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We analyze a suite of 48 real-world networks and compute the decay centrality (DEC) of the vertices for
the complete range of values for the decay parameter d e (0, 1) as well as determine the Pearson’s corre-
lation coefficient (PCC) between the DECd values and degree centrality (DEG) and closeness centrality
(CLC). We observe PCC(DECd, DEG) to decrease with increase in d and PCC(DECd, CLC) to decrease with
decrease in d. We define the d-spacer for a real-world network with respect to the DEG, DEC, CLC corre-
lation as the difference between the maximum and minimum d values under which we observe a partic-
ular level of correlation (r) between the DEC, DEG and DEC, CLC metrics respectively. We show that the
PCC(DEG, CLC) values for the real-world networks exhibit a very strongly positive correlation with the d-
spacer values and demonstrate that one could predict the d-spacer value for a real-world network using
the PCC(DEG, CLC) value for that network. We also analyze the impact of various topological measures
on the d-spacer values for the real-world networks.
� 2017 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Decay Centrality (DEC) metric is a parameter-driven cen-
trality metric that has not been explored much in the literature
for complex network analysis. Decay centrality is a measure of
the closeness of a node to the rest of the nodes in the network
(Jackson, 2010). However, unlike closeness centrality (CLC)
Freeman, 1979, the importance given to the geodesic distance (typ-
ically, in terms of the number of hops if the edges do not have
weights) is weighted in terms of a parameter called the decay
parameter d (0 < d < 1). The formulation for computing the decay
centrality of a vertex vi for a particular value of the decay parame-
ter d is (Jackson, 2010): DEC(vi) =

P
v i–v j

ddðv i ;v jÞ where d(vi, vj) is the
distance from node vi to node vj. The decay parameter d essentially
controls how important is a node vj to a node vi (vi – vj) that are at
a distance d(vi, vj) from each other. If d is smaller, the distance to
the nearby nodes is weighted relatively larger than the distance
to the nodes farther away. If d is larger, the distance to every node
is given almost the same importance. As a result, if d is closer to 0,
the decay centrality of the vertices is more likely to exhibit a very
strong positive correlation with the degree centrality of the ver-
tices; if d is closer to 1, the decay centrality of the vertices is more
likely to exhibit a very strong positive correlation with the close-
ness centrality of the vertices. We adopt the ordinal range of values
proposed by Evans (1995) and consider two centrality metrics to
exhibit strongly positive (s+) and very strongly positive (vs+) corre-
lation if the Pearson’s correlation coefficients (PCC) (Lay et al.,
2015) computed on the basis of the values incurred for the two
metrics are respectively 0.6 or above and 0.8 or above. As part of
our correlation analysis, we analyze a suite of 48 real-world net-
works whose spectral radius ratio for node degree
(Meghanathan, 2014) (a measure of variation in node degree)
ranges from 1.01 to 5.51.

The motivation for our research came from the initial results of
our correlation study which indicated that the Pearson’s correla-
tion coefficient PCC(DECd, DEG) decreases with increase in d from
0.01 to 0.99 and PCC(DECd, CLC) decreases with decrease in d.
Because of such a trend, we came up with a hypothesis that there
could exist a range of d values (called the d-space) for which we
could observe the DECd values to exhibit a particular level of corre-
lation (we focus on strongly and very strongly positive levels of
correlation) simultaneously with both the DEG and CLC metrics.
In this pursuit, for each real-world network, we identified the max-
imum d value (indicated as dDEC;DEGmax;r�sþ or equivalently as dDEC;DEGmax;rP0:6 and
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Fig. 1. Degree Centrality of the Vertices in an Example Graph.
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dDEC;DEGmax;r�vsþ or equivalently as dDEC;DEGmax;rP0:8) until which PCC(DECd, DEG) is
0.6 or above (for strongly positive correlation) or 0.8 or above (for
very strongly positive correlation), as well as identified the mini-
mum d value (indicated as dDEC;CLCmin;r�sþ or equivalently as dDEC;CLCmin;rP0:6

and dDEC;CLCmin;r�vsþ or equivalently as dDEC;CLCmin;rP0:8) starting from which
PCC(DECd, CLC) continues to be 0.6 or above or 0.8 or above respec-
tively. For real-world networks with dDEC;CLCmin;r 6 dDEC;DEGmax;r , there exists

a range of d values dDEC;CLCmin;r . . . dDEC;DEGmax;r (quantified and called the d-

spacer: d
DEC;DEG
max;r � dDEC;CLCmin;r þ 2; where 2 is the level of precision used

for d; for more details see Section 5) under which DECd would exhi-
bit a particular level of correlation (r � s+ or vs+) with respect to
both DEG and CLC. Statistically, the d-spacer for a real-world net-
work with respect to a particular level of correlation (r) would cor-
respond to the probability with which the decay centrality metric
(computed for a randomly chosen value of d) could exhibit the par-
ticular level of correlation with both the degree centrality and
closeness centrality metrics. We hypothesize that the Pearson’s
correlation coefficient between DEG and CLC for a real-world net-
work is likely to be very strongly correlated to the d-spacer values
and that one could predict the d-spacer value for a network using
the PCC(DEC, CLC) observed for that network.

The rest of the paper is organized as follows: Section 2 discusses
related work. In Section 3, we review the centrality metrics (DEG,
CLC and DEC) and the Pearson’s correlation measure as well as
explain their computation with an example graph. Section 4 first
introduces the notion of d-space for DEC, DEG and DEC, CLC corre-
lation (hereafter referred to as DEG-DEC-CLC correlation) and its
computation on the example graph of Section 3. Section 5 intro-
duces the real-world networks that are analyzed in this paper. Sec-
tion 6 first presents the results of correlation study involving DEC,
DEG and CLC and the notion of d-spacer. Section 6 then presents the
simulation results to corroborate our hypothesis about the rela-
tionship between d-spacer and the Pearson’s correlation coefficient
for DEG and CLC. Section 6 also analyzes the impact of various
topological measures on the d-spacer values (negative values and
the highest positive value of 0.99) incurred for the real-world net-
works. Section 7 concludes the paper.

2. Related work

Decay centrality has not been explored much in the literature
for complex network analysis. To the best of our knowledge, ours
is the first work to conduct a correlation study focusing on decay
centrality. Most of the work (e.g., Li et al., 2015; Meghanathan,
2015) on correlation studies (involving centrality metrics) were
focused on the commonly studied centrality metrics such as the
neighborhood-based degree centrality and eigenvector centrality
(Bonacich, 1987) and shortest path-based betweenness centrality
(Freeman, 1977) and closeness centrality. The objective of such
correlation studies has been typically to identify
computationally-light alternatives (like DEG and its derivatives
(Meghanathan, 2017) for computationally-heavy metrics (such as
EVC and BWC) for both real-world networks and simulated net-
works of theoretical models (Renyi, 1959; Barabasi and Albert,
1999). The focus of our paper is different from such typical corre-
lation studies in the literature. We seek to explore the trend of
change in the correlation coefficients between a parameter-
driven centrality metric (whose values for a node change for differ-
ent values of the decay parameter) and the degree and closeness
centrality metrics whose values are not parameter-driven and
remain the same for a particular network.

The most related work to our work is a recent study (Tsakas,
2016) on random networks (Renyi, 1959) for which a single thresh-
old value of the decay parameter (referred here as dthresh) was
observed to exist (for a particular operating condition) such that
nodes with high degree centrality also had a high decay centrality
computed for d values less than dthresh and nodes with high close-
ness centrality also had a high decay centrality computed for d val-
ues above dthresh. It was observed in Tsakas (2016) that for random
networks: nodes with the largest values for degree centrality and
closeness centrality are more likely to be nodes that also incur
the largest values for decay centrality for almost all values of d.
In addition, nodes that had the largest decay centrality for a certain
value of d are more likely to be part of the set of nodes that had the
largest degree centrality or the largest closeness centrality. The
likelihood of all of the above was studied using multinomial logis-
tic regression (Greene, 2011).

In (Dangalchev, 2006), Dangalchev proposed a variant of close-
ness centrality metric (to quantify the vulnerability of networks to
get disconnected) that is essentially the decay centrality of the ver-
tices computed for d = 0.5. However, there was no correlation anal-
ysis reported between Dangalchev’s closeness centrality metric
and the decay centrality of the vertices for different values of d.
Most of the other works (e.g., Chatterjee and Dutta, 2016; Kang
et al., 2012) on decay centrality metric have focused on exploring
its suitability for diffusion in socio-economic networks with
regards to selecting the seed nodes that could effectively propagate
information about a product to putative customers. Nodes that are
themselves central and connected to other central nodes (via direct
links or shorter paths) in the network are typically preferred for
such ‘‘agent” roles (Tsakas, 2016; Chatterjee and Dutta, 2016).
The use of decay centrality vis-a-vis diffusion centrality (Kang
et al., 2012) and eigenvector centrality (Ide et al., 2014; Banerjee
et al., 2013) to identify such ‘‘agent” nodes for diffusion has been
explored in the literature.
3. Review of centrality metrics and Pearson’s correlation
measure

The centrality metrics that are of interest in this research are
degree centrality (DEG), closeness centrality (CLC) and decay cen-
trality (DEC). In this section, we briefly review these three metrics
and their computation using a running example graph as well as
review the Pearson’s correlation measure and its computation with
respect to the DEG and CLC metrics for the running example graph.

3.1. Degree centrality

The degree centrality (DEG) of a vertex is the number of neigh-
bors incident on the vertex. Fig. 1 illustrates the degree centrality
of the vertices (listed above the vertices) in the example graph
used in Sections 3 and 4. A key weakness of the degree centrality
metric is that the metric can take only integer values (though,
weighted degree centrality can take on any real value) and ties
among vertices (with same degree) is quite common and unavoid-
able in network graphs of any size (in the graph of Fig. 1, we
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observe five of the nine vertices to have a degree of 3). If d(vi, vj) is
the geodesic distance between two vertices vi and vj in a graph,
then the degree centrality of a vertex vi could be computed as
the sum of the distances to the one-hop neighbors.

DEGðv iÞ ¼
X
vj–v i

dðvi ;vj Þ¼1

dðv i; v jÞ ð1Þ
3.2. Closeness centrality

The closeness centrality (CLC) of a vertex Freeman, 1979 is a
measure of the closeness of the vertex to the rest of the vertices
in a graph. The CLC of a vertex is computed as the inverse of the
sum of the hop counts (farness) of the shortest paths from the ver-
tex to the rest of the vertices in the graph. If d(vi, vj) is the geodesic
distance between two vertices vi and vj in a graph, then the close-
ness centrality of a vertex vi could be computed as the sum of the
geodesic distances to the vertices vj that are in the same compo-
nent as vi (a component is the largest set of vertices that are reach-
able from each other (Cormen et al., 2009). We say that two
vertices vi and vj are in the same component if the geodesic dis-
tance d(vi, vj) between them is not infinity.

CLCðv iÞ ¼ 1X
vj–vi

dðv i ;vj Þ–1

dðv i; v jÞ
ð2Þ

Fig. 2 illustrates the distance matrix (hop counts of the shortest
paths between any two vertices) for the example graph of Fig. 1
and also displays the CLC of the vertices. Vertex 1 is the closest ver-
tex to the rest of the vertices (sum of the distances is 12, the min-
imum) and hence has the largest CLC value of 1/12 = 0.083.

3.3. Decay centrality

Decay centrality (DEC) is a measure of the closeness of a node to
the rest of the nodes in the network (Jackson, 2010). However,
unlike closeness centrality, the importance given to the distance
(typically, in terms of the number of hops if the edges do not have
weights) is weighted in terms of a parameter called the decay
Fig. 2. Closeness Centrality of the Vertices in an Example Graph.
parameter d (0 < d < 1). The formulation for computing the decay
centrality of a vertex vi for a particular value of the decay parame-
ter d is (Jackson, 2010): DECd(vi) =

P
v i–v j

ddðv i ;v jÞ where d(vi, vj) is the
distance from node vi to node vj. The decay parameter d essentially
controls how important is a node vj to a node vi (vi – vj) that are at
a distance d(vi, vj) from each other. Nodes that have a higher decay
centrality are more likely to be nodes that have several neighbors
as well as be much closer to the rest of the nodes in the network
(Tsakas, 2016). Note that we did not choose the closed interval
[0,1] for d, as d = 1 would correspond to the component size (one
less than the number of vertices in the component to which the
vertex belongs to) and not quantify the centrality of the vertices,
and d = 0 would make the decay centrality of the vertices to
become zero. Like the case of classical Dijkstra algorithm
(Cormen et al., 2009) and other shortest path-based algorithms
(Cormen et al., 2009), we adopt the convention that the distance
between two vertices vi and vj that are in two different components
of a graph is not defined and is treated as infinity (1) for all quan-
tification purposes. As the d values are in the range (0, 1), ddðv i ;v jÞ

tends to 0 for d(vi, vj) =1. Hence, if a network comprises of two
or more components, the decay centrality of a vertex is computed
based on the distances to the rest of the vertices within the
component.

Fig. 3 presents the decay centrality of the vertices in the exam-
ple graph of Section 3 for different values of the decay parameter d.
We also illustrate sample calculations of the decay centrality of
vertex 1 for three different values of d. One can observe from
Fig. 3, the magnitudes of the values for decay centrality of the ver-
tices are very close to each other as d approaches 1. The results of
our correlation analysis in Section 6 indicate that the subtle differ-
ences (as long as d < 1) in the decay centrality of the vertices are
sufficient enough to observe a very strongly positive correlation
between decay centrality and closeness centrality for larger values
of d.

3.4. Pearson’s correlation measure

We use the Pearson’s correlation coefficient (PCC) Lay et al.,
2015 as the measure for analyzing the correlation between the
decay centrality (computed for different values of the decay
parameter d) and the degree centrality and closeness centrality.
The Pearson’s product-moment correlation when applied for cen-
trality metrics is a measure of the linear dependence between
any two metrics in consideration (Lay et al., 2015; Meghanathan,
2017). It is referred to as the product-moment based correlation
as we calculate the deviation of the data points from their mean
value (’mean’ is also referred to as ’first moment’ in statistics)
and use them in the formulation below to calculate the correlation
coefficient. If X and Y are the datasets for two centrality metrics: let
Xi and Yi indicate the centrality values for the individual vertices vi
(1 � i � n, where n is the number of vertices) and X and Y are the
average of the centrality values; PCC(X, Y) is calculated as follows.

PCCðX;YÞ ¼
Pn

i¼1ðXi � XÞðYi � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðXi � XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðYi � YÞ2

q ð3Þ

Fig. 4 illustrates the computation of the Pearson’s correlation
coefficient between the degree centrality and closeness centrality.
In Table 1, we show the range of correlation coefficient values
advocated by Evans (1995) for an ordinal classification of the
strength of correlation. We adopt this range in our paper and as
shown in Table 1, we consider two centrality metrics to exhibit a
strongly positive correlation and very strongly positive correlation
if the correlation coefficient values are 0.6 or above and 0.8 or
above respectively.



Fig. 3. Decay Centrality of the Vertices in an Example Graph.

Fig. 4. Sample Illustration of the Computation of the Pearson’s Correlation Coefficient between Degree Centrality and Closeness Centrality.

Table 1
Range of Correlation Coefficient Values for the Level of Correlation (adapted from
Evans Evans, 1995).

Range of Correlation
Coefficient

Level of
Correlation

Range of Correlation
Coefficient

Level of
Correlation

0.80 to 1.00 Very Strong
Positive

�1.00 to �0.80 Very Strong
Negative

0.60 to 0.79 Strong
Positive

�0.79 to �0.60 Strong
Negative

0.40 to 0.59 Moderate
Positive

�0.59 to �0.40 Moderate
Negative

0.20 to 0.39 Weak
Positive

�0.39 to �0.20 Weak
Negative

0.00 to 0.19 Very Weak
Positive

�0.19 to �0.01 Very Weak
Negative
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4. d-space for DEG-DEC–CLC correlation and hypothesis

Fig. 5 displays the Pearson’s correlation coefficient values
between each of the two centrality metrics (DEG and CLC) and
the decay centrality values (DECd) computed for different values
of the decay parameter d ranging from 0.01 to 0.99 for the example
graph of Figs. 1–4. We see PCC(DECd, DEG) to monotonically
decrease with increase in d and PCC(DECd, CLC) to monotonically
decrease with decrease in d. A similar trend is also noticed for all
the 48 real-world network graphs analyzed in Section 6. Using this
as the basis, we define the d-spacer for a real-world network with
respect to a particular level of correlation (r) as the difference
between the maximum d value for which we observe the DEC,
DEG correlation at the particular level and the minimum d value
for which we observe the DEC, CLC correlation at the same level.

d-spacer for a particular level of correlation (r) basically quanti-
fies the range of values in the closed interval [ dDEC;CLCmin;r , dDEC;DEGmax;r ] that
could be chosen from the open interval (0, 1) to determine decay
centrality values that exhibit the particular level of correlation (r)
with both degree and closeness centralities. Quantitatively, d-
spacer is defined as follows (see formulations 4 and 5 below),
where e corresponds to the level of precision used for d in the range
(0, 1). Note that d-spacer could be determined for any value of the
Pearson’s correlation coefficient or level of correlation of interest.
In this paper, e = 0.01 and r e (vs + � d � 0.8 or s + � d � 0.6).

d� spacer ¼ dDEC;DEGmax;r � dDEC;CLCmin;r þ e if dDEC;CLCmin;r 6 dDEC;DEGmax;r ð4Þ

d� spacer ¼ dDEC;DEGmax;r � dDEC;CLCmin;r if dDEC;CLCmin;r > dDEC;DEGmax;r ð5Þ

Note that if dDEC;CLCmin;r ¼ dDEC;DEGmax;r , it implies there is one d value (d =

dDEC;CLCmin;r ¼ dDEC;DEGmax;r ) for which DECd would exhibit the targeted level

of correlation (r) with both DEG and CLC. If dDEC;CLCmin;r < dDEC;DEGmax;r , there



Fig. 5. Distribution of the Pearson’s Correlation Coefficient Values between Decay Centrality and the Two Centrality Metrics (Degree Centrality and Closeness Centrality) vs.
the Decay Parameter d for the Example Graph of Figs. 1–4.
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might be more than one d value that could be chosen from the
closed interval [ dDEC;CLCmin;r , dDEC;DEGmax;r ]; hence, we add the precision level

e in the formulation for d-spacer when dDEC;CLCmin;r 6 dDEC;DEGmax;r . On the

other hand, if dDEC;CLCmin;r > dDEC;DEGmax;r , it implies there is not even one sin-
gle d value for which DECd would exhibit the particular level of cor-
relation (r) with both DEG and CLC. Hence, we do not add the
precision level e in the d-spacer formulation for dDEC;CLCmin;r > dDEC;DEGmax;r .

Among the d values shown in Fig. 5, the largest d value for
which PCC(DECd, DEG) � 0.80 is dDEC;DEGmax;rP0:8 ¼ 0:80 and the smallest

d value for which PCC(DECd, CLC) � 0.80 is dDEC;CLCmin;rP0:8 ¼ 0:03. Hence,
the d-spacer for a very strongly positive DEG-DEC-CLC correlation
for the example graph is dDEC;DEGmax;rP0:8 � dDEC;CLCmin;rP0:8 þ e = 0.80–0.03
+ 0.01 = 0.78. Statistically, 0.78 is the probability for observing
the decay centrality of the vertices (computed for a randomly cho-
sen value of d) to exhibit a very strongly positive correlation with
both degree centrality and closeness centrality. Note that 0.78 is
also PCC(DEG, CLC) for the example graph (computed in Fig. 4).

As the largest value for d-spacer is based on the closed interval
[0+e, 1�e ] and the d values are from the open interval (0, 1), the
d-spacer value for a real-world network would directly correspond
to the probability with which the decay centrality of the vertices
computed for a randomly chosen d value from the range (0, 1)
would exhibit the particular level of correlation (r) with both
degree centrality and closeness centrality.

Hypothesis: As larger the d-spacer value for a real-world net-
work, larger the probability for observing a correlation level r
between DEC, DEG and DEC, CLC, we hypothesize that the Pear-
son’s correlation coefficient between degree centrality and close-
ness centrality PCC(DEG, CLC) for a particular real-world network
would be very strongly correlated with the d-spacer for that net-
work (for both the strongly and very strongly positive levels of cor-
relation) and claim that one could use the PCC(DEG, CLC) value of a
real-world network to predict the d-spacer value for the real-world
network.
5. Real-world networks

In this section, we introduce the 48 real-world networks (see
Table 2) analyzed in this paper (the three character code acronym,
name and the network type) and tabulate the values for the num-
ber of nodes and edges as well as the average node degree (kavg)
and spectral radius ratio for node degree (ksp). All the real-world
networks are modeled as undirected graphs. The spectral radius
ratio for node degree (Meghanathan, 2014) is a measure of the
variation in node degree and is calculated as the ratio of the prin-
cipal eigenvalue (Bonacich, 1987) of the adjacency matrix of the
graph to that of the average node degree. The spectral radius ratio
for node degree is independent of the number of vertices and the
actual degree values for the vertices in the graph. The spectral
radius ratio for node degree is always greater than or equal to 1;
the farther is the ratio from the value of 1, the larger the variation
in node degree. The spectral radius ratio for node degree for the
real-world network graphs analyzed in this paper ranges from
1.01 to 5.51 (indicating that the real-world network graphs ana-
lyzed range from random networks (Renyi, 1959) with smaller
variation in node degree to scale-free networks (Barabasi and
Albert, 1999) of larger variation in node degree).

The networks considered cover a broad range of categories (as
listed below along with the number of networks in each category):
Acquaintance network (12), Friendship network (9), Co-appearance
network (6), Employment network (4), Citation network (3), Collab-
oration network (3), Literature network (3), Political network (2),
Biological network (2), Game network (2), Transportation network
and Trade network (1 each). A brief description about each category
of networks is as follows: An acquaintance network is a kind of social
network in which the participant nodes slightly (not closely) know
each other, as observed typically during an observation period. A
friendship network is a kind of social network in which the partici-
pant nodes closely know each other and the relationship is not cap-
tured over an observation period. A co-appearance network is a
network typically extracted from novels/books in such a way that
two characters or words (modeled as nodes) are connected if they
appear alongside each other. An employment network is a network
in which the interaction/relationship between people is primarily
due to their employment requirements and not due to any personal
liking. A citation network is a network in which two papers (nodes)
are connected if one paper cites the other paper as reference. A col-
laboration network is a network of researchers/authors who are
listed as co-authors in at least one publication. A biological network
is a network that models the interactions between genes, proteins,
animals of a particular species, etc. A political network is a network
of entities (typically politicians) involved in politics. A game
network is a network of teams or players playing for different teams
and their associations. A literature network is a network of
books/papers/terminologies/authors (other than collaboration,
citation or co-authorship) involved in a particular area of literature.
A transportation network is a network of entities (like airports and



Table 2
Real-World Networks used in the Correlation Analysis.

# Net. Net. Description Ref. Network Type ksp #nodes #edges kavg

1 ADJ Word Adjacency Network Newman, September 2006 Co-appearance Net. 1.73 112 425 7.589
2 AKN Anna Karnenina Network Knuth, 1993 Co-appearance Net. 2.48 140 494 7.057
3 JBN Jazz Band Network Geiser and Danon, 2003 Employment Net. 1.45 198 2742 27.697
4 CEN C. Elegans Neural Network White et al., 1986 Biological Net. 1.68 297 2148 14.465
5 CLN Centrality Literature Net. Hummon et al., 1990 Citation Net. 2.03 118 613 10.39
6 CGD Citation Graph Drawing Net Biedl and Franz, 2001 Citation Net. 2.24 259 640 4.942
7 CFN Copperfield Network Knuth, December 1993 Co-appearance Net. 1.83 89 407 9.146
8 DON Dolphin Network Lusseau et al., 2003 Acquaintance Net. 1.40 62 159 5.129
9 DRN Drug Network Lee, 2004 Acquaintance Net. 2.76 212 284 2.679
10 DLN Dutch Literature 1976 Net. de Nooy, 1999 Literature Net. 1.49 37 81 4.378
11 ERD Erdos Collaboration Net. Batagelj and Mrvar, 2006 Collaboration Net. 3.00 433 1314 6.069
12 FMH Faux Mesa High School Net Resnick et al., 1997 Friendship Net. 2.81 147 202 2.748
13 FHT Friendship in Hi-Tech Firm Krackhardt, 1999 Friendship Net. 1.57 33 91 5.515
14 FTC Flying Teams Cade Net. Moreno, 1960 Employment Net. 1.21 48 170 7.083
15 FON US Football Network Girvan and Newman, 2002 Game Net. 1.01 115 613 10.661
16 CDF College Dorm Fraternity Net Bernard et al., 1980 Acquaintance Net. 1.11 58 967 33.345
17 GD96 Graph Drawing 1996 Net Batagelj and Mrvar, 2006 Citation Net. 2.38 180 228 2.533
18 MUN Marvel Universe Network Gleiser, 2007 Co-appearance Net. 2.54 167 301 3.605
19 GLN Graph Glossary Network Batagelj and Mrvar, 2006 Literature Net. 2.01 67 118 3.522
20 HTN Hypertext 2009 Network Isella et al., 2011 Acquaintance Net. 1.21 115 2164 37.635
21 HCN Huckleberry Coappear. Net. Knuth, 1993 Co-appearance Net. 1.66 76 302 7.947
22 ISP Infectious Socio-Patterns Net Isella et al., 2011 Acquaintance Net. 1.69 309 1924 12.453
23 KCN Karate Club Network Zachary, 1977 Acquaintance Net. 1.47 34 78 4.588
24 KFP Korea Family Planning Net. Rogers and Kincaid, 1980 Acquaintance Net. 1.70 37 85 4.595
25 LMN Les Miserables Network Knuth, 1993 Co-appearance Net. 1.82 77 254 6.597
26 MDN Macaque Dominance Net. Takahata, 1991 Biological Net. 1.04 62 1167 37.645
27 MTB Madrid Train Bombing Net. Hayes, 2006 Acquaintance Net. 1.95 64 295 9.219
28 MCE Manufact. Comp. Empl. Net. Cross et al., 2004 Employment Net. 1.12 77 1549 40.23
29 MSJ Soc. Net. Journal Co-authors McCarty and Freeman, 2008 Co-author Net. 3.48 475 625 2.632
30 AFB Author Facebook Network - Friendship Net. 2.29 171 940 10.994
31 MPN Mexican Political Elite Net. Gil-Mendieta and Schmidt, 1996 Political Net. 1.23 35 117 6.686
32 MMN ModMath Network Batagelj and Mrvar, 2006 Friendship Net. 1.59 30 61 4.067
33 NSC Net. Science Co-author Net. Newman, September 2006 Co-author Net. 5.51 1,589 2,743 3.45
34 PBN US Politics Books Network Krebs, 2003 Literature Net. 1.42 105 441 8.4
35 PSN Primary School Contact Net. Gemmetto et al., 2014 Acquaintance Net. 1.22 238 5539 46.546
36 PFN Prison Friendship Network MacRae, 1960 Friendship Net. 1.32 67 142 4.239
37 SJN San Juan Sur Family Net. Loomis et al., 1953 Acquaintance Net. 1.29 75 155 4.133
38 SDI Scotland Corp. Interlock Net Scott, 1980 Employment Net. 1.94 230 359 3.122
39 SPR Senator Press Release Net. Grimmer, 2010 Political Net. 1.47 92 477 10.37
40 SWC Soccer World Cup 1998 Net Batagelj and Mrvar, 2006 Game Net. 1.45 35 118 6.743
41 SSM Sawmill Strike Comm. Net. Michael, 1997 Acquaintance Net. 1.22 24 38 3.167
42 TEN Taro Exchange Network Schwimmer, 1973 Acquaintance Net. 1.06 22 39 3.545
43 TWF Teenage Female Friend Net. Pearson and Michell, 2000 Friendship Net. 1.59 47 77 3.277
44 UKF UK Faculty Friendship Net. Nepusz et al., 2008 Friendship Net. 1.35 83 578 13.928
45 APN US Airports 1997 Network Batagelj and Mrvar, 2006 Transportation Net. 3.22 332 2126 12.807
46 RHF Residence Hall Friend Net. Freeman et al., 1998 Friendship Net. 1.27 217 1839 16.949
47 WSB Windsurfers Beach Network Freeman et al., 1989 Friendship Net. 1.22 43 336 15.628
48 WTN World Trade Metal Network Smith and White, 1992 Trade Net. 1.38 80 875 21.875
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their flight connections) involved in public transportation. A trade
network is a network of countries/people involved in certain trade.
6. Results of correlation analysis

We now present in detail the results of correlation analysis con-
ducted between decay centrality (DECd computed for d = 0.01, . . .,
0.99, in increments of 0.01) and the degree centrality and closeness
centrality metrics for each of the 48 real-world networks. In pur-
suit of validating our hypothesis, we first determine the two values
dDEC;DEGmax;r and dDEC;CLCmin;r for each real-world network (see Table 3) with
respect to the two levels of correlation (strongly positive: r � 0.6
and very strongly positive: r � 0.8). Table 3 also lists the d-spacer
values (calculated as per the discussion in Section 4) for each
real-world network with respect to the two levels of correlation.

Fig. 6 plots the sorted values of d-spacer for the two levels of cor-
relation. The median value of d-spacer is 0.52 for r � vs+(very
strongly positive correlation) and 0.99 for r � s+(strongly positive
correlation). Fig. 7 plots the distribution of the d-spacer�vs+ values
and the d-spacer�s+ values: we observe real-world networks that
had a d-spacer�s+ of 0.99 end up having d-spacer�vs+ ranging from
0 to 0.99. With respect to the strongly positive level of correlation,
about 30 of the 48 real-world networks (close to about 2/3rds of
the networks) had a d-spacer�s+ of 0.99 and only one of the 48
real-world networks had a negative value for d-spacer�s+. On the
other hand, with respect to the very strongly positive level of cor-
relation, only 14 of the 48 real-world networks had a d-spacer�vs+ of
0.99, and 12 of the 48 real-world networks (25% of the networks)
had a negative value for d-spacer�vs+.

Fig. 8 plots the d-spacer�s+ values of the real-world networks
and the difference between the d-spacer�s+ and d-spacer�vs+ values
(d-spacer�s+ � d-spacer�vs+), in the decreasing order of the differ-
ence (i.e., networks for which the difference in the d-spacer values
is larger appears on the left and networks for which the difference
in the d-spacer values is closer to 0 or equal to 0 appear on the
right). Though real-world networks with d-spacer�s+ values of
0.99 also suffered a larger drop in the case of the d-spacer�vs+ val-
ues, we observe a majority of the real-world networks that suffered
a larger drop in the d-spacer�vs+ values are those that already had a



Table 3
d-spacer for Strongly Positive and Very Strongly Positive DEG-DEC-CLC Correlation.

The color shade is to illustrate the networks for which the delta-space is negative.
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lower d-spacer�s+ value. It is evident from Table 3 that 11 of the 12
real-world networks for which d-spacer�vs+ is negative are those
networks for which d-spacer�s+ is less than 0.5.

6.1. Statistical property: Actual d-space vs. probability of observing a
particular level of DEG-DEC-CLC correlation

In this sub section, we show that the d-spacer for a real-world
network with respect to a particular level of correlation (r) corre-
sponds to the probability that the real-world network would exhi-
bit the particular level of correlation between DECd and DEG as
well as between DECd and CLC for the DEC values determined using
a randomly chosen value of d in the range (0, 1). For each
real-world network, we computed the DECd values using hundred
randomly chosen values of d in the range (0, 1). For each of these
hundred sets of DECd values, we computed the Pearson’s correla-
tion coefficient between the DECd values and the DEG values of
the vertices as well as between the DECd values and the CLC values
of the vertices. We determined the fraction of these hundred sets of
DECd values that exhibited strongly positive and very strongly pos-
itive correlations with each of DEG and CLC metrics. Fig. 9 presents
a plot of the actual d-spacer values for the real-world networks vs.
the probability for observing the particular level of DEG-DEC-CLC
correlation using a randomly chosen value of the decay parameter



Fig. 6. Plot of the Sorted Values of d-spacer for Strongly Positive and Very Strongly
Positive DEG-DEC-CLC Correlation.

Fig. 7. Distribution of the d-spacer Values for Strongly Positive DEG-DEC-CLC
Correlation vs. and d-spacer Values for Very Strongly Positive DEG-DEC-CLC
Correlation.

Fig. 8. d-spacer�s+ Values and Difference between the d-spacer�s+ Values and d-
spacer�vs+ Values (in the decreasing order of the difference).
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d. We observe a very close coincidence between the two values for
all the real-world networks as all the data points lie close to the
diagonal line for both the strongly positive and very strongly pos-
itive levels of correlation. The small difference (between the actual
d-spacer and the probability of observing a particular level of corre-
lation, r) could be attributed to the randomness associated with the
hundred randomly chosen d values. For real-world networks with a
negative d-spacer, we notice the probability for observing the par-
ticular level of correlation (r) is zero. The median of the probability
for observing strongly positive level of DEG-DEC-CLC correlation is
1.0 (closer to the actual median value of 0.99) and the probability
for observing very strongly positive level of correlation is 0.53 (clo-
ser to the actual median value of 0.52).

6.2. Validation of hypothesis: Actual DEG, CLC Pearson’s correlation
coefficient vs. predicted d-spacer for DEG-DEC-CLC correlation

Since larger d-spacer corresponds to a larger probability for
observing the particular level of correlation (r) between DEC, DEG
andDEC,CLCmetrics,wehypothesize that larger d-spacerwould also
correspond to a larger value for the Pearson’s correlation coefficient
betweenDEG and CLCmetrics (a kind of transitive relationship) and
vice versa. Hence, we claim that the d-spacer value for a real-world
network could be predicted using the Pearson’s correlation coeffi-
cient betweenDEG and CLC. Figs. 10–11 corroborate our hypothesis.
We build individual linear models between the actual PCC(DEG,
CLC) values (as the predictor variable) and the actual d-spacer�s+ val-
ues as well as the actual d-spacer�vs+ values (both as the predicted
variables). The linear models are shown in Eqs. (6) and (7). Notice
the R2 values for the linear correlations (6) and (7) are significantly
high, validating our hypothesis. Fig. 11 presents the distribution of
the actual d-spacer�s+ and d-spacer�vs+ values vs. the predicted
d-spacer�s+ and d-spacer�vs+ values using the actual PCC(DEG, CLC)
values for the real-world networks substituted in the linear correla-
tions (6) and (7).

d� spacer�sþ ¼ 1:0617�PCCðDEG;CLCÞ þ 0:0693; R2 ¼ 0:8499

ð6Þ

d� spacer�vsþ ¼ 1:5780�PCCðDEG;CLCÞ � 0:5959; R2 ¼ 0:8916

ð7Þ
In Fig. 11, we observe a majority of the predicted d-spacer�vs+

values to be slightly larger than the actual d-spacer�vs+ values; this
could be also inferred from the median of the predicted d-spacer�vs+

values (0.55) being slightly larger than the median of the actual d-
spacer�+ values (0.52). In the case of strongly positive correlation,
we observe that for 14 of the 30 real-world networks (for which
the actual d-spacer�s+ values are 0.99), the predicted d-spacer�s+ val-
ues are greater than 0.99 (the values are as large as 1.12); however,
the median of the predicted d-spacer�s+ values is still 0.99 (same as
the median of the actual d-spacer�s+ values).

6.3. Degree centrality: Bottleneck centrality metric for lower positive
d-spacer�vs+ values

Fig. 12 presents the real-world networks in the decreasing order
of the d-spacer�vs+ values, wherein 0 < d-spacer�vs+ < 0.99 (there are
22 such real-world networks out of the total of 48). With this fig-
ure, we are able to analyze which of the two centrality metrics
(DEG or CLC) is a bottleneck metric that prevents the d-spacer�vs+

values from being the maximum value of 0.99. We observe
dDEC;CLCmin;rP0:8 to be less than 0.20 for 17 of the 22 real-world networks
(implying the closeness centrality metric provided the opportunity
for d-spacer�vs+ to be 0.80 or above for 17 of the 22 real-world net-
works for which d-spacer�vs+ <0.99) whereas dDEC;DEGmax;rP0:8 is greater
than 0.80 for only 3 of the 22 real-world networks that are of inter-
est in this case (implying the degree centrality metric provided the
opportunity for d-spacer�vs+ to be 0.80 or above for only 3 of the 22
real-world networks for which d- spacer�vs+ <0.99). Hence, it is
obvious that the relatively lower d- spacer�vs+ values (vis-a-vis
the d-spacer�s+ values) is due to the reduced range of d values for
which the decay centrality metric exhibits a very strong positive
correlation with the degree centrality metric.



                  (a) Strongly Positive Correlation                          (b) Very Strongly Positive Correlation 

Fig. 9. Probability for Observing Strongly Positive or Very Strongly Positive DEG-DEC-CLC Correlation vs. the Actual d-spacer�s+ Values and d-spacer�vs+ Values.

                  (a) Strongly Positive Correlation                          (b) Very Strongly Positive Correlation 

Fig. 10. Pearson’s Correlation Coefficient between DEG and CLC vs. the Actual d-spacer�s+ Values and the Actual d-spacer�vs+ Values.

                  (a) Strongly Positive Correlation                          (b) Very Strongly Positive Correlation 

Fig. 11. Actual {d-spacer�s+, d-spacer�vs+} Values vs. Predicted {d-spacer�+, d-spacer�vs+} Values.
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6.4. Impact of topological measures on d-spacer�vs+ values

We identified a total of six topological measures that could be
potential drivers for the d-spacer�vs+ values of the real-world net-
works. The six topological measures considered are: Spectral
radius ratio for node degree (ksp(k)), Average component size, Alge-
braic connectivity (ALGC), Graph modularity (Gm), Graph density
(Gd) and Degree-based Assortativity index (A. Indexk). We identified
a total of 26 real-world networks (among the 48 real-world net-
works) that either had d-spacer�vs+ values of 0.99 (there are 14 such



Fig. 12. Real-World Networks in the Decreasing Order of d-spacer�vs+ Values (0 < d-spacer�vs+ < 0.99).
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networks) or negative d-spacer�vs+ values (there are 12 such net-
works). We plotted (in Fig. 13) the values incurred for each of
the above six topological measures vs. the actual d-spacer�vs+ val-
ues and use these plots to analyze the impact of the topological
measures on the d-spacer�vs+ values.

From Fig. 13-a, we observe that all the 14 real-world networks
with d-spacer�vs+ values of 0.99 have ksp(k) values less than 1.5. On
the other hand, all the 12 real-world networks with negative d-
spacer�vs+ values had ksp(k) values above 1.5, and 7 of these 12 net-
works had ksp(k) values above 2.0. Note that ksp is a measure of
variation in node degree and is greater than or equal to 1.0. The
closer the ksp value to 1.0: the degree centrality of the nodes are
comparable to each other (similar to the case of random networks).
On the other hand, farther the ksp value from 1.0, there could exist



         (a) Spectral Radius Ratio for Node Degree                              (b) Average Component Size 

                        (c) Algebraic Connectivity                                              (d) Graph Modularity 

                                (e) Graph Density                                     (f) Degree-based Assortativity Index 

Fig. 13. Impact of Various Topological Measures for Real-World Networks with Negative d-spacer�vs+ Values and d-spacer�vs+ Values of 0.99.
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one or more nodes (like hubs) whose degree centrality might be
appreciably larger than the rest of the nodes (characteristic of
scale-free networks with preferential attachment). From the above
observations, we could conclude that real-world networks with
larger variation in node degree (i.e., real-world networks that exhi-
bit scale-free properties) are more likely to exhibit a negative d-
spacer�vs+ value (i.e., there would not be even a single value for
the decay parameter d for which the DECd metric would exhibit a
very strongly positive correlation with the DEG and CLC metrics).

We measure the average component size for a real-world net-
work as the total number of nodes in the network divided by the
number of components (a component is the largest connected set
of vertices) in the network. From Fig. 13-b, we observe real-
world networks with negative d-spacer�vs+ values to more likely
have a lower average component size (median: 15.5) compared
to real-world networks with d-spacer�vs+ values of 0.99 (median:
72). Thus, for networks with smaller component size, the correla-
tion between DEG and DECd and the correlation between CLC and
DECd appear to be relatively more sensitive to the d values. In other
words, for networks with smaller component size, it is difficult to
find a range of d values for which both the DEG- DECd and CLC-
DECd correlations would be very strong.

The algebraic connectivity (ALGC) Fiedler, 1973 of a network is
the second smallest eigenvalue of the Laplacian matrix (Mohar,
1992) of the network graph. For any two different vertices i and
j, an entry (i, j) in the Laplacian matrix is 0 if there is no edge
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between i and j and -1 if there is an edge between i and j. For a ver-
tex i, an entry (i, i) in the Laplacian matrix is -ki, where ki is the
degree of vertex i. The algebraic connectivity of a network is a
quantitative measure of the strength of connectivity of the net-
work with respect to link removals (Meghanathan, 2016).
Fig. 13-c indicates that real-world networks with negative d-
spacer�vs+ values have significantly smaller ALGC values (median:
0.10) compared to the ALGC values (median: 1.38) of networks
with d-spacer�vs+ values of 0.99. None of the 12 real-world net-
works with negative d-spacer�vs+ values have ALGC above 0.75;
whereas, 10 of the 14 real-world networks with d-spacer�vs+ values
of 0.99 have ALGC above 0.75.

The modularity of a network is a quantitative measure of the
strength of the division of the network into communities or mod-
ules (Newman, 2006). The modularity score for a network ranges
from [�0.5, . . ., 1); networks with larger modularity have dense
connections among the nodes within a community and sparse con-
nections between the nodes across communities. We use the Gephi
software (Bastian et al., 2009) to compute the modularity scores of
the 48 real-world networks studied in this research. The Gephi
software uses the well-known randomization method (Newman,
2006) to compute the modularity score for a network. From
Fig. 13-d, we observe that 9 of the 12 real-world networks with
negative d-spacer�vs+ values had modularity above 0.5 (with the
median being 0.65), whereas 13 of the 14 real-world networks
with d-spacer�vs+ values of 0.99 had modularity less than 0.5 (with
the median being 0.25). The negative d-spacer�vs+ values for
real-world networks with larger modularity scores vindicate the
scarcity of edges connecting two different communities in such
networks and highlights the difficulty in observing stronger corre-
lation between the three centrality metrics (DEG, DEC and CLC).

Fig. 13-e clearly indicates that the density of the real-world net-
works (median: 0.05) with negative d-spacer�vs+ values are likely to
be lower than the density of the networks (median: 0.19) with d-
spacer�vs+ values of 0.99. This observation coincides with the earlier
observations made for graphs with lower algebraic connectivity as
well as for those with higher modularity (note that networks with
high modularity need not be dense overall due to the scarcity of
links connecting any two communities). We measure the density
of a graph as the ratio of the actual number of edges to that of
the maximum possible number of edges (considering that there
could be an edge between any two vertices) in the graph.

The assortativity index (A. Index) of a network (Newman, 2002)
is a quantitative measure of the extent of similarity between the
end vertices of the edges with respect to a node-level metric (typ-
ically measured on the basis of the degree of the vertices). The
degree-based A. Index (A. Indexk) Newman, 2002 of a network is
computed as the Pearson’s correlation coefficient (ranges from
�1 to 1) of the degree values of the end vertices of the edges in
the network. Networks with A. Index values closer to 1 (or �1)
are considered to be assortative (or dissortative). Networks with
A. Index values closer to 0 are considered to be neutral with respect
to the node-level metric used to compute the correlation coeffi-
cient. We observe real-world networks with negative d-spacer�vs+

values to more likely have a larger A. Indexk value (median: 0.13)
compared to real-world networks with d-spacer�vs+ values of 0.99
(median: 0.00). In other words, we opine that assortative real-
world networks are more likely to have lower d-spacer�vs+ values
compared to networks that are either neutral or dissortative.
7. Conclusions and future work

Our paper is innovative on the following lines: We analyze real-
world networks rather than the simulated random networks. We
use the Pearson’s correlation measure to study the correlation
between the actual centrality values rather than multinomial logis-
tic regression (Greene, 2011) to study the sets of vertices that had
the largest values of centrality. For all the 48 real-world networks
(of spectral radius ratio for node degree ranging from 1.01 to 5.51)
analyzed, we observe the Pearson’s correlation coefficient (PCC)
between the decay centrality (DEC) and the degree centrality
(DEG) to decrease with increase in the decay parameter d and
the Pearson’s correlation coefficient between DEC and closeness
centrality (CLC) to decrease with decrease in d. Such a trend of vari-
ation of the Pearson’s correlation coefficient involving DEC, DEG
and CLC on the basis of the decay parameter has not been reported
in the literature until now.

Unlike the observation for random networks in Tsakas (2016),
for each of the 48 real-world networks studied in this paper: we
observe two different d values below which or above which the
decay centrality metric exhibits a particular level of correlation
(r) with the DEG or CLC metrics respectively. We make use of this
observation and propose the notion of d-spacer (r � 0.6 for strongly
positive correlation and r � 0.8 for very strongly positive correla-
tion) as the difference between the maximum d value for which
DECd exhibits the particular level of correlation (r) with DEG and
the minimum d value for which DECd exhibits the same level of
correlation with CLC. We hypothesize the existence of a transitive
relationship (i.e., if PCC(DEG, DECd) � r and PCC(DECd, CLC) � r,
then PCC(DEG, CLC) is more likely to be � r) between DEG and
CLC and show that we could use the PCC(DEG, CLC) value observed
for a real-world network to predict the d-spacer value for the net-
work. We also analyze the impact of various topological measures
on the d-spacer�vs+ values of the real-world networks. We observe
real-world networks are more likely to incur negative d-spacer�vs+

values (rather than incur d-spacer�vs+ values of 0.99) under one or
more of the following topological conditions: larger variation in
node degree, more assortativeness with respect to node degree,
lower connectivity, higher graph modularity, lower graph density,
or lower component size.

As part of future work, we will investigate the relationship
between d-spacer and the Pearson’s correlation coefficient observed
between decay centrality and the computationally-heavy metrics
such as eigenvector centrality and betweenness centrality. We also
plan to investigate whether the monotonically decreasing/increas-
ing trend (observed in real-world networks) for the Pearson’s cor-
relation coefficient involving decay centrality and the degree
centrality/closeness centrality metrics is also observed for net-
works simulated from theoretical models.
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