
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