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Abstract Dragonfly optimization (DFO) is a population based meta-heuristic optimization algo-

rithm that simulates the static and dynamic swarming behaviors of dragonflies. The static swarm

comprising less number of dragonflies in a small area for hunting preys, while the dynamic swarm

with a large number of dragonflies migrates over long distances; and they represent the exploration

and exploitation phases of the DFO. This paper introduces a self adaptive scheme for tuning the

DFO parameters and suggests a methodology involving self-adaptive DFO (SADFO) for perform-

ing multilevel segmentation of digital images. The multilevel segmentation problem is formulated as

an optimization problem and solved using the SADFO. The method optimizes the threshold values

through effectively exploring the solution space in obtaining the global best solution. The results of

real life and medical images illustrate the performance of the suggested method.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Image segmentation, a task of dividing an image into several
non-overlapping meaningful regions with homogeneous char-
acteristics in respect of texture, gray value, position, etc, has

been one of the most difficult and challenging tasks and exten-
sively investigated since 1960s. In other words, it is a process of
assigning a label to each pixel in an image, where the pixels
with the same label share certain visual characteristics. The

segmented regions provide more information than individual
pixels since the interpretation of images based on objects is
more meaningful than the interpretation based on individual

pixels. Image segmentation is considered as an important task
in the analysis, interpretation and understanding of images,
and widely applied for classification and object recognition

in many applications such as fault diagnosis, tracking, moni-
toring, crack detection, etc. (Skarbek and Koschan, 1994).

In recent years, image segmentation plays a vital role in

numerous medical imaging applications such as quantification
of tissue volumes, diagnosis, localization of pathology, study
of anatomical structure, treatment planning, partial volume

correction of functional imaging data and computer integrated
surgery. The segmentation methods vary widely depending on
the specific application, imaging modality and other factors.
For example, the segmentation of brain tissue has different

requirements from liver image segmentation. There is thus
no single segmentation method that provides acceptable results
for all kinds of medical images, thereby making the selection of
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an appropriate segmentation method a dilemma. But the radi-
ologists demand a generalized segmentation tool for delin-
eation of anatomical structures and other regions of interest

in medical images (Tarabalka et al., 2010; Fauvel et al., 2013).
Numerous segmentation methods have been suggested in

the recent decades. These methods can be classified into three

categories; threshold-based, deformation-based and clustering-
based. The threshold-based methods determine the threshold
values using the image histogram and then classify the image

pixels based on these values (Otsu, 1979; Kapur et al., 1985;
Bonnet et al., 2002; Baradez et al., 2004; Natarajan et al.,
2012). Deformation-based methods, employing region growing
(Shih and Cheng, 2005; Hojjatoleslami and Kittler, 1998) and

level set (Xie et al., 2005; Li et al., 2011) approaches, have been
proposed for identification of the cancer boundary. Most of
the deformation-based segmentation methods are semiauto-

matic since the generation of initial points is difficult to auto-
mate. The region growing methods group the pixels into
homogeneous regions and segment the image into some major

areas, while the level set methods utilize dynamic variational
boundaries for segmentation; The clustering-based methods
segment the feature space of image into several clusters and

derive a sketch of the original image, such as K-means
(Papamichail and Papamichail, 2007; Clausi, 2002; Juang
and Wu, 2010), Fuzzy C-means (FCM) (Carvalho, 2007;
Chen and Zhang, 2004; Chuang et al., 2006; Chaira, 2011)

and mean-shift (Comaniciu and Meer, 2002) algorithms.
Among the available techniques, thresholding is a simple

and effective tool for image segmentation and popular due

to lower storage requirement and fast computations. The num-
ber of threshold values used for segmentation varies depending
on the nature of the application and the type of image. The

best threshold number and values are chosen by a trial and
error approach. The segmented result should be appropriate,
otherwise it may affect the subsequent processes such as fea-

ture extraction and classification. The thresholding methods
can be partitioned into bi-level and multilevel thresholding
depending on the number of thresholds required to be detected
(Sezgin and Sankur, 2004). Bi-level thresholding involves one

threshold value and creates two classes: one below the thresh-
old and the other above the threshold, while the multi-level
thresholding creates nc classes with nc� 1 threshold levels.

These methods employ parametric approach involving gray
distribution of the pixels or nonparametric approach requiring
an objective function for optimizing the threshold levels. It has

been reported (Sezgin and Sankur, 2004) that Kapur’s entropy
based thresholding offers better performance than any other
thresholding approaches.

Nature inspired optimization techniques have been applied

for image segmentation in recent years. A dynamic clustering
approach based on particle swarm optimization (PSO) that
determines optimum number of centroids for image segmenta-

tion has been suggested (Omran et al., 2005). A fast image seg-
mentation method based on artificial bee colony (ABC)
optimization to estimate the appropriate threshold values in

a continuous gray scale interval has been outlined (Ma et al.,
2011). A hybrid approach using matched filter and ant colony
optimization for extraction of blood vessels in ophthalmo-

scope images has been presented (Cinsdikici and Aydın,
2009). A color clustering method based on ant colony opti-
mization for the detection of flower boundaries has been noti-
fied (Aydın and Ugur, 2011). The search abilities of PSO and
ABC have been exploited in multi-level thresholding (Akay,
2013). A multilevel thresholding based on harmony search
optimization (HSO) has been presented (Oliva et al., 2013).

A gray-level histogram based multilevel thresholding of digital
images using bat optimization (BO) has been explained
(Rajinikanth et al., 2014). A multi-level image thresholding

using Otsu technique and firefly based optimization (FFO)
has been notified (SriMadhava Raja et al., 2014). A modified
PSO based multilevel threshold has been outlined (Yi et al.,

2015). Although these methods offer reasonably good results
for image segmentation problems, the improper choice of cer-
tain parameters, such as attractiveness and random movement
factor in FFO, harmony memory considering rate and pitch

adjusting rate in HSO, affects the convergence and leads to
suboptimal solution.

More recently, a Dragonfly optimization (DFO), a swarm

intelligence based stochastic optimization technique inspired
from the static and dynamic swarming behaviors of dragon-
flies, has been suggested for solving combinatorial optimiza-

tion problems in (Mirjalili, 2015). Since its introduction, it
has been applied to several real world optimization problems
(Hamdy et al., 2016; Tiwari et al., 2016) and found to yield sat-

isfactory results. The robustness of the DFO algorithm can be
further improved by adaptively adjusting its parameters that
have influence on the convergence and the final solution.

The focus of this paper is to develop a self-adaptive scheme

for DFO and then use it in developing a robust multilevel seg-
mentation method for processing digital images with a view of
obtaining the global best solution and studying its perfor-

mances on real life and medical images.

2. Dragonfly optimization

The static and dynamic swarming behaviors of dragonflies are
the main inspiration of the DFO algorithm, representing the
exploration and exploitation phases of meta-heuristic opti-

mization. DFO initially produces a swarm of dragonflies
located randomly in the search space. The position of each
dragonfly in the solution space represents a potential solution

of the optimization problem. Each ith dragonfly is denoted by
a vector dfi as (Mirjalili, 2015).

dfi ¼ ½df 1i ; df 2i ; . . . ; df nv
i � ð1Þ

where df ji indicates jth position parameter of ith dragonfly and

nv represents the number of problem variables.

The search space is limited by the following inequality

df kðminÞ 6 df k 6 df kðmaxÞ : k ¼ 1; 2; . . . ; nv ð2Þ
Initially, the positions of the dragonflies are generated from

a uniform distribution using the following equation

df k
i ¼ df k

i ðminÞ þ ðdf k
i ðmaxÞ � df k

i ðminÞÞ � rand ð3Þ
Here, rand is a random number in between 0 and 1. A fit-

ness function receives the position of a dragonfly as input
and returns a single numerical output value denoting how
good the potential solution is. The behavior of swarms are rep-

resented through separation, alignment and cohesion with an
objective of survival through attraction and distraction, which
are mathematically modeled as:

The separation of ith dragonfly, Si; from its neighbors is
computed by
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Si ¼ �
X
j2W

dfi � dfj ð4Þ

where
W is a set of neighboring individuals

dfi indicates vector of ith dragonfly

The alignment of ith dragonfly, Ai; with its neighbors is cal-
culated by

Ai ¼
P

j2Wvj
nn

ð5Þ

where
vj represents the velocity of jth neighboring dragonfly

nn is the number of neighbors

The cohesion of ith dragonfly, Ci, with its neighbors is eval-
uated by

Ci ¼
P

j2Wdfj
nn

� dfi ð6Þ

The attraction of ith dragonfly, Fi, toward a food source is
computed by

Fi ¼ Food� dfi ð7Þ
nD

Iter

kk

v

k

max

Figure 1 Flow ch
where Food represents the best dragonfly the swarm has seen

so far.
The distraction of ith dragonfly, Ei, outward an enemy is

computed by

Ei ¼ Enemyþ dfi ð8Þ
where Enemy represents the worst dragonfly the swarm has
seen so far.

The direction of the movement, viðtþ 1Þ; of ith artificial
dragonfly at instant ðtþ 1Þ from the current position in a

search space can be defined by the following velocity vector:

viðtþ 1Þ ¼ s Si þ a Ai þ c Ci þ f Fi þ e Eið Þ þ x viðtÞ ð9Þ
where

s; a; c; f and e represent weight factor for separation,
alignment, cohesion, food and enemy respectively.
x indicates inertia weight.

t denotes iteration counter.

The position of ith artificial dragonfly at instant ðtþ 1Þ can
be updated by

dfiðtþ 1Þ ¼ dfiðtÞ þ viðtþ 1Þ ð10Þ
i

Iterk

N

donDifor

i

i

i

i
R

i

max

art of SADFO.
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When there is no neighboring solution, the dragonflies are
required to fly around the search space using a random walk
(Levy’s flight) with a view of improving the randomness,

stochastic behavior and exploration. In this case, the position
of ith artificial dragonfly at instant ðtþ 1Þ is updated by the
following equation:
Figure 2 Histogram with search
dfiðtþ 1Þ ¼ dfiðtÞ þR� dfiðtÞ ð11Þ
where

R ¼ 0:01� r1 � r

jr2j1=b
dfiðtÞ ð12Þ
boundaries for first image set.
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r ¼ Cð1þ bÞ � sin pb
2

� �
C 1þb

2

� �� b� 2ðb�1=2Þ

 !1=b

ð13Þ
Figure 3 Histogram with search b
CðxÞ ¼ ðx� 1Þ! ð14Þ
r1 and r2 are the random numbers in the range of (0, 1)

b is a constant.
oundaries for second image set.
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2.1. Self-adaptive DFO

In the above narrated DFO, different explorative and exploita-
tive behaviors of dragonflies can be achieved by varying sepa-
ration ðsÞ, alignment ðaÞ, cohesion ðcÞ, food ðfÞ, and enemy ðeÞ
factors. The dragonflies attempt to align their flying while
maintaining appropriate separation and cohesion in a dynamic
swarm. In a static swarm, however, alignments are very low
while cohesion is high to attack preys. Therefore, high align-

ment and low cohesion weights are assigned to dragonflies
when exploring the problem space; and low alignment and
high cohesion when exploiting the problem space. Besides

the neighborhood of each dragonfly is chosen by comparing
its Euclidean distance with all the dragonflies in the swarm
with an assumed radius ðRÞ, which is increased proportional

to the number of iterations for transition between exploration
and exploitation.

The inertia weight ðxÞ also influences the impact of the

prior velocities on the current velocities; and hence controls
the trade-off between the global and local exploration abilities.
At initial stages of the search, large x to enhance global explo-
ration is recommended while for last stages, the x is decreased

for better local exploration.
In fact, the selection of these parameters affects the conver-

gence and the final solution of the algorithm. In this paper, the

parameters s; a; c; f; e ; R and x are tuned through a self-
adaptive mechanism, which effectively leads the algorithm to
land at the global best solution with minimum computational

effort. Each dragonfly for a given problem with, nv decision
variables will be defined to encompass these seven parameters
in self-adaptive method as
Table 1 Optimal threshold levels for first image set.

Threshold levels PM HS

Lena 2 98,165 96

3 26,97,165 23

4 26,83,127,176 23

5 26,65,98,139,179 23

Baboon 2 98,213 79

3 73,135,213 79

4 43,91,143,213 44

5 35,72,109,152,214 33

Hunter 2 107,179 92

3 81,129,181 59

4 70,108,144,182 44

5 69,107,145,181,240 44

Butterfly 2 125,226 27

3 92,150,226 27

4 76,119,164,227 27

5 69,105,142,176,227 27

Bridge 2 99,176 99

3 66,130,193 82

4 55,103,151,200 71

5 48,89,130,171,209 62

Cameraman 2 127,194 12

3 45,102,195 44

4 44,98,146,198 44

5 25,61,100,146,198 24
dfi ¼ df1i ; df
2
i ; � � � ; dfnvi ; si; ai; ci; fi; ei ; ci; xi

� � ð15Þ
where ci denotes radius adjustment factor that controls the
radius ðRÞ by the following equation

Rk
i ¼ dfki ðmaxÞ � dfki ðminÞ� �� ci ð16Þ
The typical lower and upper bounds of the parameters

s; a; c; f; e ; c; x are [0, 0, 0, 0, 0, 0, 0] and [0.15, 0.15, 0.15,
2, 0.15, 1, 1] respectively.

Each dragonfly possessing the additional parameters under-

goes the whole search process. The DFO offers better off-
springs during the search with lower computational effort.

3. Proposed method

Among the available multilevel image thresholding methods,
Kapur’s entropy (Kapur et al., 1985) based thresholding

method has been found to be the most efficient and eminent
method for segmentation (Sezgin and Sankur, 2004). The pro-
posed method (SADFO) thus uses Kapur’s entropy, which is
based on probability distribution of the image histogram and

represents the compactness and separability among the classes,
and attempts to search the best possible threshold values. The
SADFO involves image preprocessing, representation of deci-

sion variables and formation of a fitness function.

3.1. Preprocessing

Digital images get corrupted with noise during acquisition,
transmission, storage and retrieval processes. The degradation
may be in the form of sensor noise, blur due to camera misfo-
O BO FFO

,163 – 90,148

,96,163 – 63,119,171

,80,125,173 – 55,100,133,183

,71,109,144,180 – 49,98,124,150,185

,143 48,114 90,147

,143,231 84,95,122 101,148,193

,98,152,231 43,169,193,198 70,104,133,182

,74,114,159,231 94,126,128,140,172 71,111,134,167,187

,179 – –

,117,179 – –

,89,133,179 – –

,89,133,179,222 – –

,213 – –

,120,213 – –

,96,144,213 – –

,83,118,152,213 – –

,151 38,146 –

,119,160 44,120,195 –

,102,130,163 36,81,144,211 –

,77,109,137,167 38,85,131,176,212 –

8,196 – 70,148

, 103, 196 – 51, 119, 163

, 96, 146, 196 – 49, 117, 144, 182

, 60,98,146, 196 – 38, 91,137,170,201
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cus, relative object camera motion, random atmospheric tur-
bulence, and so on. Image denoising is an important pre-
processing task before segmentation. The purpose of denoising

is to remove the noise while retaining the edges and other
detailed features as much as possible. The linear, median, Win-
ner and recursive filters are used in numerous applications and

have proven to be useful for specific tasks (Jun et al. 2016,
2013a, 2013b). In the proposed SADFO, median filter is used
for noise removal.

If the digital image is in RGB color space, it is to be con-
verted into two dimensional space, by either converting into
gray scale, or transforming it into HSV (or Lab) color space
and considering only a two dimensional image component,

depending on the type of image and application requirements.

3.2. Representation of a dragonfly

In multi-level thresholding, the original image is divided into
nc number of classes by nc� 1 number of thresholds of
f T1; T2; . . . ;Tnc�1g. These thresholds act as separators

between the consecutive classes of fC1; C2; . . . ;Cncg in the
range of threshold values of f ½0; . . . ;T1�; ½T1 þ 1; . . . ;T2�;
. . . . . . ; ½Tnc�1 þ 1; . . . ;L� g, where L is the maximum pixel

intensity value of the gray scale image. In the SADFO,
each dragonfly dfi is defined to denote the threshold levels
and the self-adaptive parameters as decision variables in vector
form as

dfi ¼ ½ T1
i ; T

2
i ; . . . ; T

nc�1
i ; si; ai; ci; fi; ei ; ci; xi� ð17Þ
Table 2 Optimal Threshold Levels for Second Image Set.

Threshold levels PM

Eye-1 2 35,131

3 35,102,172

4 35,87,133,186

5 34,84,128,167,209

Eye-2 2 133,200

3 117,154,200

4 95,126,160,198

5 13,56,90,131,200

Liver 2 49,137

3 47,128,202

4 46,98,153,202

5 7,55,99,149,203

Head 2 114,187

3 65,113,186

4 67,114,153,200

5 63,118,158,186,22

Tongue-1 2 72,156

3 37,142,200

4 87,104,179,219

5 42,72,87,114,183

Tongue-2 2 68,176

3 72,122,180

4 22,123,149,193

5 40,53,104,134,192
3.3. Fitness function

The SADFO searches for optimal threshold values by maxi-
mizing a fitness function F, in terms of threshold values. The
objective function of Kapur’s entropy method, an nc dimen-

sional function of maximizing the overall entropy, is consid-
ered as the fitness function.

Maximize F ¼
Xnc
k¼1

Hk ð18Þ

where Hk represents kth entropy and is evaluated by

H1 ¼
XT1

i¼0

pi
v1
ln pi

v1

� �
; v1 ¼

XT1

i¼0

pi

H2 ¼
XT2

i¼1þT1

pi
v2
ln pi

v2

� �
; v2 ¼

XT2

i¼1þT1

pi

..

. ..
.

..

. ..
.

Hnc ¼
XL

i¼1þTnc�1

pi
vnc

ln pi
vnc

� �
; vnc ¼

XL
i¼1þTnc�1

pi

ð19Þ

pi represents probability distribution at ith intensity level of an
image and is calculated by

pi ¼
hi
np

; i 2 f0; 1; . . . ;Lg ð20Þ
HSO FFO

36,130 34,131

36,103,172 36,98,169

33,88,131,183 36,82,130,192

37,81,128,170,208 35,88,131,174,218

132,200 134,201

120,158,200 117,153,200

116,155,201,202 106,142,178,204

11,38,85,138,201 13,73,113,152,199

50,137 47,135

50,128,201 49,127,204

8,69,138,202 8,74,138,202

6,47,101,155,203 8,52,100,155,202

114,184 113,191

114,159,205 68,115,187

66,113,157,206 66,114,158,206

2 67,113,148,188,222 67,115,148,186,222

75,153 80,150

33,147,197 28,151,205

91,102,181,220 92,105,177,227

44,69,97,111,187 44,73,96,110,188

76,175 75,175

80,126,179 74,119,179

17,115,148,190 17,120,152,190

38,59,101,130,198 36,48,107,143,189
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hi indicates number of pixels that corresponds to ith inten-

sity level
np is the total number of pixels in the image.
vi denotes the probability of set Ci.
Figure 4 Segmented results fo
3.4. Solution method

An initial swarm of dragonflies is obtained by generating ran-
dom values within their respective limits. The fitness function F
r first image set by SADFO.



Figure 5 Segmented results for second image set by SADFO.
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is calculated by considering the threshold values of each drag-
onfly; and the exploration and exploitation phases, which rep-
resent social interaction of dragonflies in navigating and

searching for foods and avoiding enemies, are performed for
all the dragonflies in the swarm with a view of maximizing
their finesses. The iterative process is continued till conver-
gence. The flow of the SADFO for obtaining the optimal

thresholds is shown in Fig. 1.



458 R.K. Sambandam, S. Jayaraman
4. Results and discussions

The proposed SADFO based multilevel segmentation method
has been tested on two sets of images. The former one contains

six benchmark images of Lena, baboon, hunter, butterfly,
bridge and cameraman (Hammouche et al., 2010). These
images are converted into (512 � 512 pixels) sized gray scale

image with a resolution of 8 bits per pixel. The second set of
image comprises six medical images of eyes, liver, head and
tongue. As these medical images are rectangular shaped with
different sizes, the width of these images is adjusted to have

512 pixels and the height is proportionally altered with a view
to have the true shape of the images. Besides, the eye, liver and
head images are converted into gray scale, while the tongue

images are transformed into HSV color space and their satura-
tion information are considered for further processing. The
software packages are developed in Matlab platform and exe-

cuted in a 2.67 GHz Intel core-i5 personal computer. The
results of the SADFO for the first set of images are compared
with those of the HSO, BO and FFO based methods (Oliva

et al., 2013; Rajinikanth et al., 2014; SriMadhava Raja et al.,
2014) with a view of studying and validating the performances.
In order to validate the results of SADFO for the second set of
medical images, HSO and FFO based methods have also been

developed. These methods use the threshold levels as the deci-
sion variables and OTSU based between-class variance as the
fitness function, as given in the Appendix A (Otsu, 1979).

There is no assurance that different executions of these meth-
ods converge to the same solution due to the stochastic nature
Table 3 Comparison of performances metrics for first image set.

PSNR SSI

PM HSO BO FFO PM H

Lena 2 24.6882 14.638 – 23.2027 0.5019 –

3 24.7134 16.218 – 20.9014 0.6247 –

4 25.0114 19.287 – 24.1167 0.7014 –

5 25.3331 21.047 – 23.2251 0.7457 –

Baboon 2 24.5021 16.016 24.726 23.1159 0.4206 –

3 24.7469 16.016 24.705 21.0002 0.5796 –

4 24.8966 18.485 25.745 24.1883 0.6797 –

5 25.5333 20.507 25.807 21.2683 0.7396 –

Hunter 2 24.4475 15.206 – – 0.3619 –

3 24.8195 18.500 – – 0.4882 –

4 25.1646 21.065 – – 0.5802 –

5 25.1337 21.086 – – 0.5778 –

Butterfly 2 24.4599 8.1930 – – 0.2433 –

3 24.7930 13.415 – – 0.4607 –

4 25.1056 16.725 – – 0.5847 –

5 25.4528 19.413 – – 0.6455 –

Bridge 2 24.6290 13.529 16.110 – 0.3877 –

3 24.8653 16.806 16.820 – 0.5815 –

4 25.0740 18.902 19.110 – 0.6905 –

5 25.2933 20.268 20.810 – 0.7454 –

Cameraman 2 24.7759 13.626 – 25.2568 0.5113 –

3 24.6764 14.460 – 23.2942 0.6053 –

4 25.1169 20.153 – 25.1117 0.6594 –

5 25.2019 20.661 – 26.0004 0.6875 –
of the SADFO, HSO and FFO, and hence these methods have
been run 35 times for each test image and the best ones have
been presented.

As the results of the existing methods are available for
threshold levels of 2, 3, 4 and 5 for the first set of benchmark
images (Oliva et al., 2013; Rajinikanth et al., 2014;

SriMadhava Raja et al., 2014), the same number of threshold
levels are chosen for testing the SADFO. The original test
images, preprocessed images, their histogram and the search

boundaries of first and second image sets are given in Figs. 2
and 3 respectively.

The optimal threshold levels obtained by the SADFO are
presented along with the existing methods in Tables 1 and 2

respectively for first and second set of images. The resulting
segmented images obtained by the SADFO for both image sets
are given in Figs. 4 and 5 respectively. The visual analysis of

these results clearly indicates that the segmented results are
better with more number of threshold levels. In order to quan-
titatively study the effectiveness of the SADFO, three indices

are evaluated for all the segmented results. The first one is
the peak signal to noise ratio (PSNR), an index of quality,
and used to assess the similarity of the processed (segmented)

image against the original image based on the produced mean
square error (MSE) (Akay, 2013; Pal et al., 1994). The second
one is the structural similarity index (SSI), which is another
measure of the image quality through estimating the interde-

pendencies between the original and processed images. It com-
pares the luminance, the contrast and the structure besides
satisfying the symmetry and the boundedness. The last one is
SDI

SO BO FFO PM HSO BO FFO

– 0.8011 2.14E�14 9.22E�13 – 0.02891

– 0.8246 1.99 E�03 2.99E�02 – 0.04903

– 0.8165 2.44 E�01 2.77E�01 – 0.31176

– 0.8542 2.12 E�01 3.04E�01 – 0.58319

0.6672 0.8077 1.58 E�11 6.92E�13 – 0.26681

0.6762 0.8322 1.96 E�02 1.92E�02 – 0.27916

0.6860 0.8421 2.84 E�01 5.82E�02 – 0.63441

0.6896 0.8257 1.29 E�01 4.40E�01 – 0.83551

– – 6.38E�14 2.30E�12 – –

– – 5.16 E�05 2.30E�12 – –

– – 6.16 E�03 1.22E�02 – –

– – 9.66 E�01 1.84E�12 – –

– – 2.01 E�09 7.30E�02 – –

– – 2.91 E�03 6.17E�01 – –

– – 2.67 E�01 3.07E 00 – –

– – 2.57 E�00 3.87E 00 – –

0.6274 – 5.22 E�12 4.61E�13 – –

0.6530 – 5.78 E�03 7.10E�01 – –

0.6556 – 2.82 E�02 2.91E�01 – –

0.6638 – 1.62 E�01 3.57E�01 – –

– 0.8258 6.04 E�07 2.30E�12 – 0.00176

– 0.8432 3.58 E�03 1.55E�02 – 0.11874

– 0.8478 4.59 E�02 2.76E�12 – 0.73652

– 0.8633 2.93 E�01 5.30E�03 – 0.90362



Table 4 Comparison of performances metrics for second image set.

PSNR SSI SDI

PM HSO FFO PM HSO FFO PM HSO FFO

Eye-1 2 24.8191 24.7962 24.8123 0.5854 0.5852 0.5831 8.26E�11 4.31E�09 9.44E�06

3 25.0448 25.0152 25.0268 0.5993 0.5993 0.6002 1.25 E�06 3.99 E�04 4.99E�03

4 25.3365 25.3107 25.3669 0.6128 0.6179 0.6038 3.38 E�02 4.11 E�03 4.77E�01

5 25.5135 25.5019 25.4841 0.6058 0.6050 0.5995 1.76 E�00 4.34 E�01 3.01E�00

Eye-2 2 25.7126 25.6775 25.7169 0.4228 0.4225 0.4188 1.29 E�08 6.38E�11 4.30E�07

3 26.2345 26.2061 26.2218 0.4866 0.4655 0.4883 5.31 E�10 5.36 E�05 4.30E�04

4 26.8838 26.2545 26.4484 0.6156 0.4845 0.5363 4.18 E�05 6.36 E�02 3.44E�01

5 26.3175 26.2398 26.5590 0.7290 0.7133 0.7039 4.89 E�03 9.66 E�00 3.81E�01

Liver 2 29.2246 28.7376 29.1625 0.8072 0.8089 0.8022 2.33 E�05 5.44 E�06 1.63E-04

3 29.2820 29.2255 29.2544 0.8309 0.8249 0.8311 1.33 E�11 5.78 E�05 7.30E�03

4 29.5461 29.3489 29.3504 0.8649 0.8528 0.8534 4.74 E�03 4.84 E�02 4.93E�03

5 29.5612 29.5668 29.4994 0.8763 0.8725 0.8715 4.46 E�01 3.64 E�00 3.57E�03

Head 2 24.4610 24.4842 24.4205 0.0742 0.0785 0.0821 4.65E�04 6.01 E�07 4.30E�02

3 24.7120 24.4466 24.7240 0.3225 0.0858 0.3176 2.00 E�05 3.58 E�03 3.55E�04

4 24.7712 24.7397 24.6836 0.3275 0.3250 0.3311 5.48 E�01 1.59 E�01 4.76E�01

5 24.7858 24.7265 24.7014 0.3404 0.3365 0.3330 5.59 E�01 4.93 E�00 5.30E�00

Tongue-1 2 24.7884 24.7632 24.7761 0.5033 0.4883 0.4815 9.24 E�13 3.58 E�11 6.94E�07

3 25.2390 25.0934 25.1305 0.5582 0.5332 0.5078 6.89 E�08 3.96 E�04 3.94E�04

4 25.4739 25.4117 25.3529 0.5502 0.5250 0.5247 5.59 E�03 4.81 E�02 5.84E�01

5 25.6758 25.5950 25.5015 0.6863 0.6681 0.6766 5.23 E�01 3.49 E�01 1.10E�01

Tongue-2 2 24.9877 24.9703 24.9744 0.3936 0.3913 0.3925 2.44E�08 4.03 E�03 7.30E�04

3 25.2226 25.2196 25.1996 0.5287 0.5084 0.5204 1.29 E�06 4.93 E�03 6.37E�03

4 25.3865 25.3349 25.2858 0.5123 0.5100 0.5042 1.07 E�03 4.67 E�01 3.07E 00

5 25.7003 25.4197 25.5531 0.5844 0.5217 0.5521 2.66 E�00 4.57 E�00 3.87E 00
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the standard deviation index (SDI), which indicates the
amount of dispersion of the data, and evaluated for the results

of 35 runs for all the test images with a view to study the sta-
bility and consistency of the SADFO. The smaller value of
SDI indicates much better stability and consistency and vice-

versa. They are mathematically represented as:

PSNR ¼ 10 log10
2552

MSE

� 	
ð21Þ

SSIðx; yÞ ¼ 2lxly þ k1
� �

2rxy þ k2
� �

l2
x þ l2

y � k1
� �

r2
x þ r2

y � k2
� � ð22Þ

SDI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnt

k¼1

Fbest
i � Fave

� �
nt

s
ð23Þ

where

Fbest
i and Fave are the best and average fitness of nt trial solu-

tions respectively
nt represents number of trial solutions

MSE indicates mean squared error and is evaluated by

MSE ¼
Xm
i¼1

Xn
j¼1

ðIorii;j � Isegi;j Þ ð24Þ

Iorii;j and Isegi;j are the gray level corresponding to ith row and

jth column pixel of original and segmented images respectively

m and n represent the number of rows and columns in
image matrix respectively

lx and ly represent average of x and y respectively
r2
x and r2

y indicate variance of x and y respectively rxy indi-

cates the covariance of x and y
k1 and k2 are constants, included to stabilize the division

with weak denominator.
The performance metrics of PSNR, SSI, SDI are evaluated

for the results of SADFO and compared with those of the
existing methods in Tables 3 and 4 respectively for first and
second image sets. It is very clear from the results that the

PSNR values are comparatively smaller for smaller number
of threshold values and increase with the number of threshold
levels. The SSI values are also found to increase with the num-

ber of threshold values. Besides the PSNR and SSI values are
better than the existing approaches, thereby indicating the
superior performance of the segmentation process of the

SADFO. The smaller values of the SDI indicate that the
SADFO offers better stability and consistency. The results
clearly exhibit that the SADFO outperforms the existing meth-
ods and is suitable for multi-level segmentation of both real life

and medical images.

5. Conclusion

DFO is a population based optimization algorithm that simu-
lates the static and dynamic swarming behaviors of dragon-
flies. The swarming behaviors represent the exploration and

exploitation phases of the DFO. A self-adaptive scheme for
tuning the DFO parameters has been explained and a method-
ology involving SADFO for performing multilevel segmenta-

tion of digital images has been suggested. The multilevel
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segmentation problem has been formulated as an optimization
problem and solved using the developed SADFO. The method
has been applied on real life and medical images with a view of

illustrating the performances. It has been found from the
results that the SADFO effectively optimizes the threshold val-
ues through exploring the solution space in obtaining the glo-

bal best solution.
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Appendix A.

The decision variables of threshold levels are represented by
harmony in HSO and firefly in FFO as

harmonyi ¼ ½ T1
i ; T

2
i ; . . . ; T

nc�1
i � ðA:1Þ

fireflyi ¼ ½ T1
i ; T

2
i ; . . . ; T

nc�1
i � ðA:2Þ

The fitness function for both the HSO and FFO is built
from OTSU based between-class variance as (Otsu, 1979):

Maximize F ¼
Xnc
k¼1

vk½ lk � lG� 2 ðA:3Þ

where lk and lG indicate the mean intensity of the set Ck and
the global mean intensity of the whole image respectively, and
can be calculated by the following equations.

l1 ¼
XT1

i¼1

i � pi
v1

l2 ¼
XT2

i¼T1þ1

i � pi
v2

:::::::: lnc

¼
XL

i¼Tnc�1þ1

i � pi
vnc

ðA:4Þ

lG ¼
XL
i¼1

i � pi ðA:5Þ
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