Journal of King Saud University - Computer and Information Sciences 30 (2018) 531-546

agesudloldl
King Saud University

Journal of King Saud University -
Computer and Information Sciences

Contents lists available at ScienceDirect

Journal of
King Saud University -
Computer and.

Information Sciences.

journal homepage: www.sciencedirect.com

Parallel hardware for faster morphological analysis

@ CrossMark

Issam Damaj**, Mahmoud Imdoukh?, Rached Zantout”

2 Department of Electrical and Computer Engineering, American University of Kuwait, P.0. Box 3323, Safat 13034, Kuwait
b Department of Electrical and Computer Engineering, Rafik Hariri University, P.O. Box 10, Mechref, Damour, Chouf, 2010, Lebanon

ARTICLE INFO

ABSTRACT

Article history:

Received 22 May 2017
Revised 5 July 2017
Accepted 11 July 2017
Available online 14 July 2017

Keywords:
Morphological analysis
NLP

Performance

Hardware design
FPGAs

Morphological analysis of Arabic language is computationally intensive, has numerous forms and rules,
and intrinsically parallel. The investigation presented in this paper confirms that the effective develop-
ment of parallel algorithms and the derivation of corresponding processors in hardware enable imple-
mentations with appealing performance characteristics. The presented developments of parallel
hardware comprise the application of a variety of algorithm modelling techniques, strategies for concur-
rent processing, and the creation of pioneering hardware implementations that target modern pro-
grammable devices. The investigation includes the creation of a linguistic-based stemmer for Arabic
verb root extraction with extended infix processing to attain high-levels of accuracy. The implementa-
tions comprise three versions, namely, software, non-pipelined processor, and pipelined processor with
high throughput. The targeted systems are high-performance multi-core processors for software imple-
mentations and high-end Field Programmable Gate Array systems for hardware implementations. The
investigation includes a thorough evaluation of the methodology, and performance and accuracy analyses
of the developed software and hardware implementations. The developed processors achieved significant
speedups over the software implementation. The developed stemmer for verb root extraction with infix
processing attained accuracies of 87% and 90.7% for analyzing the texts of the Holy Quran and its Chapter
29 - Surat Al-Ankabut.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Even in science fiction, as in Star Trek, a universal translator is pre-
sented to solve the challenge of automatic translation among lan-

Natural Language Processing (NLP) is a rapidly developing field.
Developments in NLP are, at the larger part, driven by the fact that
the world has turned into a small village equipped with advanced
transportation, media, and communication. In 2016, the total num-
ber of social network users worldwide is estimated to be around
2.2 billion with a global penetration of 31%. In the US, 78% of the
population has social network profiles. Indeed, it is expected that
the total number of users will grow to 2.5 billion in 2018
(Statista, 2017). In such a modern, connected, and global society,
people still use different languages. The idea of having all the peo-
ple use one language has been proven by practice to be impossible.

* Corresponding author.
E-mail addresses: idamaj@auk.edu.kw (I. Damaj), s00024916@alumni.auk.edu.
kw (M. Imdoukh), Zantoutrn@rhu.edu.lb (R. Zantout).
Peer review under responsibility of King Saud University.

ELSEVIER Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2017.07.003

guages. At present, NLP active areas of research are machine
translation, information retrieval, text categorization, sentiment
mining, to name a few (Nirenburg and Wilks, 2000; Yang et al.,
2012; Agarwal and Mittal, 2016).

A Morphological Analyzer (MA) is a core subsystem in NLP
applications. MAs work on identifying words being used in a speci-
fic language and study the internal structure of these words
(Hamalawy, 2009). Morphology can be defined as producing a
word from another by changing it to fit a new meaning.
Furthermore, Morphological analysis is usually complicated, com-
putationally intensive, and intrinsically parallel. Arabic language is
well-known for having rich morphology, complex word formation
and patterns (Al-Sughaiyer and Al-Kharashi, 2004).

1.1. Background

The rich morphology of Arabic enables the language to develop
and grow. Arabic morphology (34iyl) is categorized into small,
large, larger, and the largest morphologies. The small morphology
derives a word from a root but keeps similarities between the two

1319-1578/© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2017.07.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2017.07.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:idamaj@auk.edu.kw
mailto:s00024916@alumni.auk.edu.kw
mailto:s00024916@alumni.auk.edu.kw
mailto:Zantoutrn@rhu.edu.lb
http://dx.doi.org/10.1016/j.jksuci.2017.07.003
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

532 I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

words in their pronunciation and meaning; such as (ale ,s=) that
translates to (root: science, derived: scientist). The remaining mor-
phologies comprise exchanging letters of the root, producing a
word from another by changing one or more letters, and producing
a word by combining a group of words. By far, the mostly used type
of morphology in Arabic is the small morphology (Al-Sughaiyer
and Al-Kharashi, 2004; Soudi et al., 2007; Dahdah, 1995; Rajhi,
1979; Hamandi et al., 2006; Al-Khalifah, 1996).

Arabic words are grouped into the three main categories of
Nouns, Verbs, and Particles. The Nouns and Verbs consist of subcat-
egories in which the main form of the word changes per its posi-
tion/role in the sentence and some of the other words in the
sentence. For example, verbs are categorized per time and struc-
ture. The verb times are past, present or future, while structures
may be either proper or defective. The difference between words
in subcategories can be as subtle as the presence/absence of a
vowel or as clear as the addition/removal of letters to/from the
word.

In Arabic language, small morphology can act on verbs (Al-
Sughaiyer and Al-Kharashi, 2004). The roots of Arabic words have
traditionally been considered to consist of three or four letters. Like
other languages, in Arabic, letters can be added to the beginning
(prefixes) and/or to the end (suffixes) of the root. However, in Ara-
bic, letters can be added inside a root (infixes). Infixes complicate
the morphological analysis of the Arabic language because the infix
letters can also be letters in the root. In addition, a Verb in Arabic
has different forms if the subject or object is masculine or femi-
nine. Also, differences in the forms can exist if the sentence refers
to one person, a group of two, or a group of more than two (Al-
Khalifah, 1996). Nevertheless, Arabic verbs follow specific forms.
For example, the root (w», Study) maps to the ternary pattern
(d=2), while the verb (u«,%) maps to (J=&). Here, the addition of the
prefix () derives the present tense of the verb.

In Arabic verbs, there are seven letters that can be added to the
beginning of the root as prefixes; these letters are grouped in the
Arabic word (silé), The nine letters that can be added to the
end of the root as suffixes are grouped in the Arabic word
(0sSei). The five letters that can be added to the inside of a root
(infixes) are grouped in the Arabic word (s'); infixes have a
more complicated set of rules with focus on the three vowel letters
s,),and ¢ (Hamandi et al., 2006). In Table 1, example morphological
variations from a verb root is presented with focus on the applied
change on form and meaning. The same patterns shown in Table 1
can produce similar variations for the verb root («~=, Accompany)
to produce ¢s~=; and «al=; in the same tense and form as in the
patterns ¢s& and Jel. As compared to verbs, Arabic nouns are
more complex due to the large variety of forms, irregularities,
and number.

1.2. Related work

Al-Sughaiyer and Al-Kharashi (2004) presented a comprehen-
sive survey of Arabic morphological analysis techniques that com-
prises definitions, classifications, approaches, algorithms, etc. In
the literature, different MA techniques and algorithms target Ara-
bic verbs specifically. Yaghi et al. (2003) presented a verb genera-
tion system that enables word-to-root and root-to-word lookups.
The system uses coding techniques to compactly store and effi-

Table 1
Morphological variations of the verb Study (c-.2) with changes on form and meaning.

ciently access a dictionary of Arabic words. Yagi and Harous
(2003) details the development of a database of generated stems
that supports their verb-matching system. The developed database
is of multipurpose and can be used to identify stems, classify
morpho-semantic and morpho-syntactic templates, and support
a variety of applications. Boubas et al. presented the use of genetic
algorithms to generate an MA for Arabic verb. The investigations
comprised developing general verb patterns and then applying
them to derive morphological rules. The reported results reflect
highly accurate matching capabilities (Boubas et al., 2011).

A variety of algorithms have been developed to perform mor-
phological analysis of verbs based on an input word, such as, slid-
ing window algorithms (El-Affindi, 1998), word decomposition
using algebraic algorithms (EI-Affindi, 1991), and literals genera-
tion using permutations of the input word letters (Al-Shalabi and
Evens, 1998). Other analyzers attempt to extract the root of a verb
by manipulating infixes and prefixes (Hamandi et al., 2002, 2006;
Khoja, 2017; Khoja and Garside, 1999; Larkey and Connell, 2006;
Saad et al.,, 2010; Larkey et al., 2002; Asaad and Abbod, 2014;
Boudlal et al., 2011; Hegaz and Elsharkawi, 1986; Hlal, 1987;
Abu Shquier and Alhawiti, 2015; Sembok and Ata, 2013; Abu-
Errub et al., 2014; Al-Bawab and Al-Tayyan, 1998). The extracted
stems are then validated against a list of standard Arabic roots.
In (Hamalawy, 2009), such a manipulation of affixes is classified
under Linguistic-based (LB) stemmers. LB stemmers are usually
accurate but require the preparation of lists for matching and val-
idation. If a stemmer doesn’t include analysis of infixes and root
extraction, it is referred to as a light stemmer (Larkey et al., 2002).

LB stemmers attracted the attention of many researchers and
enabled the development of a variety of MAs. The focus of the pre-
sented MAs is accuracy; however, almost all contributions high-
light the essential need for high-performance processing. Khoja
(2017) and Khoja and Garside (1999) presented the development
of an LB Arabic MA algorithm; the algorithm analyzes a word by
removing definite articles, prefixes, suffixes, stop words, and then
matches the remaining word against the pattern of the same
length to extract the root. Khoja stemmer is widely used in the lit-
erature with a reported accuracy of 96% (KKhoja, 2017). Asaad and
Abbod (2014) presented an extraction approach that removes pre-
fixes, suffixes, infixes, and attempts to identify the root. The pre-
sented approach includes making a second attempt to identify an
unidentified root through a procedure that handles weak,
hamzated (that has the letter Hamza ‘'), eliminated-long-vowels,
and two-letter geminated words. The proposed approach produced
somewhat improved accuracy over Khoja stemmer. Boudlal et al.
(2011) presented an Arabic MA system that extracts roots depend-
ing on the context within a sentence. A Hidden Markov Models
approach was used, where the observations are the words and
the possible roots represent the hidden states. The approach
achieved an accuracy of 94% in targeting the NEMLAR Arabic writ-
ing corpus with its 500,000 words. LB stemmers have a long history
of reported contributions since 1985 (Al-Sughaiyer and Al-
Kharashi, 2004); this includes the approaches of Hegaz and
Elsharkawi (1986), Hlal (1987), Abu Shquier and Alhawiti (2015),
Sembok and Ata (2013), Abu-Errub et al. (2014), El-Affindi (1998,
1991), Al-Bawab and Al-Tayyan (1998), Khoja (2017) and Khoja
and Garside (1999), to name but a few. Indeed, all the reported
contributions above are developed as software implementations.

Addition Location Morph Pattern Meaning (Tense, Form)

() Prefix GUN Jaiy One is studying (Present, Singular)
(0s,9) (Prefix, Suffix) sy Ostais Many are studying (Present, Plural)
() (Prefix, Infix) Gl Jelyy One is studying with others (Present, Singular)

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546 533

LB stemming can also be used for nouns, however, with higher
complexity than verbs.

2. Research objectives

Challenges to Arabic MAs comprise performance characteristics
(speed, efficiency, and complexity), storage requirements, reliabil-
ity and accuracy, and first and foremost the dealing with the lan-
guage morphology. Arabic language morphological structure
leads to huge lexical variations and number of dissimilar forms.
Many definite articles, conjunctions, and particles can be found
as prefixes. The number of possible suffixes is astronomical. In
addition, many stems are derived from roots by infixing. For exam-
ple, Table 2 presents a larger set of morphological variations for the
verb root Study (w«2) than the example in Table 1; additional
complexity arises from the use of the diacritics Fatha (7), Kasra (.),
Damma (°), Sukun (), and Shadda (7). Table 2 is generated by
Qutrub (2017) and shows 82 different forms that can be reduced
to 36 without the diacritics. Even closely-related forms, such as
singular and plural, are not related by simple affixing. Another
example of Arabic MA complexity includes the need to deal with
deleted letters from words. For instance, the root Saw (siJ) has
the word See (s.») in its present tense; the present tense is
deviated from the standard pattern (J=&) that would have given
the wrong standard word of (sl_»). The letter “"i is deleted from
the word that follows the standard pattern to produce the correct
word (s_2) which doesn’t follow the standard form of present tense
(Dahdah, 1995; Asaad and Abbod, 2014). In addition, MA algo-
rithms are computationally intensive and demanding when it
comes to computing resources.

Modern high-performance computers (HPCs) are hybrids of
multi-core processors, graphical processing units (GPUs), high-
density Field Programmable Gate Arrays devices (FPGAs), to name
a few. Within hybrid systems, algorithms can be partitioned and
distributed or fully-delegated to one co- or pre-processing subsys-

tem. Hybrid HPCs are supported by rich co-analysis and co-design
tools that enable unified hardware/software implementations and
effective rapid prototyping of hardware to run computationally
intensive algorithms (Damaj, 2006, 2007; Damaj and Diab, 2003;
Kasbah et al., 2008; Damaj and Kasbah, 2017). With no doubt,
MAs can benefit from state-of-the-art HPCs to run on software
and/or hardware implementations with optimized performance
characteristics.

Limited work has been reported in the literature to present
hardware implementations of MA systems in general and for
Arabic language in specific. Murty et al. (2003), and like many
investigations, presented the design of high-speed string matching
co-processor for NLP. Other reported work comprises fast VLSI
implementations for approximate string matching (Grossi, 1992),
FPGA-based co-processor for text extraction (Ratha et al., 2000),
and ASIC design of a high-speed unit for NLP to match inputs with
lexical entries (Raman and Shaji, 1995). Cohen (1998) presented a
hardware-assisted algorithm for large-dictionary string matching
using n-gram hashing. The proposed hardware system comprises
a personal computer with a co-processing board. Moreover,
Hamandi et al. (2006) stressed the importance of using parallel
processing and hardware implementation to accelerate NLP and
MA systems. The authors presented a sample parallel algorithm
for an LB stemmer and reasoned about its characteristics. Never-
theless, the authors didn’t include sample IP-cores or present
implementation results. Parallel and hardware processing are com-
mon in information retrieval, speech recognition, text-to-speech,
speech synthesis etc. (Rasmussen, 1991; Gadri and Moussaoui,
2015; Mahdaouy et al., 2014; Sensory, 2017; Khodor and Zaki,
2011). Ultimately, the aim of all presented hardware investigations
is at making NLP systems more responsive by providing faster
processing.

This paper presents high-speed hardware implementations of
an Arabic LB stemmer under FPGAs; the targeted stemmer is for
Arabic verb root extraction. The developed implementations

Table 2
Morphological variations of the verb Study (u-.2) with diacritics showing the active and (passive) voice.
Subject Past Present Imperative Subjunctive Emphasized Imperative Emphasized
Present Present Present Imperative
1 KNS vai‘ Cuj, Q,,Jsi” b;_,_)jj
(&) (624 (&) (524 (&aod)
We 5 Ga Gl s Gl
(629 (655 (55¥) (>59) (6a0%)
You Qw3 Oa)8 Gl G% G s Sl Sad
Male, Singular (€2%) (G0%) (0%) (o0%) (bas¥)
You @ain O S Pyt g G = GuY
Female, Singular (%) (oY) (oY) (&%)
You e S L, L R Ll S
Male, Dual (el (ohani) (L) (eo¥) (okas)
You [P Oy L, Lyl R Ll S
Female, Dual (Wl (o) (Lo¥) (o) (o0¥)
You Ay Ok 1524 1508 ba,s 1543 Say
Male, Plural (%) (&s0%) (155%) (1525%) (&)
You Hlass Gh Sl RE Ry S o)
Female, Plural (&ha) (620%) (&858 (S (o)
He G Gk e % Gk o
() (%) (G:%) (0=5%) (&%)
She Eaad S8 S GS NEE
(&25) (%) (655 (>5%) (et
They s Gk Syt Pt Gk
Male, Dual (=59 (639) (39) (39) (o=o%)
They %Y o Lo Lo REg
Female, Dual (%) (o) (L) (LX) (oe¥)
They 15853 Ol 15,5 158, Gh%
Male, Plural (152,3) (O (1545%) (1545%) (045%)
They BE5Y % Ok Gk b
Female, Plural (&%) (O20%) (&80%) (620%) (Mss¥)

534 I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

carefully exploit the intrinsic parallelism in LB stemmers to pro-
vide an enhanced performance with adequate accuracy levels.
The hardware intellectual property (IP)-cores are systematically
developed using the methodology presented by Kasbah et al.
(2008) to produce clear specifications, manual refinements, and
parallel implementations under VHDL. The developed Datapath
presents a rich variety of hardware circuits tailored for achieving
specific processing aims and performance characteristics. The
developed hardware is tested for accuracy and speed using robust
corpuses and compared with software implementations. The main
targeted high-performance computing devices are multicore pro-
cessors for the software version and high-end FPGAs for hardware
implementations. The research objectives of this paper are summa-
rized as follows:

1. Exploit the intrinsic parallelism of LB stemmers for Arabic verb
root extraction and setting the example for and motivating sim-
ilar derivations of parallel programs for NLP.

2. Identify and investigate the performance aspects of software
implementations of LB stemmers for Arabic verb root extraction
while targeting high-performance multi-core processors.

3. Demonstrate a development methodology and investigate the
benefits of mapping the derived parallel versions of the adopted
algorithm onto hardware. The investigation focuses on the abil-
ity of achieving higher throughputs than traditional software
implementations by developing multi-cycle and pipelined
hardware processors. The hardware developments include the
identification of effective implementation specifics and best
practices. In addition, the presented research aims at motivat-
ing the creation of processors that implement wide NLP fea-
tures and can be embedded in applications.

4. Present a discussion on the usefulness of the identified software
and hardware performance metrics and their usability and
applicability in the wider NLP context.

5. Provide enhanced accuracies in analyzing standard Arabic text,
such as the Holy Quran, by developing algorithms for infix
processing.

The paper includes thorough performance analysis and evalua-
tion of the developed hardware and compares the findings with
similar work in the literature. The evaluation confirms that we
have successfully created FPGA cores with accelerated processing
throughputs and demonstrated how to take the opportunities to
optimize stemming accuracy through infix processing.

This paper is organized so that Section 3 introduces the adopted
stemming algorithm for verb extraction, its model of computation,
and the concurrent process model. Section 4 presents the processor
designs. In Section 5, we present the implementation aspects and
challenges. A thorough analysis and evaluation is presented in Sec-
tion 6 including validation and testing, performance analysis, accu-
racy analysis, and a general evaluation. Section 7 concludes the
paper and sets the ground for future work.

3. Unified hardware and software development

The hardware development of the targeted verb root extraction
algorithm adopts an informal and systematic approach (Damaj,
2007; Kasbah et al., 2008). The methodology is unified in the sense
that it uses common software engineering techniques to model the
algorithm; accordingly, software and/or hardware designs are
derived and implemented. The steps of development are summa-
rized as follows:

1. Depict the behavior of the model of computation using standard
flowcharts.

2. Implement the software version and the hardware using behav-
ioral descriptions.

3. Identify parallel processes and capture the behavior using con-
current process models.

4. Design the Datapath by identifying, allocating, and binding
resources.

5. Develop the Finite State Machine (FSM) of the control unit
based on the flowcharts.

6. Describe the developed processor using a Hardware Description
Language (HDL) and synthesize the implementation for FPGAs.

Although the approach can be used to co-design partitioned
versions of the algorithm, the current investigation is intended to
produce standalone software implementations and hardware IP-
cores for FPGAs.

3.1. The model of computation

The targeted algorithm is a standard LB stemmer that extracts
the verb root from an input word. In the current investigation,
the technical differences between the letters ' and | are not
considered as they do not affect the correctness of the root extrac-
tions and the specific purpose of the investigated algorithm. In
addition, diacritics are stripped from the input word for the sake
of simplicity. The abstract pseudocode of the adopted stemming
algorithm is shown in Fig. 1, further expanded into computational
steps in Fig. 2, and behavioral software components as shown in
Fig. 3. In the developed flowcharts, Java-like descriptions of pro-
cesses are used.

Generating the stems is a major process in the targeted verb
root extraction algorithm. Initially, the Check Prefixes and Suffixes
and Produce Pairs processes produce pairs of all possible combina-
tions of prefixes and suffixes. Then, stem generation takes into con-
sideration the cases of having none, one, or both prefixes and
suffixes in the input word from the produced pairs. A list of poten-
tial roots is then created by striping all the produced prefix-suffix
pairs from the input word. The flowchart of the Generate Stems pro-
cess is shown in Fig. 4. The process Filter by Size creates two lists for
stems of sizes three (Trilateral) and four (Quadrilateral). Trilateral
and quadrilateral stems are the most common among Arabic verbs.
Nevertheless, extraction of roots with larger sizes is set as a future
work. The last computation step is to compare the generated ele-
ments of the two lists of different stem sizes. Finally, the matching
root is extracted. For example, processing the word (1 seSliduiuil)
produces the pairs of all combinations of the prefixes (<.4l) and
the suffixes (ls<SWw). Many stems are generated based on all
possible combinations of prefixes and suffixes that are then striped
from the input word and filtered into potential Trilateral and
Quadrilateral roots. Among the potential roots produced for
(W seSliicanddl) are (i) (i) (0ss), etc. Finally, the root (i) is
extracted. As for the verb (us=lw), the produced potential roots
include (<) ,(=L), and (s=1); however, the extracted root is (<)

3.2. Concurrent process model

The development of a concurrent version of the verb extraction
algorithm targets parallelism at the process and sub-process levels.
At the process level, Check Prefixes, Check Suffixes, Produce Prefixes,
and Produce Suffixes are scheduled in parallel over two steps (See
Fig. 5). In several sub-processes, pleasantly parallel processing is
possible. For example, the loop unrolling of the checkPrefix process
replicates seven parallel comparisons as in Fig. 6; the parallel ver-
sion of checkPrefix returns TRUE if a matching prefix is found. The
prefix checks are done in parallel for the first five characters of a
15-character input word (See Fig. 7). The parallel version of the

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

Verb root extraction algorithm
get an input Arabic word

check for all allowable prefixes and suffixes
for all allowable prefixes

for all allowable suffixes
produce a (prefix, suffix) pair
for all (prefix, suffix) pair

generate the stems and filter them by size
for all filtered stems

compare with stored Arabic verb roots and extract the desired root

Fig. 1. The verb root extraction algorithm in pseudocode.

Get Input
Y —
Check Prefixes and) v g
. Check Prefixes prefixLetters = " g/l
Suffixes
\ |
\ |
\ |
\\ A 4 [
) |
N Check Suffixes |
\ |
|
| true
|
Y e \ 4 1
|
Produce Pairs Produce Prefixes d
\ true
\ | v
\ " | return true |
\\ A 4 | false false
\ ‘ v
\ .
\ Produce Suffixes | ot |
' |
v N 4 return false [———
Generate and Filter
Generate Stems
Stems
\
\
\
\\ v
\
N Filter by Size
\
Y o Y
Compare Stems and ,
P Compare Trilateral Stems
Extract Root
\
\
\
\ y
\
\\ Compare Quadrilateral
\ Stems
\
\
\
\
\ Y
\
\\ Extract Root

Fig. 2. Sample expanded flowcharts of the adopted algorithm.

536

process Check Suffixes is developed in a similar fashion to that of

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

function checkPrefix (char : std logic vector(15 downto 0)) return std_logic is
constant prefixes: charsArray(0 to 6) := (x"0623", x"062A", x"0633", x"0641", x"0644",x"0646", x"064A");

begin
foriin 0 to 6 loop
if char = prefixes(i) then
return '1";
end if;
end loop;

(a) Behavioral VHDL implementation. The Hexadecimal values of charsArray are the Unicode of the
Arabic characters <, o I, J, & o, .

public static boolean checkPrefix (String prefix, int index)

{
final String prefixLetters = " <illud";
for (int i = 0; 1 < prefixLetters.length(); i++) {
if (prefixLetters.charAt(i) == prefix.charAt(index)) {
return true; } }

return false;

return '0'";

(b) Software implementation under JAVA

Fig. 3. Sample implementations of the process Check Prefixes.

pairs = generatePairs(word)
stem = new String[pairs.length]

»l

for(index; Pair p: pairs)

true

p.getPrefix().equals("NONE"

true-

p.getSuffix().equals("NONE")

ﬁtru e

p.getSuffix().equals("NONE"

ﬁtrue

false false

stem[index] = word.substrin stem(index] =
B Prefi £ word.substring(p.getPrefix().length(), | false
(p.getPrefix().length(), e lonath)
etSuffix().lengthi

word.length());

stem[index] = word.substring(0,

stem(index] = word word.length() - p.getSuffix().length())

¥

index++

Fig. 4. The flowchart of the process Generate Stems.

sizes three and four are compared using parallel instances of
Compare Trilateral Stems and Compare Quadrilateral Stems.

Check Prefixes; an entity checkSuffix is developed to check all the
15-character input word in parallel. The number of input character
is chosen based on the longest word in Arabic which is
(W seSliauadsl), At this point, prefix and suffix pairs are produced to
enable the generation of stems and filtering trilateral and quadri-
lateral stems by size. Upon the filtering completion, the stems of

However, the compare processes are internally sequential. In
addition, the sub-processes of the comparisons are replicated in a
data-parallel fashion (See Fig. 8). Finally, the root is extracted.
Indeed, more parallelism is possible at the sub-processes level;
for example, in Generate Stems, the loops can be unrolled into

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

Get Input

Check Prefixes and
Suffixes

Produce Pairs

Generate and Filter
Stems

Compare Stems and
Extract Root

Concurrent Processes

\ Filter by Size

7777777777 | |
| |
Check Prefixes ! }
\ | |
\
N Check Prefixes Check Suffixes
\\
\
\ Check Suffixes
\\ -
Produce Prefixes
N v
\
N Produce Prefixes Produce Suffixes
\\
\\ | |
\ Produce Suffixes | |
\
\ - | |
>SS | |
S | |
| |
***** l l
| |
Generate Stems I I
| |
\ l l
\ | |
\ | |
\ | |
AY | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

input p_letter

prefix 6

prefix 1

Comparator 6

prefix 0

Comparator 1

Comparator 0

PrefixChecker

isp_o

Compare Trilateral Stems

Stems

Compare Quadrilateral

entity checkPrefix is

port (

p_letter:

isp_o: out std logic);

end entity;

architecture arch of checkPrefix is
component comparator hex is

begin

port (hexl, hex2: in std logic_vector (15 downto 0);

similar: out std logic);

end component;

constant prefixes:
(x"0623",

signal r

x"062A",
x"0644",x"0646",
std logic vector (6 downto 0);

charsArray (0 to 6):=
x"0633",
x"064A") ;

in std logic vector (15 downto 0);

x"0641",

Generate Comparators:for 1 in 0 to 6 generate

c_h:

comparator_hex

port map(p_letter, prefixes(i),
end generate Generate_Comparators;

isp o <=

end architecture;

or r(2)
or r(6);

or r(l)
or r(5)

r(i));

or r(3) or

537

Fig. 5. Parallel implementation of the process Check Prefixes, Check Suffixes, Produce Prefixes, Produce Suffixes, Compare Trilateral Stems, and Compare Quadrilateral Stems.

Fig. 6. Data parallel implementation of the process Check Prefixes. The input to the entity is a potential input prefix character from an input word, while the output is the
comparison result.

538
word_i(4) word_i(1) word_i(0)
A
| Check Prefixes | | Check Prefixes | | Check Prefixes |

v v v

Fig. 7. Parallel replication of the entity checkPrefix. The first five characters of the
input word are initially stored in temporary registers (reg).

different concurrent processes. However, compromising the degree
of parallelism is in favor of economizing the use of hardware
resources during implementation.

4. Processor design

The Arabic verb root extraction hardware is developed as two
processors, one multi-cycle and the other is pipelined. The Datap-
ath design comprises identifying, allocating, and binding resources.
The Control Unit schedules the execution of resources. Both pro-
cessors target a total number of five clock cycles to complete their
execution.

4.1. The Datapath design

The Datapath is built using different types of registers, com-
parators, and functional units. The design hierarchy is presented
in Fig. 9. Different types of registers are used. The purpose of the
registers is to store the 16-bit Unicode of a single Arabic character
(regC), three Arabic characters (reg3C), four Arabic characters
(reg4(C), and standard logic general purpose registers of different
widths (reg). In addition, three different comparators are used for
the developed processors including a comparator for single Arabic
characters (comparator). The unit stem3_Comparator compares two

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

Arabic words each of three characters, while the unit stem4_Com-
parator performs the same check but for words of four characters.
The functional units checkPrefix, checkSuffix, prdPrefixes, prdSuffixes,
generateStems, and compareStems correspond to the processes
Check Prefixes, Check Suffixes, Produce Prefixes, Produce Suffixes, Gen-
erate and Filter Stems, and Compare Stems and Extract Root. The pro-
posed Datapath is shown in Fig. 10.

The functional units in the Datapath are separated by five arrays
of registers. The number of allocated registers is determined per
the possible prefixes and suffixes in an Arabic verb. Five registers
are allocated for prefixes in the input word, while 15 registers
are allocated to examine the suffixes. The examination of the suf-
fixes starts from the left-most character; however, for words
shorter than 15, unused (U) character positions are expected. The
parallel prefixes and suffixes checks identify the valid characters.
The prefix and suffix producers mask any unwanted characters
beyond the expected locations. For example, for an input word
(0s5%) the output from the checkSuffixes unit is (110111) - with
“1” indicating that a suffix is found and a “0” representing that a
suffix is not found. At that point, the output is masked to
(11UUUU) as the letter (-), found in the middle of the word,
indicates the end of the possibility of having suffixes. Accordingly,
all characters before the letter (<) are masked and output as “U”.
Producing prefixes works in a similar fashion.

4.2. Control unit design

The Control Unit of the verb root extraction processor runs over
five states using the five register arrays in the Datapath; this cre-
ates independent processing stages that can be pipelined. In this
paper, two different control schemes are investigated including
pipelined and non-pipelined. The Control Unit Finite State Machine
(FSM) of the non-pipelined processor is shown in Fig. 11. The pipe-
lined processor overlaps the execution of all stages. The choice of
five stages, and accordingly five clock cycles, is aligned with the
number of distinct processing steps and separating register arrays
(See Fig. 10).

1%] 1%] %] 1%] (%] %] 1%] (%] 1%] 1%] %] 1%]
— —~+ - ~ —~+ — —~+ —~ — — — —
© I ™ o I ™ I I © I ™ ©
3 3 3 3 3 3 3 3 3 3 3 3
N N N N N N N’ N N N N N
@ ® ® @ ® ® ® ® @ ® ® ®
IS IS IN IN IS IN w w w w w w
2llellellellells
3 3 3 3 3 3 0O 0O 0O 0 0O 0O
S 5 S S S S o o o o o o
)))))) 3 3 3 3 3 3
o o o)) o 2 S S S S IS
o o o o o182 o o o o o @
2118llel|&]|&8]|8 S22 2]]2
3. . 3. 3. 3. 3. Q Q Q Q QO Q
= = = = = = — — — — — —
= = = = = =] o e o e e
o o} o o} o o © o o O O S
= = = = = = _— _— —_— —_ —_ -
=N =N =N =B =B =N (%) (%) (%) (%) %))
@ @ o o o ||®
A A A A A A 3 3 3 3 3 3
o o o} o} o} o 2 7 7 7 2 2
3 3 3 3 3 3
(%] [%] 1%} 1%} 1%} (%]
A A i l
Extract Root

!

Fig. 8. Parallel replication of the processes Compare Trilateral Stems and Compare Quadrilateral Stems.

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

ControlUnit

539

Processor

Datapath

v

v v

| regC || reg3C || reg4C || reg || checkPrefix || checkSuffix || prdPrefix || prdSuffix ||generate$tems|| compareStems |
|
v v
| comparator | | comparator | | stem3_Comparator | | stem4_Comparator |

Fig. 9. Design hierarchy of the Arabic verb root extraction processor.

word_i(14) word_i(13) word_i(12) word i(11) word_i(10) word_i(9) word_i(8) word_i(7) word_i(6) word_i(5) word_i(4) word_i(3) word_i(2) word_i(1) word_i(0)

[resC][reeC][resC |[reeC][reeC][resC |[reeC |[reaC][reeC [reeC | [reec |[reec][reec][resC |[rexc |
Chars(3
Chars(14) Chars(13) Chars(12) Chars(11) Chars(10) Chars(9) Chars(8) Chars(7) Chars(6) Chars(5) ‘hars(2. —_—n
4 A v 4

checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkSuffix checkPrefix checkPrefix checkPrefix checkPrefix checkPrefix

|~\7U‘(]4) hul(m iss, u‘uz; mj‘(]]) m}‘ﬂﬂ) iss, J;w) iss, i(xy iss, iﬁ iss. (‘7{67 hsjats) iss iem ISLL(J) xsu‘)tz) iss ie(n lsaiLlﬁy v»pﬁ‘o{«ﬂ npjam IS)LL(E) NLLm npjam)
[J e e J[e J[e J[e J[e J[ree J[rew J[rew J[v J[rew J[vew [ver J[vee J[e J[e J[e J[e J[rex]

v v

’ prdSuffixes ‘ ’ prdPrefixes

ps_o(14) ps_o(13) ps_o(12) ps_o(11) ps_o(10) ps_o(9) ps_o(8) ps_o(7) ps_o(6) ps_o(5) ps_o(4) p;lom ps_o(2) ps luu) ps lmm ppiwl) w%@» pp_o2) pp_o(l) pp_o(0)
| reg | | reg | | reg | | reg | | reg | | reg | | reg | | reg | | reg | | reg | | reg | | reg | | reg | | reg | | reg | | reg | | re‘g | | reg | | reg | | reg

ps_r(14) ps_r(13) ps_r(12) ps_r(11) ps_r(10) ps. 1;(&; ps. ix, s lrr) ps_1(6) ps_i(5) ps_r(4) ps_1(3) ps_1(2) ps_r(1) Pps_r(0) pr,‘rm pp_r(3) pp_1(2) pp_r(l) pp_r(0)
’ 4-Character Stems generateStems 3-Character Stems

ps27‘0(5] psZL)M) p>27‘0l3) ps2_o(2) ps2_o(l) ps2_o(0) psl ‘mi) pst ‘0\4) psl Lm ple»lZ\ psli‘o(H psl ‘mm
[regac][reeaC | [reeaC | [regdC |[regdC][regdC | [Creg3c | [reg3c | [reg3C | [rew3C | [reg3C | [res3C |

scli‘v(ﬂ ~4.2L(4) scli‘l[l) 5¢2_i(2) se2_i(1) s¢2_i(0) mim scim mlm mim ;cim «cimy
’ compareStems

E,mch
root4 root3

word_(i): input word;

iss_o(i) and isp_o(i): outputs from checkPrefix and check Suffix
pp_o(i) and ps_o(i): outputs from prdPrefixes and prdSuffixes
ps1_o(i) and ps2_o(i): outputs from generateStems

sc1_o(i) and sc2_o(i): outputs from compareStems

Signals Legend:

Chars(i): input to checkPrefix and checkSuffix;

iss(i) and isp(i): inputs to prdPrefixes and prdSuffixes
pp_r(i) and ps_r(i): inputs to generateStems

sc1_i(i) and sc2_i(i): inputs to compareStems

root3 and root4: output roots

Fig. 10. The developed Datapath; showing the binding among different entities using signals. Register arrays are highlighted in dark gray.

For all i; load registers
isp(i) <= isp_ol(i)
iss(i) <= iss_o(i)

For all i; load registers

Chars (i) <= word_i(i)

Forall |
pp_r(i) <= pp_o(i)
ps_r(i) <= ps_o(i)

For all i; load registers
scl_i(i) <= ps1_o(i)
sc2_i(i) <= ps2_o(i)

root3 <=scl_o
root4 <=sc2_o

Fig. 11. The FSM of the Control Unit.

5. Implementation aspects

Several hardware and software implementation aspects are
noted for the presented investigation. A variety of implementation

tools are used. In addition, specific implementation challenges
required the exploration of different problem-solving strategies,
such as, substring processing in VHDL and coding of Arabic charac-
ters to suite the analysis and implementation options.

540
5.1. Substring truncation in VHDL

The Generate and Filter Stems process truncates the input
word repeatedly for every produced prefix and suffix pair. The
different truncations of the input word are the generated stems
that are filtered into two lists per size. Although the filtering is
simple, truncation in VHDL requires the development of a special
procedure. The proposed truncation procedure examines the out-
put arrays of bits from the Produce Prefixes and Produce Suffixes
processes; the truncation is done at the identified prefix and suf-
fix if the substring included between them is of size 3 or 4 char-
acters. The main constructs in the proposed procedure are two
loops to check for all possible prefix and suffix pairs, a substring
size equation, and an assignment of the truncated substring. The
code segment in VHDL is shown in Fig. 12. The size of the sub-
string to be truncated is calculated as the difference between the
prefix and suffix indices. The prefix index can vary between 0
and 5, while the suffix index can vary between 15 down to 0.
Table 3 shows all the permitted substrings of the word (¢s=l)
with the produced lists of prefixes as (0000011) and suffixes as
(110000).

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

The pleasant data parallelization of the Substring Truncation
code segment in Fig. 12 is possible; however mass replications
are expected. The replication should consider all possible com-
binations of prefix-suffix pairs. The pleasantly parallel version
will be able to generate and filter all stems in a few number
of steps, but at the cost of a large hardware circuit size. Indeed,
the parallelization of all the presented processes can lead to
interesting improvements in the processing performance.

5.2. Coding of Arabic characters

Two different codes for Arabic characters are used in the pre-
sented hardware and software implementations. Arabic Unicode
is used for processing in both hardware and software implemen-
tations; however, an ASCII-based code is created to aid display-
ing the tested words in the simulation tools. For example, the
character (w) is processed in its Unicode (0633ycx) and
displayed as (Sin) in the simulator. The VHDL implementation
of the Arabic Unicode is realized as a new type in Package with
the following declaration of a list of 16 bits under the user-
defined type charsArray:

constant p_index : intArray(0 to 5):= (-1, 0, 1, 2, 3, 4);

begin

process (word_i, pp_r, ps_r)
variable countl, count2: integer range 0 to 5 := 0,
variable foundl, found2: std_logic:="'0";

begin

countl :=0;

count2 :=0;

foriin 0 to 5 loop
foundl :='0";
found2 :='0";

if pp_r(i) ='1' then
for j in 15 downto 0 loop
if ps_r(j) ='1" then

end if;

constant s_index: intArray(15 downto 0):=(15, 14, 13, 12,11, 10,9, 8,7, 6, 5, 4, 3, 2, 1,0);

if (s_index(j) - 1) - (p_index(i) + 1) =2 then
stem3_o(countl) <= word_i((p_index(i) + 1) to (s_index(j) - 1)
if(countl < 5) then
countl :=countl + 1;

foundl :="1";
elsif ((s_index(j) - 1) - (p_index(i) + 1)) = 3 then
stem4_o(count2) <= word_i((p_index(i) + 1) to (s_index(j) - 1));
end process;
end architecture;

Fig. 12. The substring truncation and filtering of the process Generate Stems in VHDL.

Table 3
Truncation of stem substrings of the verb (o s=lw).

Input Word o B < 4 d o s_index p_index (s_index(j) — 1) — (p_index(i) + 1)
Produce Prefixes Output 0 0 0 0 0 1 1

Produce Suffixes Output 1 1 0 0 0

1. Trilateral Stem 1 < 4 d 5 1 2

2. Quadrilateral Stem 1 < & d ¢ 5 0 3

3. Quadrilateral Stem 2) - ¢ d 6 2 3

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546 541

type charsArray is array (natural range<>) of std_logic_vector(15
downto 0);

5.3. Implementation and analysis tools

A variety of tools are used to implement, test, and analyze the
developed hardware and software implementations. The investiga-
tion targets two high performance computing systems, namely, the
Dell Precision T7600 with its six-core Xeon processor and 32 GB of
RAM, and Altera STRATIX-IV FPGA. The tools used for hardware
analysis are Quartus and ModelSim-Altera, and Intel VTune Amplifier
for software analysis. The hardware implementations are done
using VHDL. The software version is implemented using Java under
Netbeans.

6. Analysis and evaluation
6.1. Validation and testing

The presented hardware and software implementations are val-
idated through intensive testing at the component, integration, and
system levels. Sample system executions of the developed non-
pipelined processor under ModelSim are shown in
Figs. 13 and 14. In Fig. 13, the successful root extraction of the
complicated Arabic verb (sStiwildl) is shown; the extracted
trilateral root is (). Fig. 14 shows the extraction for the input
Arabic verb (wsj~3#); the extracted quadrilateral root is (zJ~J).
Sample output for the pipelined processor is shown in Fig. 15;
the extracted roots appear after the fifth cycle and then every cycle.
Indeed, the adopted language rules and roots are verified by lan-
guage specialists.

@ /ama/dock
4 Jamajreset 0
&= Jamajword._i {0000011000100011} {
B’ 0 i
(6))
¢))
€))

(10)
(1)
(12)
(13)
(149)
= Jamajroot3
[()
[N ¢))
[+)
[Jamajroot4 {uuuUVUUUUUUUUUUY

The testing of the developed implementations is extended to
include two formal linguistic reference corpora that comprise the
text of the complete Holy Quran and an individual test of its 29th
Chapter, namely Surat Al-Ankabut (The Spider Chapter). The text
of the Holy Quran includes 77476 words or 17622 words without
repetition. The total number of roots that can be extracted from
Quran is 1767. Surat Al-Ankabut has 980 words Khodor and Zaki
(2011). Slightly different word counts of the Holy Quran are
reported in the literature due to the difference of classification
and definition of what is a word.

6.2. Performance analysis

A thorough performance analysis is performed for the software
and hardware implementations. The software implementation is
evaluated per the following metrics (Damaj and Kasbah, 2017):

e Execution Time (ET): The time between the start and the com-
pletion of execution.

e Throughput (TH): The total amount of work done per time; in
the current investigation, it is defined as the number of pro-
cessed Words per Seconds (Wps).

The hardware implementation is evaluated per ET, TH, and the
following additional metrics (Damaj and Kasbah, 2017):

e Propagation Delay (PD): The time required for a signal from an
input pin to propagate through combinational logic and appear
at an external output pin.

e Look-Up Table (LUT): The number of combinational adaptive
lookup tables required to implement an algorithm in hardware.
The number of LUTs is an indicator of the size of hardware in

1|

100000110001000 11} {0000011001000001} {00CD0110...

T

{UUUUUUUUUUUUUUUUY {UUUUUUUULUUUUU. ... |
XO0OAAAAXXXKR
{UUUUUUUUUUUUUUUUE {UUUUUUUUUUUUUUY &

Fig. 13. ModelSim output of the root extraction of the verb (b sStivids) and the output root is (is).

542 I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

* fama/cock
< Jamajreset 0
& Jamajword_i
[()
(6}
)]
3)
)
(5)
(®)
@
8)
)
(6]
(11)
(12)
(6K))
(14)
- /amajroot3
= [famajroot4d
[B0
BN
B’ @
[BE)

f

10000011001000001> 4(){0000011001000001} {00000111000101010 ~’OOC:DO 11000110010} {0

| {UUUUUUUUUUUUUUUU} -rUUUUUUUUUUUUUUUL. {UUUUUUUUUUU

XOOOODOOOOKXKX

Fig. 15. ModelSim output of the root extraction of several verbs using the pipelined processor.

Altera devices. In other devices, the area could be measured in
terms the total number of gates, logic elements, slices, etc.

e Logic Register (LR): the total number of logic registers in the
design.

e Power Consumption (PC): The power consumption of the devel-
oped hardware in Watts.

The software implementation achieved a maximum Through-
put of 373.3 Wps. The non-pipelined processor achieved a
Throughput of 2.08 MWps. With respect to the ratio of Through-

puts, the non-pipelined processor achieved a speedup of 5571
times higher than the software implementation. However, the
pipelined processor achieved a speedup of 28873.51 times higher
than the software implementation. Moreover, the hardware imple-
mentations enjoyed a fixed 5-cycle implementation but a some-
what low maximum frequency of 10.4 MHz for the non-pipelined
processor and 10.78 MHz for the pipelined processor. The reported
frequencies were limited due to hold checks in the synthesized cir-
cuit. Tables 4 and 5 summarize the hardware analysis results for
both processors, while Fig. 16 diagrams the throughputs.

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546 543

The pipelined implementation can lead to better performance
for extended number of input words. Fig. 17 plots the projected
throughput speedups of the pipelined processor over the non-
pipelined processor with respect to the change of the number of
analyzed input words. The pipelined processor achieved 10.78
MWps and 10.73 MWps for processing the texts of the Holy Quran
and Surat Al-Ankabut; the throughputs achieved speedups of 5.18
and 5.16 over the non-pipelined implementation and speedups of
28873.5 and 28757.6 over the software implementation.

6.3. Infixes processing and accuracy analysis

The accuracy of LB stemmers can be significantly improved with
considering the infixes in the Arabic verb root extraction. The way
we incorporate the processing of infixes is by considering the most
common cases. For instance, in Khodor and Zaki (2011) the authors
classified the verb root Say (Js) as one of the most repeated roots
in the Holy Quran with a frequency of 1722 occurrences. In addi-
tion, the derived morph “Then they said” (Is'&) is considered as
one of the most repeated words with 255 occurrences in the Holy
Quran. The proposed incorporation of infix processing is based on
frequency analysis of Arabic verbs as they appear in formal texts
like the Holy Quran.

Two algorithms are developed to reduce or replace infixes in the
extracted roots from LB stemming; the proposed algorithms led to
significant improvement in the successful extraction of the verb
roots. The algorithms are incorporated as processes running after
the lists of Trilateral and Quadrilaterals are filtered, compared,
and the root is not found. The process Remove Infix checks the sec-
ond character of trilateral and quadrilateral stems, using a process
Check Infixes, to possibly extract bilateral and trilateral roots. The
algorithm of Remove Infix is defined in pseudocode as shown in
Fig. 18. Example extractions are of the bilateral verb (&) from
the trilateral verb () and the trilateral verb root Wrote (<)
from the quadrilateral stem Corresponded With ().

The process Restore Original Form handles the common case of
converting the infix of a verb root from (s) to (). The developed
process restores the original form by reversing the conversion.
Example conversion is for the highly frequent root (Js#) from the
variation (J¥). The pseudocode description of the process Restore
to Original Form is shown in Fig. 19. Indeed, the processing of
infixes can be addressed in a larger scale to further increase the
accuracy or automatic verb root extraction in Arabic MA.

The accuracy of analyzing the Holy Quran text using the soft-
ware implementation with and without infix processing is shown
in Table 6. The number of successful roots extracted with the infix
processing procedure increased the accuracy to 87.7% from an ini-
tial measurement of 71.3%. Table 7 presents the top frequencies of
verbs extracted from the Holy Quran text in comparison to Khoja
stemmer (Khoja, 2017; Khoja and Garside, 1999). In many
instances, Khoja stemmer achieved higher accuracy but not for
the root (05) where the proposed implementation attained a 53%
higher accuracy. The analysis of Surat Al-Ankabut text attained an
accuracy of 90.7%. The accuracies reported for analyzing the nouns

Table 4
Hardware analysis results under STRATIX IV FPGA.

Metrics Non-Pipelined Pipelined Processor
Processor

Fmax (MHz) 104 10.78

LUT 85895 (47% Utilization) 70985 (39%
Utilization)

LR 853 (<1% Utilization) 1057 (<1% Utilization)

Power Consumption 1006.26 1010.96

(mW)

Table 5
The Throughput to hardware area ratios of the non-pipelined and the pipelined
processors.

Metrics Non-Pipelined Pipelined
Processor Processor
The text of the Holy Quran
Throughput to LUT Ratio (Wps/ 24.22 151.85
ALUTs)
Throughput to LR Ratio (Wps/LR) 2438 10197
The text of Surat Al-Ankabut
Throughput to LUT Ratio (Wps/ 24.21 150.6
ALUTSs)
Throughput to LR Ratio (Wps/LR) 1967.83 10116.09
Throughput (Wps)
12000000.0
10779443.5
10000000.0
8000000.0
6000000.0
4000000.0
2080000.0
2000000.0
0.0
SW Non-Pipelined Pipelined

Fig. 16. Throughput of the different system implementations of the analysis of the
Holy Quran text.

Throughput (MWPs)
12

10

AN M ON ANMAWL AN NN ANMOWN
N T O 0N ANTONOODONT NN ONMWN O
A Hd A A A A N NNNNNOO®NO N oNOom

Non-pipelined Pipelined

Fig. 17. The Throughput change wrt the change in number of input words for the
non-pipelined and pipelined processors.

and verbs of Surat Al-Ankabut in Sawalha and Atwell (2008) are
62.27% for Khoja Stemmer (Khoja, 2017; Khoja and Garside,
1999), 57.16% for Tim Buckwalter Arabic Morphological Analyzer
(Buckwalter, 2002), and 58.7% for the Voting Algorithm presented
in Sawalha and Atwell (2008).

6.4. General evaluation

The intrinsic concurrency and the computational complexity of
Arabic language have greatly inspired the current investigation of
parallel hardware development for faster morphological analysis.
The current investigation is pioneering in the fact that limited
work has been reported in the literature aiming at creating parallel
hardware cores suitable for FPGA implementations and for Arabic

544

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

Remove infix algorithm
for all trilateral and quadrilateral stems
if the second character is an infix

remove character from stem

compare the reduced stems and extract root

Fig. 18. The Remove Infix Algorithm.

Restore original form algorithm
for all trilateral stems
if the second character is (/)
replace it with ()
compare the stems and extract root

Fig. 19. The Remove Original Form Algorithm.

Table 6
The analysis results of the Holy Quran text using the software implementation.

No. of Extracted Verb Roots

1261
1549

Analysis of the Holy Quran Text Accuracy (%)

71.3%
87.7%

Without Infix Processing
With Infix Processing

language. In the literature, application-specific hardware systems
are mainly proposed to implement high-speed string matching
algorithms (Murty et al., 2003; Grossi, 1992; Ratha et al., 2000;
Raman and Shaji, 1995). With no doubt, the developed hardware
cores for Arabic language can be refined to suite Application-
specific Integrated Circuits (ASICs). The development of the
hardware and software implementations adopted an easy-to-use
hardware/software co-design methodology that employs
flowcharts, concurrent process models, and Datapath and FSM dia-
grams to develop the various implementations. The developed
models enabled reasoning and straightforward parallelization of
the algorithm.

The developed LB stemming algorithm has several advantages
and opportunities for improvement. The developed algorithm has
a quadratic complexity O(n?). However, the complexity is reduced
to a constant (c) growth with the change in input size O(c) for dif-
ferent sub-processes in the parallel version. Still, it is expected that
the proposed parallel design undertakes a quadratic growth due to
the process Compare Stems and Extract Root. The process can be
reduced to a logarithmic complexity O(log(n)) if a tree-based
search is used. Several out-of-the-box algorithms are developed
to match the best possible degree of parallelism in the concurrent
model and respond to the specifics of the developed system. For
example, the Substring Truncation algorithm of Section 4.1 had
to deal with the fact that we are dealing with two parallel registers

Table 7
The analysis results of the Holy Quran text using the software implementation.

to identify infixes and suffixes and accordingly cut the input word.
Indeed, LB stemmers obviously rely on the information found in
the letters of the input word. Such a reliance on the input word
can lead to major complexities and inaccuracies to deal with roots
that are often transformed by replacement, fusion, inversion, or
deletion (Yagi and Harous, 2003).

The software implementation is simple, scalable, and can be
easily upgraded with additional root-extraction rules. The software
implementation with infix processing achieved high accuracies in
analyzing the texts of the targeted corpora. The difference in erro-
neous extractions was small in comparison to Khoja Stemmer in
analyzing several high-frequency Arabic verbs in the targeted cor-
puses. In certain cases, the proposed algorithm outperformed
Khoja Stemmer in accuracy.

The hardware implementations enable the creation of non-
pipelined and pipelined processors. The developed processors
enjoy the parallel models and enable high throughputs when
mapped onto FPGAs. Although the hardware cores can operate
on relatively low frequencies, around 10.5 MHz, the throughput-
to-logic-area ratios are relatively high; this indicates high-speeds
and adequate logic area use. The targeting of hardware cores with
higher throughputs is challenged by the sequential processing
within specific processes. In addition, to achieve higher through-
puts the restriction to five clock cycles should be compromised.
The processes Generate Stems, Filter by Size, and Compare Stems
can be redeveloped for higher degrees of parallelism; however,
such a redevelopment will require additional hardware resources.
Indeed, smaller propagation delays and accordingly higher clock
rates are expected with the increase in degree of parallelism and
the break of the critical path into cycle counts that are higher than
five.

Root Actual Khoja (1) Proposed Alg. with Infix Proc. (2) Absolute% Difference between (1) and (2) Proposed Alg. without Infix Proc.
e 854 798 592 24% 436
S 525 521 376 28% 300
Js 1722 1195 1022 10% 267
ol 298 289 256 11% 254
Jdx 293 274 230 15% 230
Jee 360 356 273 23% 225
S 261 251 216 13% 206
322N 346 307 207 29% 203
oX 282 262 214 17% 190
uss 1390 32 765 53% 161

I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546 545

This paper calls for broadening the theoretical NLP discussions
to include parallel processing and hardware/software co-design.
In practice, hardware acceleration of NLP algorithms is currently
facilitated with the availability of high-performance multi-core
processors and a variety of high-end co-processing options, such
as, FPGAs, Graphical Processing Units (GPUs), etc. The proposed
parallelization of the LB stemmer, for Arabic verb root extraction,
confirms its usefulness in implementing high-speed hardware
implementations. The identified metrics, namely, degree of paral-
lelism, TH, ET, LUT, LR, and PC create additional practical and effec-
tive performance profile for analysis and evaluation of NLP
algorithms and implementations. Furthermore, the proposed infix
processing algorithms provide enhanced accuracies in analyzing
standard Arabic text, such as, the Holy Quran. With no doubt, the
adopted methodology, development patterns, implementation
specifics, enhanced algorithms, identified metrics, etc. are applica-
ble in the wider NLP context and sets the ground for a wider incor-
poration of parallel processing and development of extended NLP
processors.

7. Conclusions

Morphological analysis in Arabic language is computationally
intensive, has numerous forms and rules, and intrinsically parallel.
The aim of the presented work is successfully achieved by applying
an effective modelling technique, developing parallel processes,
and deriving pioneering implementations with appealing perfor-
mance characteristics. The developed parallel processor attained
a speed of 2.08 MWps with a speedup of 5571.4 times higher than
the software implementation. The developed pipelined processor
achieved a speedup of 5.18 times higher than the non-pipelined
core. The created hardware cores run at frequencies of 10.4 MHz
(non-pipelined) and 10.78 MHz (pipelined), and achieved
throughput-to-area ratios of 151.85 Wps/ALUT and 10197 Wps/
LR for the pipelined core. The proposed algorithm featured
enhanced analysis options over traditional LB stemmers to process
infixes with accuracies of 87% and 90.7% for analyzing the texts of
the Holy Quran and its Chapter 29 - Surat Al-Ankabut. Future work
includes developing concurrent models with increased degree of
parallelism. Future work also includes the optimization of the
hardware cores that can operate on higher frequencies to achieve
higher throughputs. In addition, future developments comprise
embedding of the infix processing step in hardware and widening
the pool of implemented rules to increase extraction accuracy.

References

Abu Shquier, M.M., Alhawiti, K.M., 2015. Novel prefix tri-literal word analyser: rule-
based approach. J. Comput. Sci. 11 (4), 627-638. http://dx.doi.org/10.3844/
jessp.2015.627.638.

Abu-Errub, Aymen, Odeh, Ashraf, Shambour, Qusai, Al-Haj Hassan, Osama, 2014.
Arabic roots extraction using morphological analysis. Int. J. Comput. Sci. Issues
(csrny 11 (2), 128.

Agarwal, Basant, Mittal, Namita, 2016. Machine learning approach for sentiment
analysis. Prominent Feature Extraction for Sentiment Analysis. Springer
International Publishing, pp. 21-45.

Al-Bawab, M., Al-Tayyan, M., 1998. Computerized processing of Arabic morphology.
Arabian Mag. Sci. 32, 6-13.

Al-Khalifah, Z.M., 1996. Automated Morphological Analysis of Words (MSc Thesis).
Department of Computer Science, College of Computer and Information
Systems, King Saud University, Riyad, Kingdom of Saudi Arabia.

Al-Shalabi, Riyad, Evens, Martha, 1998. A computational morphology system for
Arabic. Proceedings of the Workshop on Computational Approaches to Semitic
Languages. Association for Computational Linguistics, pp. 66-72.

Al-Sughaiyer, Imad A., Al-Kharashi, Ibrahim A., 2004. Arabic morphological analysis
techniques: a comprehensive survey. . Am. Soc. Inf. Sci. Technol. 55 (3), 189-
213.

Asaad, Amal, Abbod, Maysam, 2014. Arabic text root extraction via morphological
analysis and linguistic constraint. 16th International Conference on Computer
Modelling and Simulation. IEEE, pp. 125-130.

Boubas, Anas, Lulu, Leena, Belkhouche, Boumediene, Harous, Saad, 2011.
GENESTEM: A novel approach for an Arabic stemmer using genetic
algorithms. Proceedings of the 2011 International Conference on Innovations
in Information Technology (IIT), pp. 77-82.

Boudlal, Abderrahim, Bebah, Mohamed, Lakhouaja, Abdelhak, Mazroui, Azzeddine,
Meziane, Abdelouafi, 2011. A Markovian approach for Arabic root extraction.
Int. Arab J. Inf. Technol 8 (1), 91-98.

Buckwalter, Tim. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0.

Cohen, Jonathan D., 1998. Hardware-assisted algorithm for full-text large-
dictionary string matching using n-gram hashing. Inf. Process. Manage. 34 (4),
443-464.

Dahdah, A., 1995. ‘4l J=8¥) i s 2ax’ (Dictionary of the Conjugation of Arabic
Verbs). Librairie du Liban, Beirut, Lebanon.

Damaj, Issam W., 2006. Parallel algorithms development for programmable logic
devices. Adv. Eng. Softw. 37 (9), 561-582.

Damaj, Issam W., 2007. Parallel algorithms development for programmable devices
with application from cryptography. Int. J. Parallel Programm. 35 (6), 529-572.

Damaj, Issam., Diab, Hassan., 2003. Performance analysis of linear algebraic
functions using reconfigurable computing. J. Supercomput. 24 (1), 91-107.

Damaj, Issam, Kasbah, Safaa, 2017. An analysis framework for hardware and
software implementations with applications from cryptography. Comput.
Electr. Eng. http://dx.doi.org/10.1016/j.compeleceng.2017.06.008.

El-Affindi, M., 1991. An algebraic algorithm for Arabic morphological analysis.
Arabian J. Sci. Eng. 16 (4), 605-611.

El-Affindi, M., 1998. Performing Arabic morphological search on the internet: a
sliding window approximate matching (SWAM) algorithm and its performance.
Dept. of Computer Science. CCIS, KSU. Saudi Arabia.

Gadri, Said, Moussaoui, Abdelouahab, 2015. Information retrieval: A new
multilingual stemmer based on a statistical approach. 2015 3rd International
Conference on Control, Engineering & Information Technology (CEIT). IEEE, pp.
1-6.

Grossi, Roberto., 1992. A fast VLSI solution for approximate string matching.
Integration VLSI J. 13 (2), 195-206.

Hamalawy, A., 2009. ‘<xall ¢f & <=l 132 (The Art of Morphology). IslamKotob,
Beirut, Lebanon.

Hamandi, Lama, Zantout, Rached, Guessoum, Ahmed, 2002. Design and
implementation of an Arabic morphological analysis system. Proceedings of
the International Conference on Research Trends in Science and Technology
2002, 325-331.

Hamandi, Lama, Damaj, Issam, Zantout, Rached, Guessoum, Ahmed, 2006.
Parallelizing arabic morphological analysis: towards faster arabic natural
language processing systems. Proc. CIBITIC, 455-459.

Hegazi, N., Elsharkawi, A., 1986. Natural Arabic language processing. In Proceedings
of the 9th National Computer Conference, vol. 2.

Hlal, Y., 1987. Information systems and Arabic: the use of Arabic in information
systems. Linguistics Signal Inf. Process., 191-197

Kasbah, Safaa J., Damaj, Issam W., Haraty, Ramzi A., 2008. Multigrid solvers in
reconfigurable hardware. J. Comput. Appl. Math. 213 (1), 79-94.

Khodor, Mohammad Z., Zaki, Akram M., 2011. A Statistical Study of the Words of the
Holy Quran. In: Arabic “ax 8l o il <l 4ilasl 4 " in the Third Arabic Language
and Literature Conference, Malaysia, 28-30 September, 2011.

Khoja, S. “Stemming.” Pacific University.” Personal Academic Webpage http://zeus.
cs.pacificu.edu/shereen/research.htm, (Accessed July 1, 2017).

Khoja, Shereen, Garside, Roger, 1999. Stemming arabic text. Computing
Department, Lancaster University, Lancaster, UK.

Larkey, Leah S., Connell, Margaret E., 2006. Arabic information retrieval at UMass in
TREC-10. Massachusetts Univ Amherst Center for Intelligent Information
Retrieval.

Larkey, Leah S., Ballesteros, Lisa, Connell, Margaret E., 2002. Improving stemming
for Arabic information retrieval: light stemming and co-occurrence analysis.
Proceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM, pp. 275-282.

El Mahdaouy, Abdelkader, Gaussier, Eric, El Alaoui, Said Ouatik, 2014. Exploring
term proximity statistic for Arabic information retrieval. 2014 Third IEEE
International Colloquium in Information Science and Technology (CIST). IEEE,
pp. 272-277.

Murty, Vadali Srinivasa, Raj, P.C. Reghu, Raman, S., 2003. Design of a high-speed
string matching co-processor for NLP. 2003 Proceedings 16th International
Conference on VLSI Design. IEEE, pp. 183-188.

Nirenburg, Sergei., Wilks, Yorick., 2000. Machine translation. Adv. Comput. 52, 159-
188.

Qutrub, *“JudY) Ciy peas zali s 1Lk, http://qutrub.arabeyes.org/index (Accessed July 1,
2017).

Rajhi, A., 1979. ‘=l Guki’ (Applied Morphology). Dar Al Nahda Al Arabeya for
Publishing, Beirut, Lebanon.

Raman, S, Shaji, E.R., 1995. ASIC design of a matching unit for NLP. Microprocessors
Microsys. 19 (6), 327-340.

Rasmussen, E., 1991. Introduction: parallel processing and information retrieval.
Inf. Process. Manage. 27 (4), 255-263.

Ratha, Nalini K., Jain, Anil K., Rover, Diane T., 2000. FPGA-based coprocessor for text
string extraction. Fifth IEEE International Workshop on Computer Architectures
for Machine Perception. IEEE, pp. 217-221.

Saad, Elsayed M., Awadalla, Medhat H., Alajmi, Amal, 2010. Arabic verb pattern
extraction. 2010 10th International Conference on Information Sciences Signal
Processing and their Applications (ISSPA). IEEE, pp. 642-645.

http://dx.doi.org/10.3844/jcssp.2015.627.638
http://dx.doi.org/10.3844/jcssp.2015.627.638
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0010
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0010
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0010
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0015
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0015
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0015
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0020
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0020
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0025
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0025
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0025
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0030
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0030
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0030
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0035
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0035
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0035
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0040
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0040
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0040
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0045
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0045
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0045
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0045
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0050
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0050
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0050
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0065
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0065
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0065
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0070
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0070
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0070
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0070
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0075
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0075
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0080
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0080
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0085
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0085
http://dx.doi.org/10.1016/j.compeleceng.2017.06.008
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0095
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0095
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0105
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0105
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0105
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0105
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0110
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0110
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0115
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0115
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0115
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0115
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0120
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0120
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0120
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0120
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0125
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0125
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0125
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0130
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0130
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0135
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0135
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0140
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0140
http://zeus.cs.pacificu.edu/shereen/research.htm
http://zeus.cs.pacificu.edu/shereen/research.htm
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0155
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0155
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0165
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0165
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0165
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0165
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0170
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0170
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0170
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0170
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0175
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0175
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0175
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0180
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0180
http://qutrub.arabeyes.org/index
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0190
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0190
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0190
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0190
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0195
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0195
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0200
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0200
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0205
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0205
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0205
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0210
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0210
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0210

546 I. Damaj et al./Journal of King Saud University — Computer and Information Sciences 30 (2018) 531-546

Sawalha, Majdi, Atwell, E.S., 2008. Comparative evaluation of arabic language
morphological analyzers and stemmers. In: Proceedings of COLING 2008 22nd
International Conference on Computational Linguistics (Poster Volume), pp.
107-110. Coling 2008 Organizing Committee, 2008.

Sembok, Tengku Mohd T., Ata, Belal Abu, 2013. Arabic word stemming algorithms
and retrieval effectiveness. Proceedings of the World Congress on Engineering,
vol. 3, p. 1577.

Sensory, NLP-5x Natural Language Processor. http://www.sensory.com/products/
integrated-circuits/nlp-5x-natural-language-processor/ (Accessed July 1, 2017).

Soudi, Abdelhadi, Neumann, Giinter, Van den Bosch, Antal, 2007. Arabic
computational morphology: knowledge-based and empirical methods. Arabic
Computational Morphology. Springer, Netherlands, pp. 3-14.

Statista. “Social Media Statistics and Facts.” http://www.statista.com/topics/
1164/social-networks/ (Accessed July 1, 2017).

Yaghi, Jim, Titchener, Mark R., Yagi, Sane, 2003. T-Code compression for Arabic
computational morphology. Proceedings of the Australasian Language
Technology Workshop, pp. 425-465.

Yagi, Sane M., Harous, Saad, 2003. Arabic morphology: an algorithm and statistics.
Proceedings of the 2003 International Conference on Artificial Intelligence (IC-
Al 2003).

Yang, Jieming, Liu, Yuanning, Zhu, Xiaodong, Liu, Zhen, Zhang, Xiaoxu., 2012. A new
feature selection based on comprehensive measurement both in inter-category
and intra-category for text categorization. Inf. Process. Manage. 48 (4), 741-
754.

http://refhub.elsevier.com/S1319-1578(17)30161-1/h0220
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0220
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0220
http://www.sensory.com/products/integrated-circuits/nlp-5x-natural-language-processor/
http://www.sensory.com/products/integrated-circuits/nlp-5x-natural-language-processor/
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0230
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0230
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0230
http://www.statista.com/topics/1164/social-networks/
http://www.statista.com/topics/1164/social-networks/
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0240
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0240
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0240
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0245
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0245
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0245
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0250
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0250
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0250
http://refhub.elsevier.com/S1319-1578(17)30161-1/h0250

	Parallel hardware for faster morphological analysis
	1 Introduction
	1.1 Background
	1.2 Related work

	2 Research objectives
	3 Unified hardware and software development
	3.1 The model of computation
	3.2 Concurrent process model

	4 Processor design
	4.1 The Datapath design
	4.2 Control unit design

	5 Implementation aspects
	5.1 Substring truncation in VHDL
	5.2 Coding of Arabic characters
	5.3 Implementation and analysis tools

	6 Analysis and evaluation
	6.1 Validation and testing
	6.2 Performance analysis
	6.3 Infixes processing and accuracy analysis
	6.4 General evaluation

	7 Conclusions
	References

