
Journal of King Saud University – Computer and Information Sciences (2018) 30, 236–248
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Improved capacity Arabic text watermarking

methods based on open word space
* Corresponding author.

E-mail addresses: reem.a.safran@gmail.com (R.A. Alotaibi),

laelrefaei@kau.edu.sa, lamia.alrefaai@feng.bu.edu.eg (L.A. Elrefaei).
1 Postal address: King Abdulaziz University, Female Campus,

Room No. s109, Building No. 61, P.O Box 80221, Jeddah 21589,

Saudi Arabia.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2016.12.007
1319-1578 � 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Reem A. Alotaibi a,c,*, Lamiaa A. Elrefaei a,b,1
aComputer Science Department, Faculty of Computing & Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
bElectrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt
cComputer Science Department, Faculty of Computing & Information Technology, Taif University, Taif, Saudi Arabia
Received 3 September 2016; revised 10 December 2016; accepted 28 December 2016
Available online 11 January 2017
KEYWORDS

Arabic text watermarking;

Capacity;

Robustness;

Imperceptibility
Abstract Digital watermarking is used to protect text copyright and to detect unauthorized use. In

this paper, two invisible blind watermarking methods for Arabic text are proposed. Since the

pseudo-space is very small space used to force the connected characters to be isolated, it is added

to the word space to hide binary bit ‘‘0” or ‘‘1”. In the first proposed method, the pseudo-space is

inserted before and after normal word space based on dotting feature in Arabic text. The second

proposed method inserts the pseudo-space and other three small or zero width spaces to increase

the capacity, where the presence of them indicates bit ‘‘1” and the absence indicates bit ‘‘0”. The

comparative results obtained by testing the proposed methods with some of existing watermarking

methods using variable size text samples with different watermark lengths. The experiments show

that the proposed methods have the highest capacity and higher imperceptibility than other water-

marking techniques from the literature. The robustness of the proposed methods is tested under

most of possible text attacks. They are robust against electronic text attacks such as: copying

and pasting, text formatting and text tampering for tampering ratio up to 84%.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Digital watermarking techniques have been widely emerged in
order to effectively protect multimedia copyright. Digital

watermarking refers to the embedding process that inserts a
watermark (i.e. Label, signature, or copyright) into several
types of media. These types of media include text, audio, image,

and video. The watermarking system involves two main pro-
cesses: embedding of the watermark into the original data
and extracting the watermark from watermarked data or

attacked watermarked data. When designing a watermarking
system, some of the basic requirements must be taken into
account which vary depending on the use of the system

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.12.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:reem.a.safran@gmail.com
mailto:laelrefaei@kau.edu.sa
mailto:lamia.alrefaai@feng.bu.edu.eg
http://dx.doi.org/10.1016/j.jksuci.2016.12.007
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.12.007
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 2 The used spaces.

Watermarking

method

The inserted

spaces

Location of

insertion

Open space methods (Bender

et al., 1996)

NS Between words,

lines or sentences

Pseudo-space method

(Alotaibi and Elrefaei, 2016)

PS Between words

Proposed Method 1 PS Between words

Proposed Method 2 PS, HS, TS

and ZWS

Between words

Improved capacity Arabic text watermarking methods based on open word space 237
(Stanković et al., 2012; Cox et al., 2007). The key watermarking
requirements are: capacity, imperceptibility, robustness and
security. Capacity is the total number of hidden bits in an

object. Imperceptibility is used to measure the difference
between the original and watermarked object by noting any
addition to the original object. Robustness is the ability to

extract or detect the watermark after the watermarked object
has been attacked. Security requirement is the difficulty of
extracting the watermark without the destruction of the water-

marked object.
Creating a hidden watermark in the text is the hardest kind

due to the relative lack of unnecessary information within a text
file compared to an image or audio files. The human sensitivity

to text changes is higher than the sensitivity to other multime-
dia. Any text change must reserve the meaning, fluently, writing
style and text value (Topkara et al., 2006; Jalil, 2010).

Text watermarking methods can be classified into: line-shift
coding, word-shift coding, linguistic methods, open space
method and other methods based on the language characteris-

tic (Alotaibi and Elrefaei, 2015). In line-shift coding, the lines
are shifted up or down to hide ‘‘0” or ‘‘1”. In word-shift coding
the words are moved horizontally to code secret bits. Linguis-

tic methods aim to change the text structure (syntactic
approach) or text content (semantic approach) (Bennett,
2004). Open space method depends on the exploitation of
the white spaces by adding a space or more between words,

sentences or at the end of lines to indicate on the existence
of hidden bits (Bender et al., 1996).

The contributions of this paper are improving the embed-

ding capacity by proposing two Arabic text watermarking
methods, Method 1 and Method 2 and testing their robustness.
The proposed methods utilize the open space between words

but instead of using normal space as in Bender et al. (1996),
small spaces or no width ones are used. Arabic letters do not
take one form, but their shape varies depending on its location

in the word (Alotaibi and Elrefaei, 2015). Pseudo-space is a
non printing character when it comes before or after the letter,
it forces the letter to take the final or initial form. Using it at
the beginning or ending of the word does not change the word

shape. The researchers in Alotaibi and Elrefaei (2016) inserted
it before the normal space to indicate hidden data. In the pro-
posed Method 1, Pseudo-space is added before and after the

regular space to provide capacity as twice as the method pre-
sented in Alotaibi and Elrefaei (2016). In the proposed Method
2, four spaces: Pseudo-space, Thin space, Hair space and Zero

width space, were chosen to be added to the normal space to
Table 1 The chosen spaces.

Space name Space unicode De

Normal Space (NS) U+0020 No

Pseudo-Space (PS) U+200C Fo

Thin Space (TS) U+2009 1/5

Hair Space (HS) U+200A Th

Zero width Space (ZWS) U+200B No
give a very large capacity. The existence of these spaces is used
to hide bit ‘‘1”, and the absence of them is used to hide bit ‘‘0”.

1.1. Overview of the used spaces

The proposed methods have adopted to embed the watermark

in the Arabic text by inserting some spaces to the normal
space. The chosen spaces are shown in Table 1 with their
Unicode’s (Whitespace character, 2016). Table 1 also shows
examples of using these spaces between two words ‘‘ ”ناحبس
and ‘‘ ”هللا to show how wide are they. The vertical pointer
indicates where the Unicode space is inserted. Table 2 shows
the used spaces in methods (Bender et al., 1996; Alotaibi and

Elrefaei, 2016) and in the proposed watermarking methods.
The rest of this paper is organized as follows: Section 2

reviews the related work in Arabic text watermarking. The

proposed methods are discussed in Section 3. Experiments
are conducted to evaluate the capacity and imperceptibility
of the proposed methods and to compare it with five of the
Arabic text watermarking methods in Sections 4.1 and 4.2.

Robustness of the proposed methods is measured under most
of the existing known text attacks in Section 4.3. Section 5 con-
cludes the paper.

2. Related work

Text watermarking methods in any language exploit the char-

acteristics of the writing in that language or the general text
characteristics. Arabic script has many characteristics such
as: open space, kashida, diacritics and dotting.

Open space is a general characteristic used for data hiding
in the host text as in the research work presented in Bender
et al. (1996) by exploitation of the white spaces in the text
scription Example

rmal space used to separate words

rce the connected letters to be separate

(sometimes 1/6) of an em wide

inner than a thin space

width

238 R.A. Alotaibi, L.A. Elrefaei
document. The manipulation of the white spaces is done in
three different ways: inter-sentence spacing, end-of-line spaces
and inter-word spacing. Inter-sentence spacing is encoding

secret information in the form of binary string on the text
based on spaces between sentences. It encodes ‘‘0” by inserting
one space or encodes ‘‘1” by inserting two consecutive spaces.

This method suffers from low capacity because only one or
two bits encoded in each sentence. The indiscriminate use of
this method reduces its transparency. White Spaces are well

utilized in the end-of-line spaces method, because the extra
spaces are placed at the end of the line which provides higher
imperceptibility to the reader than the previous method. In
end-of-line spaces, two spaces are used to embed one bit per

line, four spaces are used to embed two bits, eight spaces are
used to embed three bits, and so on. There are no restrictions
on the use of this method in terms of text structure. However,

some programs destroy the hidden data by the removal of the
additional spaces.

In inter-word spacing, the extra spaces are inserted between

two consecutive words. A single space between words encodes
the binary bit ‘‘0”, while two spaces encode the binary bit ‘‘1”.
Yang and Kot (2004) and Huang and Yan (2001) produced

watermarking methods in text images based on modifying
the word space. The spaces between characters are combined
with a word space based on embedding rules to watermark a
text image in Yang and Kot (2004). This method could not

be applied in Arabic text because its characters are connected.
In Huang and Yan (2001), the lines of text image considered as
sampling point of a sine wave. The watermark is inserted in

frequency, phase and amplitude of the sine wave. The water-
marking methods in text image are not robust to copy and
paste or formatting operations. The watermark is lost using

OCR programs. Also, they consume time compared to meth-
ods which are dealing with text directly.

Arabic language has unique properties used in data hiding.

Dotting property is one of the most important properties.
Points are located up or down some of the Arabic letters. In
the research work presented in Shirali-Shahreza and Shirali-
Shahreza (2006), points are shifted up referring to hide bit

‘‘1” or keeping it in its places to denote bit ‘‘0”. The dotting
property also used with pseudo-space to utilize each open
word space in Alotaibi and Elrefaei (2016). The watermarking

process includes insertion of pseudo-space before the word
space based on the letter before it. The pseudo-space does
not change the space between words and the letter shape. It

is inserted if the letter before word space is pointed and the
embedding bit equals ‘‘1”. It is also inserted if the letter is
un-pointed and the embedding bit equals ‘‘0”.

Kashida or extension character could be added to the text to

indicate the existence of secret data. It is used to adjust the text
by extending the words and does not change the meaning. The
authors in Gutub et al. (2007) used kashida with dotting

property in the watermarking process. They insert kashida
before or after letters containing points to indicate the bit one.
They also insert it before or after letters that do not contain

points to indicate bit zero. The kashida is inserted in a particular
pattern in this method, so the authors change the insertion pro-
cess to increase the security. In Gutub et al. (2010) one Kashida

is inserted after any letter can hold it to represent bit zero, and
two consecutive Kashidas are inserted to represent bit one.

In Alginahi et al. (2013) kashida is added before 6 letters
which accept to connect from the right (Arabic script is written
from right to left), provided that the character before these let-
ters accept the insertion of the kashida after it. The researchers
in Alginahi et al. (2014) have used the same previous mecha-

nism where the kashida is added before specific sets of letters.
They divided the Arabic letters into two sets depending on the
occurrences of the letters. Set A containing the higher frequen-

cies while set B containing the lower ones. They have devel-
oped two methods, the first used set A and the second used
both set A and set B. The main disadvantages of kashida-

based methods are the possibility to note the kashida and
the capacity is variable depending on the ability of the letter
to extend, it is inserted only in certain places in the word.

The Arabic language does not contain vowels, but instead

of them, it has diacritics or harakat. Diacritics help in the cor-
rect pronunciation of the words. They distinguish between two
words which composed of the same letters, but having a differ-

ent voice and meaning. These diacritics were used in the field of
steganography and watermarking Arabic text. Some methods
(Aabed et al., 2007; Bensaad and Yagoubi, 2011) display dia-

critics or hide them to denote ‘‘0” or ‘‘1” bits. Diacritics are
utilized in Shah and Memon (2011) in a different way, the
direction of the diacritic ‘‘Fatha” is reversed. The usual form

is used to denote one, and the reversed one to denote zero. This
method requires a special font.

The diacritics-based methods are not blind, they require the
original text in the detection process. The capacity of them

depends on the number of the diacritics in the text. The using
of diacritics in Arabic text becomes a little because they could
find out by parsing the text. The Persians researchers in

Shirali-Shahreza and Shirali-Shahreza (2008,2010) and
Shirali-Shahreza (2008), developed some methods to hide data
in Arabic and Persian texts based on the Unicode of characters.

The Unicode based methods use characters that have special
features to be utilized in the hidden process. In Shirali-
Shahreza and Shirali-Shahreza (2008) a new steganography

approach has been proposed which uses pseudo-space between
unconnected characters and pseudo-connection between
connected characters to hide bits ‘‘0” or ‘‘1”. These additions
does not affect the overall look of the text, but used to hide

secret data.
The authors in Shirali-Shahreza and Shirali-Shahreza

(2010) use two characters ‘‘Ya” and ‘‘Kaf” in Arabic and Per-

sian languages with similar appearance in two positions in the
word, which means that they have different codes. They use
the Persian characters to hide bit ‘‘0” and the Arabic charac-

ters to hide bit ‘‘1”. In Shirali-Shahreza (2008) the ‘‘0” or
‘‘1” bits are hidden based on the use of one of the two forms
of the word ‘‘La”. The ‘‘La” word could be written by pressing
one button on the keyboard representing one code. The previ-

ous implementation is used to hide ‘‘0”. ‘‘La” word is written
by inserting the kashida between two characters ‘‘Lam” and
‘‘Alef” to hide ‘‘1”. The Unicode based methods have high

transparency but very low capacity, except the first method.
It has a large capacity, but the secret bits could be affected
in the extraction side.
3. Proposed methods

Text watermarking methods based on open space preserve the

integrity of the linguistic and grammatical rules, clarity and
value of the text. The extra spaces between words, sentences

Improved capacity Arabic text watermarking methods based on open word space 239
or at the end of the line are often not observed by readers.
However, the existing methods based on utilizing white spaces
in the text suffer from low data insertion capacity. Also, the

using of normal space frequently may draw attention.
Two Arabic text watermarking methods are proposed in

this paper by utilizing each word space in the text and this

guarantee high insertion capacity. The manipulation of white
spaces between words is done by adding small spaces or no
width ones instead of using normal space to satisfy impercep-

tibility requirement. The first method, Method 1 utilizes the
dotting feature in a way to improve the capacity of the method
presented in Alotaibi and Elrefaei (2016). Pseudo-space is a
non printing character used to separate two parts of the same

word in Persian language. It is inserted before the normal
space in Alotaibi and Elrefaei (2016) and it is inserted before
and after normal space in the proposed Method 1 based on

the character before the normal space and the character after
it whether they are pointed or not. The proposed Method 2
could be applied to Arabic text or any other languages.
Algorithm 1. Method 1 embedding algorithm

Input : Original text:OT, watermark in binary format:W, Set of pointed

Output : Watermarked text

j 0

L lengthðWÞ
C lengthðOTÞ
for i=2: C-1 do

Get Ci ;Ci�1 ;Ciþ1
if Ci is space then

if ðCi�1 2 P and W½j� ¼ 1Þ then
insert pseudo space before Ci in Watermarked text

end

else if ðCi�1 2 UP and W½j� ¼ 0Þ then
insert pseudo-space before Ci in Watermarked text

end

j jþ 1

if j P Lthen

j 0

end

if ðCiþ1 2 P and W½j� ¼ 1Þ then
insert pseudo-space after Ci in Watermarked text

end

else if ðCiþ1 2 UP and W½j� ¼ 0Þ then
insert pseudo-space after Ci in Watermarked text

end

j jþ 1

if j P L then

j 0

end

end

end

return Watermarked text
3.1. Method 1

The first proposed Arabic text watermarking method, Method
1, improves the capacity of the work presented in Alotaibi and
Elrefaei (2016). The letter after the space in addition to the let-

ter before it are checked in the watermark embedding and
extraction processes. While the pseudo-space has no width
and it is used to make letters appearing isolated, it could be
added at the beginning or ending of the Arabic word without

any visual effects.

3.1.1. Embedding algorithm

The embedding algorithm takes a watermark in a binary rep-
resentation as a string of zeros and ones as an input with the
text to be watermarked. To get the watermarked text, the
checking process is applied from the right to the left at the let-

ter before the space and the letter after it. The pseudo-space is
inserted between the letter and the space if the letter matches
the insertion condition. The reader could not find any change
letters:P , and Set of unpointed letters :UP

240 R.A. Alotaibi, L.A. Elrefaei
between the original and watermarked texts. The insertion
condition depends on the watermark bit and the letter status
as illustrated by the embedding algorithm shown in Algorithm

1. Fig. 1 shows an example of Method 1 where the colored let-
ters indicate the existing of pseudo-space after or before it. If
we take the second space as an example, the letter before the

space is ن which is pointed and the watermark bit equals
‘‘0”, so nothing is inserted. The letter after the space is ا and
the watermark bit equals ‘‘1”, also nothing is inserted.
3.1.2. Extraction algorithm

Method 1 is a blind watermarking method as the extraction

algorithm only needs the watermarked text to return the water-
mark bits. The extraction process checks the existence of the
pseudo space and the previous and next letters to set the water-
Algorithm 2. Method 1 extraction algorithm

Input : Watermarked text: WT , Set of pointed letters:P , and Set of unp

Output: Watermark: W

j 0

C lengthðWTÞ
for i=5: C-2 do

Get Ci;Ci�1;Ci�2;Ciþ1;Ciþ2
if Ci is space then

if Ci�1 is pseudo-space then

if Ci�2 2 P then

W½j� 1

end

else if Ci�2 2 UP then

W½j� 0

end

end

else

if Ci�1 2 P then

W½j� 0

end

else if Ci�1 2 UP then

W½j� 1

end

end

j jþ 1

if Ciþ1 is pseudo-space then

if Ciþ2 2 P then

W½j� 1

end

else if Ciþ2 2 UP then

W½j� 0

end

end

else

if Ciþ1 2 P then

W½j� 0

end

else if Ciþ1 2 UP then

W½j� 1

end

end

j jþ 1

end

end

return Watermark
mark bit to ‘‘1” or ‘‘0”. Algorithm 2 shows the extraction algo-
rithm in Method 1.

3.2. Method 2

In Method 2, the embedding algorithm involves the use of four
different spaces shown in Table 2, to be mixed with word nor-

mal space. Not all spaces are inserted all the time, only the
space which matches the watermark bit is inserted.

3.2.1. Embedding algorithm

The watermark bit stream is divided into groups, each of
length 4 bits. The first bit is corresponding to pseudo-space.
The second bit is corresponding to thin space. The third bit

is corresponding to hair space. The fourth bit is correspond-
ing to zero width space. Then, match each bit in each group
ointed letters :UP

Improved capacity Arabic text watermarking methods based on open word space 241
with corresponding space. If the bit equals to ‘‘1” the
intended space is inserted, else if the bit equals ‘‘0” nothing
is inserted. For example, if the group bits equal ‘‘0000”, no

one of the spaces is added. If the group bits equal ‘‘1111”,
all spaces are added to normal space while maintaining the
spaces order. The embedding algorithm steps explained in

Algorithm 3. Fig. 2 shows an example of the proposed
Method 2.
Algorithm 3. Method 2 embedding algorithm

Input : Original text:OT and watermark in binary format:W

Output : Watermarked text

j 0

L lengthðWÞ
C lengthðOTÞ
for i=1: C do

Get Ci

if Ci is space then

if ðW½j� ¼ 1Þ then
insert pseudo-space before Ci in Watermarked text

end

if ðW½jþ 1� ¼ 1Þ then
insert thin space after the previous space in Watermarked text

end

if ðW½jþ 2� ¼ 1Þ then
insert hair space after the previous space in Watermarked text

end

if ðW½jþ 3� ¼ 1Þ then
insert zero width space after the previous space in Watermarked t

end

j jþ 4

if j P Lthen

j 0

end

end

end

return Watermarked text

Figure 1 Exampl
3.2.2. Extraction algorithm

Method 2 could be used for any language where the space is

one of its writing components and not exclusively in the Arabic
language. This method works blindly where it does not require
the original text to extract secret data. As the previous method,

it searches for each space in the text and get the four characters
before the space. Each individual word space encodes four bits.
If an intended space is founded before word space, it will be
ext

e of Method 1.

242 R.A. Alotaibi, L.A. Elrefaei
matched with its position in the watermark group. The
Algorithm 4. Method 2 extraction algorithm.

Input : Watermarked text: WT

Output : Watermark: W

j 0

C lengthðWTÞ
for i=5: C do

Get Ci , Ci�1 , Ci�2 , Ci�3 , Ci�4
if Ci is space then

col4 ¼ Ci�4 þ Ci�3 þ Ci�2 þ Ci�1 col3 ¼ Ci�3 þ Ci�2 þ Ci�1
col2 ¼ þCi�3 þ Ci�2 þ Ci�1
if col4 is PS followed by TS followed by HS followed by ZWS then

W½j; 4� 1111

end

else if col3 is TS followed by HS followed by ZWS then

W½j; 4� 0111

end

else if col3 is PS followed by TS followed by ZWS then

W½j; 4� 1101

end

else if col3 is PS followed by HS followed by ZWS then

W½j; 4� 1011

end

else if col3 is PS followed by TS followed by HS then

W½j; 4� 1110

end

else if col2 is PS followed by TS then

W½j; 4� 1100

end

else if col2 is TS followed by HS then

W½j; 4� 0110

end

else if col2 is HS followed by ZWS then

W½j; 4� 0011

end

else if col2 is PS followed by HS then

W½j; 4� 1010

end

else if col2 is PS followed by ZWS then

W½j; 4� 1001

end

else if col2 is TS followed by ZWS then

W½j; 4� 0101

end

else if col1 is PS then

W½j; 4� 1000

end

else if col1 is TS then

W½j; 4� 0100

end

else if col1 is HS then

W½j; 4� 0010

end

else if col1 is ZWS then

W½j; 4� 0001

end

else

W½j; 4� 0000

end

j jþ 4

end

end

return Watermark
extraction algorithm is stated in details in Algorithm 4.

Figure 2 Example of Method 2.

Improved capacity Arabic text watermarking methods based on open word space 243
4. Results and discussions

To evaluate the proposed methods in terms of capacity, imper-
ceptibility and robustness, experiments are done using 15 dif-
ferent size text samples. The text samples are chosen from

OSAC: Open Source Arabic Corpus (Saad and Ashour,
2010) and AraCorpus (Index of /AraCorpus, 2010) with differ-
ent sizes from very small texts to very large ones. The text sam-

ples are classified based on MS Windows OS file search by size
property (Kashyap, 2010). Table 3 shows text categories based
on Windows classification. Table 4 shows the specifications of
the used text samples.
Table 3 Microsoft Windows OS text file size classifications

(Kashyap, 2010).

Text category File size

Empty 0 KB

Tiny 0–10 KB

Small 10–100 KB

Medium 100 KB–1 MB

Large 1–16 MB

Huge 16–128 MB

Gigantic >128 MB

Table 4 The text samples specifications.

Text sample Category File size in by

1 Tiny 260

2 Tiny 4657

4 Small 37,222

5 Small 82,469

8 Medium 692,668

9 Medium 839,936

10 Medium 992,340

8 Large 1,603,394

9 Large 5,014,295

10 Huge 33,795,725

11 Huge 50,477,212

12 Gigantic 274,730,158
The watermark length has been chosen as follows: 8 bit, 16

bit, 32 bit, 46 bit, 128 bit and 256 bit to observe the relation-
ship between the length of the watermark and the methods’
robustness. The watermark is generated randomly in each text

sample. The proposed methods have been implemented using
C#.net programming language.
4.1. Imperceptibility Evaluation results

Fig. 3 shows the GUI of the Arabic text watermarking system
which includes the proposed methods and other six Arabic

text watermarking methods: Diacritics method (Aabed et al.,
2007), kashida method (Gutub et al., 2007), enhanced kashida
method (Alginahi et al., 2013), enhanced kashida method A
(Alginahi et al., 2014), enhanced kashida method B

(Alginahi et al., 2014) and pseudo-space method (Alotaibi
and Elrefaei, 2016). As shown in Fig. 3, kashidas are colored
with red, pointed letters that are followed or preceded by

pseudo-space are colored with red while un-pointed letters
are colored with yellow. The proposed Method 1 and the
method presented in Alotaibi and Elrefaei (2016) have higher

imperceptibility than others. No one can distinguish between
the original and watermarked text because of the use of invis-
ible character pseudo-space. The proposed methods, Method
1 and Method 2, have higher imperceptibility than methods

based on kashida and diacritics. Diacritics method (Aabed
te Total characters No. of words

145 29

2664 496

20,636 3817

45,647 7707

437,860 86,084

399,038 76,036

489,346 93,565

860,748 135,032

2,695,581 456,299

18,244,881 2,937,989

27,326,194 4,415,785

148,163,622 23,690,877

Figure 3 GUI of the proposed Arabic text watermarking methods.

244 R.A. Alotaibi, L.A. Elrefaei
et al., 2007) draws attentions where some diacritics are present
and others are not.

4.2. Capacity Evaluation results

The capacity of the proposed methods: method 1 and method

2 is presented in Table 5 using the first ten text samples shown
in Table 4. The capacity of text watermarking methods is the
total number of bits which are embedded in the original text.

The capacity ratio is computed as:

Capacity ratio ¼ Number of hidden bits

Total number of characters

� 100 ðAlginahi etal:; 2013Þ

For comparison purposes, the proposed methods are com-
pared with six methods (Aabed et al., 2007; Gutub et al., 2007;

Alginahi et al., 2013, 2014; Alotaibi and Elrefaei, 2016) from
the literature, are shown in Fig. 4. The capacity results of
the proposed methods are higher than these watermarking

methods.
Table 6 shows the average capacity comparison results

using ten text samples. These text samples are taken from

Table 4. The average is the sum of each text capacity divided
by 10. The proposed methods have the highest capacity.
Method 1 improved the capacity of Diacritics method
(Aabed et al., 2007), kashida method (Gutub et al., 2007),
enhanced kashida method (Alginahi et al., 2013), enhanced

kashida method A (Alginahi et al., 2014), enhanced kashida
method B (Alginahi et al., 2014) and pseudo-space method
(Alotaibi and Elrefaei, 2016) by about 1852%, 92%, 535%,

162%, 123%, and 106% respectively. The capacity
of Method 2 has improved compared to the previous Arabic
watermarking methods about 4405%, 343%, 1366%, 505%,

414% and 377% respectively. These increase percentages are
calculated based on formulas in Percentage Change –
Percentage Increase and Decrease (2011). Diacritics method
(Aabed et al., 2007) has a variable capacity based on the exist-

ing of diacritics on the text. Even in case of using full diacrit-
ical text as shown in Fig. 3, Method 1 and Method 2 have
capacity closer or higher than the capacity of diacritics

method. Now, most of electronic Arabic texts are not
diacritical.
4.3. Robustness Evaluation results

The proposed methods are tested to evaluate their robustness
against most kind of text attacks. Tampering attack is the most

common type of text attacks especially in doing academic
researches. The attacker tries to change the overall look of

0

50000

100000

150000

200000

250000

300000

350000

400000

ca
pa

ci
ty

 (b
it)

File size (byte)

Proposed Method 2

Proposed Method 1

Pseudo-space Method (Alotaibi and
Elrefaei, 2016)

Enhanced Kashida Method B (Alginahi
et al., 2014)

Enhanced Kashida Method A (Alginahi
et al., 2014)

Enhanced Kashida Method (Alginahi et
al., 2013)

Kashida Method (Gutub et al., 2007)

Diacritics Method (Aabed et al., 2007)

Figure 4 Capacity comparison results in different methods using ten text samples.

Table 6 Average capacity comparison results using 10 text samples.

Watermarking method The used feature Capacity (bits) Capacity ratio (%)

Diacritics Method (Aabed et al., 2007) Diacritics 7262 1.65

Kashida Method (Gutub et al., 2007) Kashida 25,603 16.754

Enhanced Kashida Method (Alginahi et al., 2013) Kashida 8467 5.07

Enhanced Kashida Method A (Alginahi et al., 2014) Kashida 20,513 12.297

Enhanced Kashida Method B (Alginahi et al., 2014) Kashida 23,441 14.452

Pseudo-space Method (Alotaibi and Elrefaei, 2016) PS 24,841 15.585

Proposed Method 1 PS 52,350 32.212

Proposed Method 2 PS, HS, TS and ZWS 123,810 74.344

Table 5 The capacity of the proposed methods using 10 text samples.

Text sample Method 1 Method 2

Capacity (bits) Ratio (%) Capacity (bits) Ratio (%)

1 45 31.03 116 80

2 847 31.79 1988 74.62

3 3620 32.27 8128 72.47

4 7094 34.37 15,264 73.96

5 14,353 31.44 30,824 67.52

6 29,012 33.25 64,404 73.81

7 43,089 31.91 93,932 69.57

8 113,293 25.87 304,236 78.74

9 138,696 34.75 344,804 76.24

10 173,453 35.44 374,408 76.51

Average 52350.2 32.212 123810.4 74.344

Improved capacity Arabic text watermarking methods based on open word space 245
the text by inserting new words or sentences into the original
text or by deleting them. Insertion and deletion processes are

done in two ways: localized or dispersed (Jalil, 2010). In our
experiments, localized insertion is done in one place within
the watermarked text. This place can be at the beginning or
the end, or anywhere in the middle of the text. In dispersed

insertion, the words or sentences were added randomly in sev-
eral different parts of the watermarked text. In Localized dele-
tion, the sentences and words were deleted from one random
place in the watermarked text. Dispersed deletion is the most

distortion attack of the watermark because the deletions are
in different random places from the text.

Fig. 5 shows the GUI used to test the robustness of the pro-
posed methods for four different types of attack: localized

insertion, dispersed insertion, localized deletion and dispersed
deletion. The watermark is embedded in the original text many

a) Localized Insertion attack (inserted words are
colored with red in output text).

b) Dispersed Insertion attack (inserted words are
colored with red in output text).

c) Localized Deletion attack (deleted words are colored
with red in input text).

d) Dispersed Deletion attack (deleted words are colored
with red in input text).

Figure 5 GUI used for robustness testing of the proposed methods.

246 R.A. Alotaibi, L.A. Elrefaei
times based on the watermark and the text lengths to increase
the robustness (Cox et al., 2007). Then, the watermarked text

has been attacked and finally, the watermark is extracted from
the attacked text.

The robustness is measured depending on the number of

times the watermark is found in the attacked watermarked
text. The watermark is considered to be survived if it is
founded once or more in the attacked text, otherwise it is lost.

The robustness of the proposed methods is tested using differ-
ent 12 text samples listed in Table 4. Each sample is tested with
watermark lengths: 8, 16, 32, 64, 128 and 256. Table 7 presents

the testing scenario of the tested text attacks and its results.

Table 7 Testing scenario and results of different text attacks.

Attack type Testing scenario Testing result

Localized

insertion

First, the user enters the insertion percentage and the watermarked

text. Then, words/sentences are inserted in one location in the

watermarked text based on the insertion percentage. This process is

repeated until the number of times the watermark extracted is

changed. Fig. 5a illustrates an example for testing Method 1 against

a localized insertion attack

The proposed methods are robust against localized

insertion attack as the number of times the watermark

embedded is equal to the number of times the

watermark extracted regardless the insertion percentage

Dispersed

insertion

First, the user enters the insertion percentage and the watermarked

text. Then, words/sentences are inserted in different locations in the

watermarked text based on the insertion percentage. This process is

repeated until the number of times the watermark extracted is

changed. Fig. 5b illustrates an example for testing Method 1 against

a dispersed insertion attack

In Method 1, the watermark is lost if it is embedded 3

times or less. The watermark is destroyed in text samle1

with watermark lengths 16 and more and in text sample

2 with watermark length 256

In Method 2, the watermark is lost if it is embedded only

once. This can not be happened except in very tiny text

sizes

Localized

deletion

First, the user enters the deletion percentage and the watermarked

text. Then, words/sentences are deleted from one location in the

watermarked text based on the deletion percentage. This process is

repeated until the number of times the watermark extracted is

changed. Fig. 5c illustrates an example for testing Method 1 against

a localized deletion attack

The proposed methods are robust against localized

deletion attack using medium and larger text. The

watermark is lost only in case of deleting 100% of text

which means deleting all the text. The required deletion

percentage to destroy the watermark in Method 1 and

Method 2 using small size text is between 97% and

100% and 99% and 100% respectively. Text sample No.

1 and 2 are used to represent tiny text. Text sample No.

1 is a very small text includes only 29 words which are

nothing important to be watermarked. In tiny text, the

required deletion percentages vary between 0 to 100%

depending on the number of times the watermark

repeated in the watermarked text before it attacked and

the watermark length

Dispersed

deletion

First, the user enters the deletion percentage and the watermarked

text. Then, words/sentences are deleted from different locations in

the watermarked text based on the deletion percentage. This process

is repeated until the number of times the watermark extracted is

changed. Fig. 5d illustrates an example for testing Method 1 against

a dispersed deletion attack

Using medium, large, huge and gigantic texts, the

dispersed deletion percentage to destroy the watermark

is 100% in both methods. In small size texts, the

dispersed deletion percentage is ranging from 84% to

100% in Method 1 and from 93% to 100% in Method 2.

The deletion percentage is between 0% and 97% in

Method 1, 0% and 100% in Method 2 using tiny texts

Copying and

pasting

The user copies the watermarked text, then pastes it in another

program and saves it. After that the watermark is extracted from the

saved file

The proposed methods are robust against copying and

pasting attack as the number of times the watermark

embedded is equal to the number of times the

watermark extracted

Formatting The user changes the watermarked text style like: font style, text size,

coloring, highlighting and any other effects. Then, the watermark is

extracted

The proposed methods are robust against formatting

attacks as the number of times the watermark embedded

is equal to the number of times the watermark extracted

Retyping,

Printing, and

OCR

The user retypes the watermarked text, or prints it, then scans it.

After that OCR program is used to turn the scanned printed text

into an electronic one. Finally the watermark is extracted

The proposed methods depend on the existence of

pseudo-space. This character does not print and does

not have any width, So the proposed methods are not

robust against retyping, printing or OCR

Improved capacity Arabic text watermarking methods based on open word space 247
5. Conclusion

Two methods for Arabic text watermarking are proposed by

utilizing each word space. Method 1 is specialized to be used
in the Arabic text or similar languages as it utilizes the Arabic
dotting feature. Method 2 could be used for any language uses

spaces to separate their words. The contribution of Method 2
is the using of four tiny spaces: pseudo-space, thin space, hair
space and zero width space with normal word space. The per-
formance of the proposed methods is tested to evaluate their

capacity, imperceptibility and robustness results and compared
to some Arabic text watermarking methods using different text
samples with six watermark lengths. The proposed methods
found to have the highest capacity and imperceptibility.
Method 2 has the largest capacity, but slightly lower impercep-

tibility than Method 1. The proposed methods are robust
against electronic text attacks such as: copying and pasting,
text formatting and text tampering for tampering ratio up to

84%.
As a future work, text watermark can be used with com-

pression algorithms such as Huffman algorithm instead of

using binary bits to represent the watermark. A private key
could be used in the proposed watermarking methods to prove
the authenticity. The proposed methods also could be com-
bined with other Arabic watermarking methods from the

literature.

248 R.A. Alotaibi, L.A. Elrefaei
Funding

This research did not receive any specific grant from fund-
ing agencies in the public, commercial, or not-for-profit

sectors.

References

Aabed, M.A., Awaideh, S.M., Elshafei, A.R.M., Gutub, A.A., 2007.

Arabic diacritics based steganography. In: ICSPC 2007. IEEE

International Conference on Signal Processing and Communica-

tions, IEEE, pp. 756–759.

Alginahi, Y.M., Kabir, M.N., Tayan, O., 2013. An enhanced Kashida-

based watermarking approach for Arabic text-documents. In: 2013

International Conference on Electronics, Computer and Compu-

tation (ICECCO), IEEE, pp. 301–304.

Alginahi, Y.M., Kabir, M.N., Tayan, O., 2014. An enhanced Kashida-

based watermarking approach for increased protection in Arabic

text-documents based on frequency recurrence of characters. Int. J.

Comput. Electr. Eng. 6 (5), 381.

Alotaibi, R.A., Elrefaei, L.A., 2015. Arabic Text Watermarking: A

Review. arXiv preprint arXiv:1508.01485, pp. 1–16.

Alotaibi, R.A., Elrefaei, L.A., 2016. Utilizing word space with pointed

and un-pointed letters for Arabic text watermarking. In: 2016

UKSim-AMSS 18th International conference on Computer Mod-

elling and Simulation, pp. 111–116.

Bender, W., Gruhl, D., Morimoto, N., Lu, A., 1996. Techniques for

data hiding. IBM Syst. J. 35 (3.4), 313–336.

Bennett, K., 2004. Linguistic steganography: survey, analysis, and

robustness concerns for hiding information in text. Purdue

University. CERIAS Tech. Report 2004–13..

Bensaad, M.L., Yagoubi, M.B., 2011. High capacity diacritics-based

method for information hiding in Arabic text. In: International

Conference on Innovations in Information Technology (IIT),

IEEE, pp. 433–436.

Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T., 2007. Digital

Watermarking and Steganography. Morgan Kaufmann.

Gutub, A.A.A., Ghouti, L., Amin, A.A., Alkharobi, T.M., Ibrahim,

M.K., 2007. Utilizing extension character ‘Kashida’ with pointed

letters for Arabic text digital watermarking. In: SECRYPT, pp.

329–332.

Gutub, A.A.A., Al-Alwani, W., Mahfoodh, A.B., 2010. Improved

method of Arabic text steganography using the extension

‘Kashida’character. Bahria Univ. J. Inf. Commun. Technol. 3,

68–72.

Huang, D., Yan, H., 2001. Interword distance changes represented by

sine waves for watermarking text images. IEEE Trans. Circuits

Syst. Video Technol. 11 (12), 1237–1245.
Index of /AraCorpus, 2010. Aracorpus.e3rab.com. http://aracorpus.

e3rab.com/argistestsrv.nmsu.edu/AraCorpus/?C=D;O=A

(accessed 2016).

Jalil, Z., 2010. Copyright Protection of Plain Text Using Digital

Watermarking (Doctoral dissertation). National University of

Computer and Emerging Sciences, Islamabad.

Kashyap, V., 2010. Top 7 Windows Search Tricks Used by Pro Users,

Makeofuse. http://www.makeuseof.com/tag/top-7-windows-

search-tricks-search-ninja (accessed 2016).

Percentage Change – Percentage Increase and Decrease, 2011. Skill-

syouneed.com. http://www.skillsyouneed.com/num/percent-

change.html (accessed 2016).

Saad, M.K., Ashour, W., 2010. OSAC: Open Source Arabic Corpus.

In: 6th ArchEng International Symposiums, EEECS10 the 6th

International Symposium on Electrical and Electronics Engineering

and Computer Science. European University of Lefke, Cyprus.

Shah, A., Memon, M.S., 2011. A novel text steganography technique

to Arabic language using reverse fatah. Pak. J. Eng. Technol. Sci.

(PJETS) 1 (2), 106–113.

Shirali-Shahreza, M., 2008. A New Persian/Arabic text steganography

using ‘‘La” word. In: Advances in Computer and Information

Sciences and Engineering. Springer, Netherlands, pp. 339–342.

Shirali-Shahreza, M.H., Shirali-Shahreza, M., 2006. A new approach

to Persian/Arabic text steganography. In: 5th IEEE/ACIS Inter-

national Conference on Computer and Information Science and 1st

IEEE/ACIS International Workshop on Component-Based Soft-

ware Engineering, Software Architecture and Reuse (ICIS-COM-

SAR’06), pp. 310–315.

Shirali-Shahreza, M.H., Shirali-Shahreza, M., 2008. Steganography in

Persian and Arabic unicode texts using pseudo-space and pseudo

connection characters. J. Theor. Appl. Inf. Technol. 4 (8).

Shirali-Shahreza, M.H., Shirali-Shahreza, M., 2010. Arabic/Persian

text steganography utilizing similar letters with different codes.

Arabian J. Sci. Eng. 35 (1b).

Stanković, S., Orović, I., Sejdić, E., 2012. Multimedia Signals and

Systems. Springer, New York, NY.

Topkara, M., Riccardi, G., Hakkani-Tür, D., Atallah, M.J., 2006.

Natural language watermarking: challenges in building a practical

system. In: Electronic Imaging 2006 International Society for

Optics and Photonics, pp. 60720A–60720A.

Whitespace Character, 2016. <https://en.wikipedia.org/wiki/Whites-

pace> character (accessed 2016).

Yang, H., Kot, A.C., 2004. Text document authentication by

integrating inter character and word spaces watermarking. In:

Multimedia and Expo, 2004. ICME’04. 2004 IEEE International

Conference, vol. 2, pp. 955–958.

http://refhub.elsevier.com/S1319-1578(17)30001-0/h0005
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0005
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0005
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0005
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0010
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0010
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0010
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0010
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0015
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0015
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0015
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0015
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0025
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0025
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0025
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0025
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0030
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0030
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0035
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0035
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0035
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0040
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0040
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0040
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0040
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0045
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0045
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0050
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0050
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0050
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0050
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0055
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0055
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0055
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0055
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0060
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0060
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0060
http://aracorpus.e3rab.com/argistestsrv.nmsu.edu/AraCorpus/?C=D;O=A
http://aracorpus.e3rab.com/argistestsrv.nmsu.edu/AraCorpus/?C=D;O=A
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0070
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0070
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0070
http://www.makeuseof.com/tag/top-7-windows-search-tricks-search-ninja
http://www.makeuseof.com/tag/top-7-windows-search-tricks-search-ninja
http://www.Skillsyouneed.com
http://www.Skillsyouneed.com
http://www.skillsyouneed.com/num/percent-change.html
http://www.skillsyouneed.com/num/percent-change.html
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0085
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0085
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0085
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0085
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0090
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0090
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0090
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0095
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0095
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0095
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0095
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0100
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0100
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0100
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0100
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0100
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0100
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0105
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0105
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0105
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0110
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0110
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0110
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0115
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0115
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0120
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0120
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0120
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0120
https://en.wikipedia.org/wiki/Whitespace
https://en.wikipedia.org/wiki/Whitespace
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0130
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0130
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0130
http://refhub.elsevier.com/S1319-1578(17)30001-0/h0130

	Improved capacity Arabic text watermarking methods based on open word space
	1 Introduction
	1.1 Overview of the used spaces

	2 Related work
	3 Proposed methods
	3.1 Method 1
	3.1.1 Embedding algorithm
	3.1.2 Extraction algorithm

	3.2 Method 2
	3.2.1 Embedding algorithm
	3.2.2 Extraction algorithm

	4 Results and discussions
	4.1 Imperceptibility Evaluation results
	4.2 Capacity Evaluation results
	4.3 Robustness Evaluation results

	5 Conclusion
	Funding
	References

