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In this paper, we address the problem of tracking an object with pose and appearance changes, under
possible occlusions by presenting an effective way to embed the texture information provided by the
Local Binary Pattern (LBP), Local Ternary Pattern (LTP) and the Complete Local Binary Pattern (CLBP) in
the mean shift framework. We combine the information of color distribution with variants of Local
Binary Pattern texture for the purpose of robust tracking. Four adaptive scale and orientation mean shift
trackers are proposed; the LBP_MS, LTP_MS, CLBP_MS1 and the CLBP_MS2. The last tracker can handle
both textured and non-textured objects, and deals with the specific weaknesses of motion trackers, such
as failures under specific conditions. As it can exploit more of the image information, we use seven public
videos that contain a variety of challenges to illustrate the accuracy of the proposed approaches. The
trackers successfully cope with fast moving objects, target scale and orientation changes, and prove to
be more stable and less prone to drift away from the target than purely colored or feature-based ones.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As tracking applications become pervasive in our daily lives,
considerable research has focused on video based motion tracking
to minimize human intervention, Sridhar et al. (2015), Sliti et al.
(2014a), Du et al. (2013) and Wu et al., 2015. This topic attracts
the interest of many fields in the industry, and is necessary in
the development of driving assistance systems and many house-
hold technologies, Zhang et al. (2014) and Henriques et al.
(2015). All tracking applications require high accuracy, especially
in the presence of a dynamic background, and it should be per-
formed in a way, which deals with occlusion, cluttering, object
merging or splitting and other complicated events related to the
moving targets. Besides, the algorithms should also overcome the
limitations of scaling problems when the object expands or shrinks
its scale.

The tracking methods must have a low computational complex-
ity, because, the tracking systems are often devoted for high-level
tasks, such as semantic interpretation and target recognition. In
order to deal with all these problems, the intuitive idea is to choose
a tradeoff between the target model in the previous frame and the
target candidate corresponding to the current object appearance.

Essentially, the mean shift algorithm meets our requirements
since it optimally estimates the target information from current
measurements and previous states. It is employed in the tracking
algorithm by measuring the similarity based on the Bhattacharyya
coefficient of the target model and the target candidate in consec-
utive frames, Singh and Mishra (2011). The mean shift process is
based on finding local maxima of the density function from a given
discrete data sample by sweeping a search window over the frame.
In fact, there are plenty of approaches that employ the mean shift
algorithm in object tracking systems. The representation of the tar-
get model and candidate are mainly based on color and are
described in each frame by its color histogram, Ju et al. (2010)
and Ning et al. (2012).

Indeed, in order to cope with different circumstances, we
should take advantage of multiple image properties, as none of
them alone provides invariance from different imaging conditions.
We suggest joining a variety of Local Binary Pattern (LBP and LTP)
texture to the color feature in order to enhance the target repre-
sentation within the adaptive scale and orientation mean shift
framework. Thereafter, we propose to use the Complete Local Bin-
ary Pattern (CLBP) texture proposed in Guo et al. (2010), within
two schemes; the first proposed method called CLBP_MS1
describes the target by using only the CLBP operator, (the color
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information in the mean shift framework is replaced), while in the
CLBP_MS2 representation we propose to combine the Complete
Local Binary Pattern (CLBP) texture and color features. In this paper
CLBP_MS2 is presented under the mean shift framework and
proves to be a robust scale and orientation adaptive mean shift
tracking algorithm. In fact, by using these two properties of color
and texture the performance of our trackers is enhanced and
becomes more robust against the large variation of data common
in sequences acquired under unconstrained conditions.

This paper is organized as follows: in Section 2, we review some
of the most influential tracking algorithms based on the mean shift
framework. Section 3 reviews the adaptive scale and orientation-
based mean shift tracker, while Section 4, describes the proposed
methods: LBP_MS, LTP_MS, CLBP_MS1 and CLBP_MS2, using the
new feature extraction embedded into the mean shift based track-
ing system. Experimental results and discussion are presented in
Section 5 followed by the conclusion in Section 6.
2. Related work

There are a large number of object tracking methods relying on
the mean shift algorithm. Comaniciu et al. (2000) were the first to
handle the tracking of non-rigid objects from a moving camera by
employing mean shift algorithms. The performance of such
algorithms depends on the separability of the target against the
background. To overcome this problem, the Corrected
Background-Weighted Histogram (CBWH) proposed by Ning
et al. (2012), succeeded in correcting the BWH approach of
Comaniciu et al. (2003), by reducing the prominent influence of
background features in the target candidate calculation. But unfor-
tunately the CBWH cannot handle changes in color and
illumination.

In order to reduce the interference caused by the lighting
changes in the mean shift tracking algorithm, Ju et al. (2010)
describes a fuzzy color histogram given by a self-constructing fuzzy
cluster where the number of color bins generated by the proposed
method depends on the target image. Besides, the mean shift algo-
rithmwas modified to deal with the changing color probability dis-
tributions derived from the frame. This improved version of mean
shift was called CAMShift (Continously Adaptive Mean Shift),
Martin et al. (2010). Unlike the mean shift that deals only with
statistic distributions when searching for a window with a fixed
size, it uses a dynamical search window that continuously adapts
its size (i.e. after every video frame, depending on the size of the tar-
get object). Nevertheless, it supplies robust results only in cases
where there are accurate boundaries that clearly distinguish the
target from the background, and when its colors differ significantly.

Thereafter, Stolkin et al. (2008) proposed a new color based
tracking algorithm named ABCshift (the Adaptive Background
CAMSHIFT) tracker which models the background using Bayesian
probability method. Afterward, Zivkovic et al. (2004) developed
the EM_shift and succeeded in simultaneously estimating the
covariance matrix that describes the approximate shape and the
position of the local mode. Among this wide variety of approaches,
our work is inspired by the proposed scale and orientation adap-
tive mean shift tracking (SOAMST) algorithm, developed by Ning
et al. (2012) regarding the estimation of the scale and orientation
of the target under the mean shift tracking framework. This tracker
has proved to be efficient in solving the problem of how to esti-
mate the scale and orientation changes of the object to track. In
fact, EM_shift and SOAMST use only color information to describe
the model, and in general, the performance of such algorithms
relies heavily on the target representation.

Yet, the lack of spatial information can cause a loss of the target
position under certain conditions, such as similar occlusion and
variation of lightness. Consequently, a more discriminating repre-
sentation of the target is the first step toward an accurate tracking;
thus, our proposed trackers describe the object using two weighted
feature spaces of color and texture, and they benefit of their com-
plementarities to ensure a perfect estimation of its position, scale
and orientation changes of the target.

3. Conventional mean shift algorithm

The scale-orientation adaptive mean shift algorithm is a robust
technique in tracking applications. It is summarized in two
components:

3.1. Target representation

In this section, we review the target representation using the
color histogram in the classical mean shift tracker, Comaniciu
et al. (2003). The target model q̂uof the object being tracked is
defined as:

q̂ ¼ fq̂ugu¼1...m

q̂u ¼ C
Xn
i¼1

kðjjx�i jj2Þd½bðx�i Þ � u�

8><
>: ð1Þ

Likewise the target candidate model p̂y of the candidate region
is defined bellow:

p̂ ¼ fp̂uðyÞgu¼1...m

p̂uðyÞ ¼ Ch

X
i¼1

nhk jj y�xi
h jj2

� �
d½bðxiÞ � u�

8><
>: ð2Þ

With q̂uand p̂uðyÞbeing the probabilities of feature u in q̂and tar-
get candidate p̂ðyÞrespectively, drepresents the Kronecker delta
function, m is the number of feature spaces, fx�i gi¼1...n presents in
(1) the normalized pixel positions in the target region centered
at the original position, and describes in (2) the pixel location in
the target candidate region centered at y in the current frame,
and bðx�i Þ associates the pixel x�i to the histogram bin. Finally, the
constant C and Ch are a normalization function defined respectively
as:

C ¼ 1Pn
i¼1kðjjx�i jj2Þ

; Ch ¼ 1Pnh
i¼1kðjj y�xi

h jj2Þ
ð3Þ

Note that kðxÞ is an isotropic kernel and it attributes smaller
weights to pixels distant from the center. The kernel kðxÞ has a
monotonic and convex decreasing profile, and it is defined as a

function: k : ½0;1Þ ! Rwith kðxÞ ¼ kjjxjj2, Comaniciu et al. (2000).
The similarity between the target model and the target candidate
is computed using the Bhattacharyya coefficient which defines
the correspondence between the two normalized histograms q̂uand
p̂uðyÞ:

q½p̂uðyÞ; q̂u� ¼
Xm
u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂uðyÞq̂u

q
ð4Þ

The scale-orientation adaptive mean-shift tracking algorithm
employs the Bhattacharyya coefficient to estimate the target posi-
tion, scale and orientation. This similarity function takes high val-
ues (close to 1) when the color distribution in the target region (in
the previous frame) is close to the one of the candidate region (in
the current frame). So, if the object and its background have signif-
icantly different color distributions, as the Bhattacharrya coeffi-
cient increases, the target candidate is more and more likely to
capture the actual object in the current frame, Comaniciu et al.
(2003). Consequently, the distance between the target model and
the candidate model is:
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d½p̂ðyÞ; q̂� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q½p̂ðyÞ; q̂�

q
ð5Þ
3.2. Target localization

The minimization of the distance (5) between p̂ðyÞand q̂
requires the maximization of the Bhattacharyya coefficient (4);
thus, Taylor expansion is used to linearly approximate (4) as fol-
lows, Comaniciu et al. (2000):

q½p̂ðyÞ; q̂� � 1
2

Xm
u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂uðy0Þq̂u

q
þ 1
2
Ch

X
i¼1

nhxikðjj y� xi
h

jj2Þ ð6Þ

where y0 is the position in the previous frame, and xi is calculated
by:

xi ¼
Xm
u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂u

p̂uðy0Þ

s
d½bðx�i Þ � u� ð7Þ

The weight value given by (7) of a pixel in the target candidate
region describes the probability that it belongs to the target. Thus,
the sum of the weights of all pixels (i.e. the zeroth-order moment)
could be considered as the weighted area of the object to track in
the target candidate region, Ning et al. (2012) and Singh et al.
(2012).M00 is an estimate of the target region and is formally given
by:

M00 ¼
Xn
i¼1

xðxiÞ ð8Þ

Whenever the weights from the target xðxiÞ become bigger, the
estimation error will be significant and vice versa. According to
Ning et al. (2012), Bhattacharyya coefficient could be used to
adjust M00 in estimating the target region, by proposing the equa-
tion below:

A ¼ cðqÞM00 ð9Þ
With cðqÞ as a monotonically increasing function. It is used to

shrink M00 back to the real target scale and defined as:

cðqÞ ¼ exp
q� 1
r

� �
ð10Þ

With ð0 6 q 6 1Þ and the optimal value of r set between 1 and
2, Ning et al. (2012). If q takes approximately the upper bound 1, it
means that the target candidate model approaches the target
model. If it is closer to 0, the candidate model is not identical to
the target one, as cðqÞ becomes very small and M00 enlarges until
it exceeds the target region. Suppose the coordinate of each pixel
in the candidate region is ðxi;1; xi;2Þ, the moments of the candidate
region become, Ning et al. (2012):

M10 ¼
Xnh
i

xixi;1;M01 ¼ umnh
i xixi;2 ð11Þ

M20 ¼
Xnh
i

xix2i;1; M02 ¼
Xnh
i

xix2i;2 ð12Þ

By considering (8) and supposing ð�x1; �x2Þ is the centroid of the
target candidate region, the new location of the target y1 would
be defined by:

y1 ¼ ð�x1; �x2Þ ¼ M10

M00
;
M01

M00

� �
ð13Þ

The ratio of the first-order moment to the zeroth-order moment
y1 describes the position, while the second-order center moment
describes the shape and orientation of the target. Eq. (7) can be
rewritten into the second-order center moment using (8), (11)
and (12):
l20 ¼ M20

M00
� �x21; l11 ¼ M11

M00
� �x1�x2; l02 ¼ M02

M00
� �x21 ð14Þ

To estimate the scale and orientation of the object to track, (14)
is converted to the covariance matrix:

Cov ¼ l20 l11

l11 l02

� �
ð15Þ

Using singular value decomposition (SVD), (15) becomes:

Cov ¼ U � S� TT ¼ u11 u12

u21 u22

� �
� k21 0

0 k22

 !
� u11 u12

u21 u22

� �T

ð16Þ

With U ¼ u11 u12

u21 u22

� �
; S ¼ k21 0

0 k22

� �
; k21 and k22 as the eigenval-

ues of Cov, the two vector ðu11;u21ÞT and ðu12;u22ÞT are the two
main axes of the target in the target candidate area. The target is
represented by an ellipse and the lengths of its semi-minor axis
and semi-major axis are denoted by a and b respectively:

a ¼
ffiffiffiffiffiffiffiffi
k1A
pk2

s
; b ¼

ffiffiffiffiffiffiffiffi
k2A
pk1

s
ð17Þ

After estimating the location, scale and orientation of the target
in the current frame, the following covariance matrix is repre-
sented to define the size of the target candidate in the next frame:

Cov2 ¼ U � ðaþ DdÞ2 0

0 ðaþ DdÞ2
 !

� UT ð18Þ

With Dd is employed to increment the target candidate region
in the next frame. The initial position of the target candidate region
is given by the following ellipse region:

ðx� y1Þ � Cov�1
2 � ðx� y1ÞT 6 1 ð19Þ
4. Proposed method

Several mean-shift tracking algorithms take the color informa-
tion into account for the representation of the target. Although
time-effective, they usually fail when non-rigid objects are consid-
ered, Ning et al. (2012). Mean-shift based on the color discrimina-
tion of the target can be affected by partial occlusions, especially
when the object intended to be tracked and its respective back-
ground have the same color. Besides, nowadays most cameras
use color filters to adjust their white balance and perform some
color corrections based on the global image intensities, which
can dramatically affect accuracy.

To solve these problems, various types of extensions have been
proposed and a large number of authors have improved the proce-
dure either by combining mean-shift with local approaches, Sliti
et al. (2014b) or by introducing an object/background classifica-
tion, Aliabadian et al. (2012), in order to deal with severe
occlusions.

Using variants of the LBP texture, we introduce in this section
four scale-orientation adaptive Mean-Shift tracking algorithms:
LBP_MS, LTP_MS, CLBP_MS1 and CLBP_MS2. We present a careful
combination of color and texture features and show that this
enhances the accuracy of tracking non-rigid objects in highly
dynamic and noisy scenes. The features used for texture analysis
are the traditional LBP, Ojala et al. (1996), the local ternary pattern
LTP, Tan and Triggs (2010), and the Complete Local Binary Pattern
(CLBP), Singh et al. (2012). Our hypothesis is that by integrating
those texture features in the mean shift framework, and later com-
bining it with color features in LBP_MS, LTP_MS, CLBP_MS1 and



Fig. 1. Central pixel p and its circularly neighbors N = 8 with radius R = 1.
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CLBP_MS2, the estimation of the position, scale and orientation
changes of the target will be notably enhanced.

4.1. LBP_MS and LTP_MS

Local Binary Pattern: The LBP operator is well known within
the research area of texture analysis and pattern recognition. Pro-
posed by Ojala et al. (1996), the texture of a region in the frame
could be characterized by the distribution of the LBP. It is an effi-
cient yet simple operator, which describes the spatial structure
of the local texture of an image. This method thresholds P neigh-
bors of each pixel with the center pixel, multiplies the thresholded
values by the binomial weights and concatenates the results to get
the LBP code. Finally, the resulting binary code is assigned to the
center pixel (Fig. 1). Given a pixel in an image, LBP is generated
by comparing it with its neighbors:

LBPN;Rðxc; ycÞ ¼
Xn�1

n¼0

Snðpn � pcÞ2n; Sn ¼ 1; ðpn � pcÞ P 0
0; ðpn � pcÞ < 0

�
ð20Þ

With pc representing the grey value of the central pixel, pn as
the gray value of the neighbors; N and R are the number and the
radius of the neighbors respectively. Assuming that the size of
the image is I � J, the coordinate of pc are ð0; 0Þ and those of pn

are ðRcosð2pn=NÞ;Rsinð2pn=NÞÞ. The LBP texture is generated by
building a histogram:

HðTÞ ¼
XI

i¼1

XJ

j¼1

f ðLBPN;Rði; jÞ; TÞ; T 2 ½0; T�; f ðx; yÞ ¼ 1; x ¼ y

0;otherwise

�

ð21Þ
where T is the maximal LBP code value. Essentially, in areas with a
frame of a nearly uniform appearance, the gray values of the central
pixel and its neighbors are very close. Thus, the LBP operator leads
to a paltry description of the target. By replacing the term in the LBP
operator snðpn � pcÞ in (19) with snðpn � pc þ aÞ, Heikkilä and
Pietikäinen (2006) succeed in modifying the thresholding strategy,
which makes the LBP more discriminant. In order to hold the
robustness of the LBP operator, the value of ðaÞ should be relatively
small.

Local Ternary Pattern LTP: The success of LBP operators in
diverse computer vision applications has inspired researchers to
develop different variants. Due to its flexibility, a generalization
of the Local Ternary Patterns (LTP) descriptor has been invented.
In order to build a new texture operator, Tan and Triggs (2010)
were the first to propose this feature; which is a simple extension
of the binary pattern to 3-valued pattern codes. As in LBP, a
3� 3neighborhood around the center pixel in the frame is consid-
ered, the mathematical expression of the LTP is described as
follows:

LTPN;R ¼
XN�1

n¼0

sðpn�pcÞ2n; sðxÞ¼
1;xP ðpn�pc þ tÞ:
0;ðpn�pc� tÞ< x< ðpn�pcþ tÞ:
�1;x< ðpn�pc� tÞ:

8><
>:

ð22Þ
With t representing a user-defined threshold. In LTP method,

pattern strings are generated with three values ð1;0;�1Þ according
to the threshold t set in advance, unlike the LBP which thresholds
at the value of the central pixel. The variations in pixel value are
more important as we increase the value of t, which enhance the
thresholding results, and in our implementation we chose t ¼ 5.
In order to remove the negative values, the ternary pattern is con-
verted into two LBP units; the positive one is the upper LTP (LTPU)
and the negative one is the lower LTP (LTPL), as shown in Fig. 2. The
LTPU is generated by replacing the negative values in the original
LTP by zeros, while the LTPL is generated in two steps: first, all val-
ues of 1 in the original LTP are replaced by zeros, afterward, the
negative values are replaced by 1, Akhloufi et al. (2010). Two sep-
arate channels of LBP descriptors for both positive and negative
components are calculated and finally the results are concatenated.

In general, color could provide many cues, and the wellknown
color descriptor is the RGB color histogram which is often used
for tracking in different occasions. In order to extract relevant
information of the target, the last one was selected together with
the LBP patterns extracted by (20) or LTP patterns extracted by
(22). In the target model q̂u of the Eq. (1), the color information
of the object can be described adequately by fixing the three com-
ponents of RGB color space to 16� 16� 16 and by adding a new
bin to the color histogram for the texture value, resulting thus
u ¼ 16� 16� 16� LBP in the LBP_MS tracker and
u ¼ 16� 16� 16� LTP in the LTP_MS tracker. Similarly, the candi-
date model p̂uðyÞ is calculated with (2).
4.2. Complete local binary pattern texture

The CLBP is an extended version of LBP with some differences,
Guo et al. (2010); Ahmed et al., 2011; Singh et al., 2012. In the con-
ventional LBP feature only the signs of pixel differences are consid-
ered. In contrast, the CLBP feature further takes into account the
magnitude (M) of local differences and the original center grey
level (C). Given a central pixel pc and its neighbors pn, we suppose
that dn is the local difference vector, which characterizes the image
local structure at pc with dn ¼ pn � pc. We suggest embedding the
LBP process proposed in Heikkilä and Pietikäinen (2006) into the
new CLBP operator, thus, the local difference will be
dn ¼ pn � pc þ a. Formally, CLBP decomposes dn into two compo-
nents called the local difference sign-magnitude transform
(LDSMT), Singh et al. (2012):

dn ¼ sn �mn;with
sn ¼ signðdnÞ
mn ¼ kdnk

�
ð23Þ

With mn equaling the value of the difference between the cen-
tral pixel and its neighbors. In our experiments, we fixed
R ¼ 1;N ¼ 8 and a ¼ 5 to compute the CLBP texture. Consequently,
we get three features which are very important for texture
synthesizes;



Fig. 2. Illustration of the basic LTP operator.
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– CLBP_S, which is the conventional LBP,
– CLBP_M exploits the magnitude information, with c is a
threshold.
CLBP MN;R ¼
Xn�1

n¼0

tðmn; cÞ2n; tðx; cÞ ¼ 1; x P c

0; x < c

�
ð24Þ
– CLBP_C is used to code the grey level value of the original
center:
CLBP CN;R ¼ tðgc; cIÞ; tðx; cÞ ¼ 1; x P c

0; x < c

�
ð25Þ
With cI representing the threshold in the average grey level of
the input frame. This subsection has two main parts; firstly, we
summarized the feature extraction using only CLBP texture
(CLBP_MS1 method), and then joined it with the color feature
(CLBP_MS2 method), which collectively yield an extremely high
performance. Secondly, we describe the methodology to embed it
in the ”scale and orientation adaptive mean shift tracking
framework”.
4.3. CLBP_MS1

The CLBP_MS1 is based only on texture, which is generated
with the CLBP process. It is considered as an important feature,
and the key items in this operator are CLBP(S/M/C). In CLBP_MS1
the target is presented by a distinctive histogram. The object to
track is identified by an image region, and the information con-
tained within is used to describe the moving object; but instead
of focusing only on the value of an individual pixel (CLBP_C),
the distribution of features defined at each pixel is used (CLBP_S
and CLBP_M). The information may consist of uniformity, con-
trast, density and coarseness. Indeed, tracking is performed by
sweeping the actual frame in order to find a similar region, with
an histogram that best matches the target model histogram from
the previous one. The process of feature extraction plays a major
role in tracking an algorithm. CLBP texture histogram is com-
monly based on the properties of its three operators: CLBP_S,
CLBP_M, and CLBP_C (Fig. 3). Thus, we propose to replace the
R/G/B channels with CLBP(S/M/C). Consequently, the appearances
of the target will be modeled with this texture distribution. The
target model and the target candidate will be presented as
follows and u will be the texture feature:

q̂ ¼ fq̂ugu¼CLBP S;CLBP M;CLBP C :

p̂ ¼ fp̂uðyÞgu¼CLBP S;CLBP M;CLBP C :

xi ¼
Xm
u¼1

ffiffiffiffiffiffiffiffiffiffi
q̂u

p̂uðy0Þ

q
d½bðx�i Þ � u�:

8>>>><
>>>>:

ð26Þ
4.4. CLBP_MS2

In this proposed method, the three features CLBP_S, CLBP_M,
and CLBP_C will be fused to create a numeric matrix by using an
alpha blending method. This technique is employed in computer
graphics to blend each pixel from the first image with the corre-
sponding pixel in the second one, Cao et al. (2010). The blending
factor is called -alph-. We associate to the target model in the
frame the -opacity value = alpha value-, which represents the
probability of luminance energy. In this technique, the alpha value
describes for each pixel the transparency of the target. It takes 1 if
the surface is 100% opaque, and 0 if it represents a transparent
object, Singh and Mishra (2011). Firstly, each pixel of the CLBP_S
component would be combined with the values in the CLBP_M
using the blending equation:

CLBPðS=MÞ ¼ CLBP S� ð@Þ þ CLBP Mð1� @Þ ð27Þ
We use CLBP_S and CLBP_M in first step then we add the

CLBP_C. The result would be the new image, which overlays the
original three CLBP component matrixes S/M/C.

CLBPðS=M=CÞ ¼ CLBPðS=MÞ � ð@Þ þ CLBP Cð1� @Þ ð28Þ
The shrinking or enlarging of the object in consecutive frames is

usually a gradual process. In fact, the abrupt changes of the scale in
adjacent frames make the tracking task very challenging. Conse-
quently, we suppose that the size alteration of the target is sleek
and minor, and this assumption is sustained correctly in most
videos, including, those with high dynamic scenes. The valuation
of the scale and orientation of the moving object are assured by
computing the weight image derived from the target model q̂
and the target candidate p̂. In the conventional scale adaptive
mean shift tracking algorithm the weight value of each pixel
represents the probability that it belongs to the target candidate,
and it is defined by (7) as the square root of the ratio of its color



Fig. 3. Appearance via CLBP Histograms.

Fig. 4. Framework of CLBP_MS2 texture feature.
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probability in q̂ to its color probability in p̂, Ju et al. (2010). In our
method, such weight image value can be generated by the combi-
nation of the CLBP texture with the density distribution function of
the target model in the target candidate region. Using (1), (2) and
(28), CLBP texture and the RGB channels describe the target model
q̂u and the target candidate p̂uðyÞ. In order to acquire the texture
and color distribution of the target region, we use (7) while adding
to u another bin CLBP for the texture value; consequently, it
becomes: u ¼ R� G� B� CLBP. The first three dimensions illus-
trate the quantized bins of the color channels, and the fourth
dimention (i.e. CLBP) is the bin of the CLBPðS nM n CÞ texture pat-
terns (Fig. 4).

5. Experimental results and discussion

In this section, we perform experiments on a range of real-
world sequences that represent a variety of challenges, such as illu-
mination changes, quick moving objects, multiple object intersec-
tions, and moving cameras. The sequences contain various types
of targets (rigid, articulated) and different scenarios of occlusions.
We applied three state-of-the-art tracking algorithm to a series
of experiments aiming to prove the reliability of our proposed
tracking methods using variants of LBP texture and color quantifi-
cation. Our proposed algorithms LBP_MS, LTP_MS, CLBP_MS1 and
CLBP_MS2 are compared with the corrected background-
weighted histogram method (CBWH), Ning et al. (2012), the
EM_shift tracking algorithm (EM_shift), Zivkovic et al. (2004),
and the scale and orientation adaptive mean shift tracking
(SOAMST), Ning et al. (2012). In all tracking methods, we choose
RGB color as the feature space and we quantize it to
16� 16� 16 bins. The first video is an auto racing sequence of
100 frames; some samples of the CBWH tracker, the EM_shift
tracker, the SOAMST tracker and our proposed tracker’s results
are demonstrated in Fig. 5, with 4 random frames of the video
sequences shown. The frame indexes are respectively 51, 71, 79
and 100. This sequence is registered with an atypical digital cam-
era; thus, the contrast between the target and its background is
very poor due to the poor illumination and the blurred quality of
the sequence. Moreover, the noise level is relatively high, as it is
caused by the continuous speedy movement of the auto racing
and crashing. The tracking effectiveness of the seven algorithms
for the first part of this sequence is plotted in. Since the device is
equipped with a powerful zoom, we see an obvious scale change;
consequently the fixed-scale mean shift algorithm CBWH is unable
to achieve good tracking results.

Starting form frame 71, the EM_shift, SOAMST and CLBP_MS1
can successfully localize the auto racing, but occasionally lose the
orientation and the scale. Despite the uses of color and texture
information, the LBP_MS and LTP_MS tracking results are unsatis-
fying, while the CLBP_MS2 method succeeds in localizing the tar-
get, adjusting the ellipse to its exact size and dealing with the
orientation of the auto racing while spinning out of the pathway
during the accident. A single hypothesis is carried; it is when the
target representation is based on a single characteristic such as
color in CBWH, EM_shift and SOAMST, or texture in CLBP_MS1,
the tracker cannot deal with the challenging video and does not
extract the best characteristics of the target. Actually, in practice,
the reliability of LBP decreases notably under large illumination
variations. And in this experiment, the LTP operator proves its sen-
sitivity to such noise. The combinations of the color with CLBP tex-
ture succeed in describing the object and present its accurate
feature, and by embedding this feature extraction in the scale
and orientation adaptive mean shift tracking algorithm, our
CLBP_MS2 method makes the convergence to the target candidate
easier.

The second sequence is filmed with a small camera taped to the
bottom of a skateboard. It shows a skateboarding performance.
This video is considered challenging because of the speed of the
target, as well as its turns and twists. Fig. 6 presents the tracking
results of the seven methods in frame 25, 46, and 56. CBWH and
CLBP_MS1 could not track the skateboarder and eventually drift
away from the skateboarder, while all other trackers successfully
localize the target. The skateboarders legs have the same color as
the road which leads to an overlap in target boundaries. This dis-
ables the ellipse of EM_shift, SOAMST, LBP_MS and LTP_MS to fit
the size and the orientation of the target. Thanks to the CLPB tex-
ture, spurious edges and boundary gaps could not prevent our pro-
posed method, CLBP_MS2, to localize and adapt the scale and
orientation of the skateboarder. The combination of the color fea-
tures and CLBP texture are sufficient to overcome such difficulties,
which remarkably enhance the feature extraction process. Conse-
quently, CLBP_MS2 robustly tracks the target through clutter.



Fig. 5. Tracking results of an auto racing sequence by the target representation models CBWH, EM_shift, SOAMST, LBP_MS,LTP_MS, CLBP_MS1, and CLBP_MS2. Frames 51, 71,
79 and 100 are displayed.
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Fig. 7 shows tracking results of frames 9, 47 and 60 of a
sequence with 79 frames where the target is a white truck. CBWH,
EM_shift and CLBP_MS1 perform well to track the target, but could
not settle its right size and orientation, as those tracking methods
cannot deal with pose changes. In contrast, SOAMST, LBP_MS,
LTP_MS and CLBP_MS2 could achieve the hole tracking process
successfully. In fact, the use of the Bhattacharyya coeffcient, the
zeroth-order moment and the corrected second-order center
moments between the target model and the candidate model make
the estimation of the height, width and orientation changes very
accurate. Since SOAMST and CLBP_MS2 achieve the best results
in this video, we propose to compare the number of iterations of
each method while converging to the right position and
orientation.

Fig. 8, presents the number of iterations performed by the new
method CLBP_MS2 and the SOAMST on the third experimental



Fig. 6. Tracking results of a skateboard sequence by the target representation models CBWH, EM_shift, SOAMST, LBP_MS,LTP_MS, CLBP_MS1, and CLBP_MS2. Frames 25, 46
and 56 are displayed.
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sequence. In the following figure, the total number of iterations is
depicted for computing the whole process to track the truck based
on the two tracking methods. Based on the above observation, we
can see that the iteration number of our method is less than that of
SOAMST (presented in red). The red curve is often above the blue
one which indicates that this method requires more iterations than
our method (frame 11, 17, 33, 43). The inferior iteration number
needed for CLBP_MS2 to find the best scale position and orienta-
tion under the clutter and the poor condition of this sequence
proves that the combination of color and CLBP texture generates
an effective feature that strongly matches the model and the can-
didate target.



Fig. 7. Tracking results of a white truck sequence by the target representation
models CBWH, EM_shift, SOAMST, LBP_MS, LTP_MS, CLBP_MS1, and CLBP_MS2.
Frames 9, 47 and 60 are displayed.

Fig. 8. Iteration (SOAMST, CLBP_MS2).
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This experiment (Fig. 9) is a sequence of 235 frames of
parachuting sports. Our target is the skydiver spinning out of con-
trol. The CBWH method is designed to reduce the background’s
intrusion in target localization, so this characteristic enables the
method to give good tracking results. But since it is a fixed scale
mean shift tracking method it makes the settlement of the scale
and orientation impossible. The EM_shift robustly tracks the skydi-
ver through clutter in frame 165, 186 and 294, but it drifts away
from the target and cannot recover from the lost track. Thereby,
this method does not handle inconsistent motion and pose change.
The SOAMST tracking results are the worst in this experiment and
the method is unable to even localize the target. It does not work in
cluttered backgrounds, as it picks discriminative color features in
each frame which make it less effective in dealing with low-
contrast images. Consequently, it fails to accomplish the tracking
process when there is a similarity between the target and its
background.

Observing the target’s location, CLBP_MS1 method tracks the
skydiver correctly but fails when it comes to identifying the size
and orientation of the target. This is due to the fact that this tracker
is mainly based on the three features of the CLBP (M/S/C) (the
description of the target requires only the texture feature). The
LBP_MS, LTP_MS and the CLBP_MS2 methods use the color and
variants of LBP texture jointly to describe the skydiver, which turns
these features less sensitive to image blur. These trackers work
very well in this video when the target undergoes large pose and
appearance change in a cluttered background, explaining the lesser
number of drifting errors when compared to the other methods.

Figs. 10 and 12 present the tracking results on another two dif-
ferent sequences. The experiment in Fig. 10 is on a vehicle in a
rugby game, where the vehicle moves quickly. The results attained
through SOAMST and CLBP_MS2 are identical, achieving very good
results not only in localizing the object, but also in effectively
defining its scale and orientation. The similarity in the results given
by LTP_MS and LBP_MS is explained by the fact that the LTP oper-
ator inherits most of the other key advantages of LBP. The value of
the Bhattacharyya distance calculated by (5) for each frame is
shown in Fig. 11. This similarity coefficient indicates a perfect
match between the target model and the chosen candidate when
it takes the zero value. In the first frames of this sequence, the
car is well detected, thus the value of the Bhattacharyya distance
is between 0:1 and 0:2. Afterward, signifcant deviations from this
value, as shown in frame 36 by peaks that reach 0:61;0:65;0:68
and 0:69 for CLBP_MS2, SOAMST, LTP_MS and LBP_MS respec-
tively. The complete occlusion caused by the crowd, elevates the
residual distance value. The blue curve of the CLBP_MS2 tracker
is inferior to the other curves in this sequence. It can be understood
that under the difficult experimental setup and among the four
trackers, the Bhattacharyya distance of CLBP_MS2 is the lowest.
Consequently, the combined color and the CLBP texture are an ade-
quate representation of the target. These results demonstrate the
superiority of the proposed CLBP against the newly developed tex-
ture operators, LBP and LTP. This is because the CLBP texture is
insensitive to noise and possesses a high discriminating property
that achieves impressive tracking results.



Fig. 9. Tracking results of a parachuting sequence by the target representation models CBWH, EM_shift, SOAMST, LBP_MS, LTP_MS, CLBP_MS1, and CLBP_MS2. Frame 165,
186, 195, and 294 are displayed.
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Fig. 12 is on a more complex Gym_ball sequence filmed with
a fixed camera. The object tracked here is the bleu ball, and it
exhibits obvious shape changes and spurious edges of the ball
due to its rapidity (frames 41 and 75). The experimental results
show that the LBP_MS, LTP_MS and CLBP_MS2 achieve much
better performances in localizing the ball than the rest of track-
ers, which fail to track it quickly. SOAMST uses the RGB color
histogram to represent the target, which is adequate in this
experiment. Table 1 states the average numbers of iterations
by the seven trackers on the experimental sequences. The iter-
ation number of CLBP_MS2 is the lowest because it perfectly
models the target so it does not need significant iteration to
converge. The average number of iterations of the proposed
CLBP_MS2 and the SOAMST are approximately equal. The main
factor that affects the convergence speed of the EM-shift and
those two trackers is the computation of the covariance matrix.
For each iteration, EM_shift estimates it and runs the mean shift
algorithm three times, whereas SOAMST, LBP_MS, LTP_MS,
CLBP_MS1 and CLBP_MS2 only estimate iteration it once for
each frame.

All algorithms are implemented in MATLAB R2013a interface
and ran on a PC with Intel� CoreTM 2 Duo 2.1 GHz CPU and 2 GB
RAM. We compute the time requirement analysis for each method.
Table 2 shows that the CBWH, EM_shift, SOAMST and CLBP_MS1
have the lowest computational time because it uses only color or
texture to model the target and the candidate. For the LBP_MS,
LTP_MS and CLBP_MS2, the trackers employ jointly the color and
texture feature in the tracking algorithm, thus the computational
time is important comparing to other methods. In the future, we
will work on finding a balance between reducing computational
time and increasing the tracking accuracy.

Finally, the CLBP_MS2 is evaluated in a noisy sequence of a rac-
ing car displayed on Fig. 13. The video suffers from various types of
artifacts. Therefore, only the second method succeeds in accurately
tracking the racing car under these inconvenient clutters and
occlusions. In fact, to achieve robust tracking results, the appear-



Fig. 10. Tracking results of a vehicle sequence by the target representation models CBWH, EM_shift, SOAMST, LBP_MS, LTP_MS, CLBP_MS1 and CLBP_MS2. Frame 165, 186,
195, and 294 are displayed.

Fig. 11. The minimum value of the Bhattachayya distance function of the frame
index for the vehicle sequence. The mean distance of Bhattacharyya is 0.2894 per
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ance and pose updates must be taken into careful consideration.
Those transformations of the targets form during the entire track-
ing period, lead to poor localization and make the tracker super-
sensitive to noise and occlusion. Only five frames are displayed
for this experiment where the quality of the image is blurry and
fuzzy, especially in frame 141.

Despite the partial occlusion caused by the post in frame 99, our
method proves without any increase in complexity to be a robust
tracker. The accurate presentation and description of the target
model and candidate managed to overcome those limitations,
which make the CLBP_MS2 method effectively handle different
conditions. Table 3 lists the estimated semi-major length (width),
semi-minor (length) height and orientation of the ellipse in the
racing car sequence by using the CLBP_MS2 scheme. In each frame
(1, 19, 85, 99, 107 and 141) we calculate the real dimension of the
red car and the estimated one for the ellipse. The orientation is
computed as the angle between the major axis and the horizontal
axis. The sequences (auto racing, skateboard, white truck,
frame.



Fig. 12. Tracking results of a Gym_ball sequence by the target representation models CBWH, EM_shift, SOAMST, LBP_MS, LTP_MS, CLBP_MS1, and CLBP_MS2. Frames 1, 41, 52
and 75 are displayed.

Table 1
Mean shift iterations of the experiments.

Video sequence Frames Target Representations Mean shift iteration Average number

CBWH 5,85
EM_shift 6
SOAMST 5.15

Auto-racing 100 LBP_MS 5.09
LTP_MS 6.21
CLBP_MS1 4.52
CLBP_MS2 4.46

CBWH 6.5714
EM_shift 6.02
SOAMST 5.2286

Skateboard 35 LBP_MS 5.1142
LTP_MS 7
CLBP_MS1 5.4857
CLBP_MS2 5.3429

CBWH 3.9747
EM_shift 5.9873
SOAMST 4.9114

Truck 79 LBP_MS 4.7468
LTP_MS 5.9113
CLBP_MS1 4.3165
CLBP_MS2 4.5696

CBWH 3.9830
EM_shift 6.0128
SOAMST 5.0511

(continued on next page)
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Table 1 (continued)

Video sequence Frames Target Representations Mean shift iteration Average number

Parachuting 235 LBP_MS 4.2893
LTP_MS 6.0978
CLBP_MS1 5.8085
CLBP_MS2 4.7447

CBWH 6.7622
EM_shift 7.5793
SOAMST 7.4878

Vehicle 164 LBP_MS 6.5610
LTP_MS 7.3049
CLBP_MS1 7.6585
CLBP_MS2 7.3293

CBWH 7.0533
EM_shift 6.0133
SOAMST 9.2933

Gym-ball 75 LBP_MS 9.1067
LTP_MS 9.4800
CLBP_MS1 8.4267
CLBP_MS2 8.3600

Fig. 13. Tracking results of a racing car sequence by CLBP_MS2. Frames 19, 85, 99, 107 and 141 are displayed.

Table 3
Dimension of the ellipse tracking the target object.

Frame Semi-major length a Semi-minor length b Orientation

No. Real Estimated Error (%) Real Estimated Error (%) Real Estimated Error (%)

1 80.59 84.90 5.08 40.1028 53.6062 2.51 7.4463 4.7255 5.75
19 73.38 81.27 9.71 36.2651 49.2403 2.63 7.6319 10.8085 2.93
85 49.33 69.07 2.85 27.4545 44.8459 3.87 18.4129 10.4273 7.65
99 69.12 81.36 1.5 21.2542 38.1142 4.42 11.1217 7.4258 4.97
107 59.37 73.65 1.93 32.6693 48.5529 3.27 3.2127 4.1812 2.31
141 52.72 52.62 0.19 31.3939 27.6344 1.36 1.7497 2.6551 3.41

Table 2
Time requirement analysis of each of the methods (second).

Trackers Auto-racing Skateboard Truck Parachuting Vehicle Gym-ball

CBWH 20.2845 9.1553 12.9281 168.3900 245.1453 147.0714
EM_shift 25.6560 14.4544 23.8235 188.7431 260.1622 153.8044
SOAMST 21.7122 10.0975 14.7655 175.6555 253.4505 150.7876
LBP_MS 27.0098 17.1576 30.9597 190.7060 276.0838 160.0211
LTP_MS 27.2322 17.1419 31.6991 192.0318 277.9619 161.2321
CLBP_MS1 20.0443 8.1626 11.2543 170.9502 241.0046 146.5545
CLBP_MS2 25.5456 13.1386 17.5472 174.4898 251.2400 161.7803
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parachuting, vehicle, Gym_ball, car) can be downloaded from the
URL.1 Further results of the CLBP_MS2 are displayed in Fig. 14. The
four sequences (Skiing, Deer, David3, Coke), can be downloaded from
1 https://www.youtube.com/channel/UCPFX0LadjF_R1cro2vxGjcA.
the URL.2 This novel approach, which jointly uses CLBP feature gen-
eration method and color feature, for describing the target in the
scale-orientation adaptive mean shift tracking algorithm proved to
2 https://sites.google.com/site/trackerbenchmark/benchmarks/v10.

https://www.youtube.com/channel/UCPFX0LadjF_R1cro2vxGjcA
https://sites.google.com/site/trackerbenchmark/benchmarks/v10


Fig. 14. The tracking results of selected frames using the proposed method
CLBP_MS2.
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be efficient in localizing the racing car. The estimation accuracy of
the scale and orientation of the target provides acceptable results
which could be improved in future works to get the exact size and
orientation.

6. Conclusion

In this paper, we present an efficient and robust tracker by
embedding a variety of LBP texture feature in the mean shift
framework. Image fusion is carried out using the three features
CLBP(S/M/C) based on an alpha blending technique to obtain the
CLBP texture. The expected benefit is an improvement in the accu-
racy of the tracking; thus, we test it in terms of handling the chal-
lenging factors in the tracking of objects. We evaluate and compare
our methods with state-of-the-art tracking algorithms. The exper-
imental results demonstrate the strength of the CLBP MS2, as well
as the weaknesses of other tracking algorithms. Our proposed fea-
ture extraction is designed to account not only for dynamic motion,
but also for appearance, pose, and orientation changes. However,
the methods presented in this article require manual initialization
of the object to track. Consequently, an automatic initialization
scheme should be considered in future works according to a speci-
fic application. Finally, since our proposed CLBP_MS2 method
demonstrates acceptable accuracy against blurry public sequences
and defocused sequence, we are now considering the possibility of
tracking multiple items through occlusion. Moreover, future
research work on tracking random object will include incorpora-
tion of the dictionary learning features to improve the efficiency
of our proposed trackers.
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