
Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
j-Lookback random-based text encryption technique
https://doi.org/10.1016/j.jksuci.2017.10.002
1319-1578/� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: m.almuhammed@aum.edu.jo (M.J. Al-Muhammed), r.abuzi-

tar@aum.edu.jo (R.A. Zitar).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Muhammed J. Al-Muhammed, Raed Abu Zitar ⇑
American University of Madaba, Faculty of Information Technology, Jordan
a r t i c l e i n f o

Article history:
Received 12 July 2017
Revised 18 September 2017
Accepted 6 October 2017
Available online 12 October 2017

Keywords:
Text encryption
Lookback text encryption
Random encryption operations
Security random generator
a b s t r a c t

Although many encryption methods are available, there is always an ongoing need for more to resist the
adversaries’ ever-growing analytical skills and techniques. We propose in this paper an innovative
method for text encryption. We devise a random number generation function that creates sequences
of signed random numbers that depend on both plaintext and key. The random numbers support the
functionality of four random operations: random mutation, random cyclic shifting, random permutation,
and dirty symbol random insertion. These operations ensure the data security by steadily melting the sta-
tistical structure of plaintext and relationships to a key. The experiments with our prototype implemen-
tation showed that our method has high effectiveness (in terms of diffusion, confusion, avalanche) and
high efficiency with respect to the computation demands.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Securing information is a very important task. Good encryption
methods must challenge the attackers’ analytical capabilities by (1)
eliminating the information in ciphertexts that may lead to pre-
dicting keys and (2) weakening the relation of the ciphertexts to
both the keys and plaintexts. Consider for instance the plaintexts
‘‘love jam” and ‘‘love jim”, which differ in the boldfaced symbol.
Effective encryption methods must detect this tiny difference and
reflect it by producing drastically different ciphertexts for them.
Fig. 1 shows the plaintexts and their corresponding ciphertexts
in unicode and Hex. As it could be seen, the encryption method
responded to this tiny difference by producing largely different
ciphertexts. In fact, it has magnified this tiny difference in such a
way the large similarity between the plaintexts is highly vanished
in their respective ciphertexts. Analytical techniques that look for
specific patterns to predict keys are unlikely to succeed in such
situations.

Many encryption algorithms have been devised (Preneel and De
Canniére, 2006; Whiting et al., 1998; Rose, 1998; Sidney et al.,
1998; Burnwick et al., 1999; Daemen et al., 2001; Biham et al.,
2000; Nagaraj et al., 2013; Steef et al., 2015; Singh and Singh,
2015; Kamalakannan and Tamilselvan, 2015) and others (see
Stalling, 2016). The advanced encryption standard (AES) stands
out as one of the most effective encryption algorithms (The NIST
test suite, 2016). This algorithm uses a secrete key and mathemat-
ical transformations that are based on lookup tables and pre-
defined permutations to encrypt information. The complexity of
the mathematical transformations makes AES strong and still
unbreakable.

This paper proposes an innovative block encryption method.
Our method defines an innovative random number generator and
four operations to encrypt blocks of plaintext. The random gener-
ator produces sequences of signed random numbers using blocks
of plaintext and a key. In particular, the generator looks back in
plaintext k consecutive blocks and uses these k blocks in addition
to a key to produce signed random number sequences. The random
generator is very sensitive to plaintexts and keys. Change to a bit or
more in plaintexts or keys causes very large variations to generated
random sequences.

The signed random number sequences enable our method to
control the functionality of the encryption operations. These oper-
ations use the random sequences to dynamically adjust their func-
tionality and employ the adjusted functionality in encrypting
blocks. For instance, the bit shift operation determines the amount
of the shift and its direction (left or right) according to respectively
the sign and value of the random numbers in a sequence. Further-
more, the random sequence allows our method to update the key
after encrypting each block. The next block thus is encrypted using
updated key.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2017.10.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2017.10.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:m.almuhammed@aum.edu.jo
mailto:r.abuzitar@aum.edu.jo
mailto:r.abuzitar@aum.edu.jo
https://doi.org/10.1016/j.jksuci.2017.10.002
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

Fig. 1. An example of our encryption method output.

Fig. 2. An Example of a mesh.

1 A starting point is a point from which the random number generator starts. Any
point whether in or out of the mesh can be used as starting point.

M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104 93
We delineate the steps of encrypting a block Bi as follows. The
random generator looks back k consecutive blocks prior to Bi and
uses them along with the key to generate a random sequence.
The sequence adjusts the functionality of the encryption
operations and, in a way to be made clear later, encrypt the block
Bi. Thus, to encrypt Bi, our method not only considers Bi, but also
k-previous blocks. This effectively makes encrypting Bi depends
not only on Bi per se, but also on k-previous blocks and is affected
by them.

The paper makes the following contributions. First, it offers an
innovative random generator whose output strongly depends on
plaintext and a key. This generator is augmented with effective
noise detection and handling mechanisms that greatly magnify
its sensitivity to variations of plaintext and keys. Second, it pro-
poses encryption operations whose functionality is dynamically
adjusted based on the output of the random generator. Third, it
offers an effective mechanism for updating the encryption key.

We present our contributions as follows. Section 2 presents the
random generator. Section 3 introduces our random encryption
operations. Section 4 discusses our encryption method. We analyze
the performance of our method in Section 5, conclude and give
directions for future work in Section 6.

2. Random numbers generator

In this section we describe the fundamental components of our
random generator. The generator requires an explicit mapping
knowledge that correlate random numbers to both plaintext and
key. This explicit knowledge is encoded in terms of static knowl-
edge and dynamic knowledge. The static knowledge is a mapping
mechanism called mesh (Section 2.1). The dynamic knowledge is
captured through operations (Section 2.2). Section 2.3 illustrates
how the generator uses the mesh, a key, and the operations to
map symbols of plaintext and produce random numbers. Sec-
tion 2.4 discussed how the noise that occur due to the key/plain-
text changes is captured and embedded in the random generator.
Section 2.5 presents the innovative properties of the generator that
make it powerful for data encryption.

2.1. The mesh

The mesh provides a mechanism for mapping plaintext symbols
and produce random numbers for these symbols. Fig. 2 shows an
example of a mesh. The mesh is an N � N array with horizontal
and vertical dimensions. Unicode symbols are listed in each
dimension. The positions of the symbols in each dimension are
indexed by integers 0, 1,. . .,n. Each cell in the mesh is a point (x,
y), where x and y are respectively the vertical and horizontal
indices of the cell.

The length of a move from point P1 to P2 is called a distance. The
horizontal distance of a move from P1 to P2 is the absolute value of
the difference between the horizontal indices of these two points.
The vertical distance between P1 and P2 is the absolute value of the
difference between their vertical indices. For instance, the horizon-
tal distance between R2(1,6) and P3(1,4) is abs(6 – 4) = 2.

Since every move in the mesh starts from a point, we introduce
themove directionwith respect to a point. We designate a direction
of a horizontal/vertical move with respect to a point P1 by the
flag ‘‘�” if the move is to a point with a lower index, and by ‘‘+”
if the move is to a point with a higher index. Referring to Fig. 2,
we designate the vertical move from R1 to P1 by ‘‘�” and the move
from R1 to P2 by ‘‘+” because these moves are to respectively a
lower/higher vertical indices in the mesh.

We show here in a way to be made precise later how to gener-
ate signed random numbers using the mesh. We map a symbol by
beginning from a starting point and move along one of the mesh’s
dimensions to the corresponding index of this symbol in that
dimension.1 We call the dimension that we move along a mapping
dimension. The distance of the move along the dimension and its
direction with respect to the starting point is compiled as a signed
random number.
2.2. Operations

The operations control the state of the random generator. Three
operations are used: (1) ordering operation, (2) mapping operation,
and (3) key update operation.
2.2.1. Ordering operation
Ordering operation re-arranges the symbols of a mesh’s dimen-

sion. It controls the state of the random number generator and its
output. In fact, each different ordering of the mesh’s symbols
results in different mapping; causing the generator to produce a
different sequence of random numbers even for the same text. To
use the random generator in cryptography, we bind the generator’s
state change with the key. A change to the key modifies the func-
tionality of the generator causing the resulting random numbers to
vary.

We use the ordering operation order(key) whose functionality is
defined as follows. Let n be the number of symbols in each dimen-
sion. The operation splits the symbols of each dimension into
blocks of size ‘ symbols (in our implementation ‘ ¼ 16). These
blocks are populated in the columns of an array of ‘� |, where |

is the number of blocks. The rows are then left shifted. The amount
of the shift depends on the key. The amount of the shift is a random
number obtained using the procedure in Fig. 3.

Initially the procedure expands the key to 32 symbols (if
shorter) using the same procedure in AES (Stalling, 2016) and use
it as a seed-steps (1) and (2). The amounts of shifts are then gener-
ated using the steps (3)–(6). As the figure shows, the symbols of
the seed are summed by multiplying the integer value of each
seed’s symbol ki by its position in the seed (step 3). The sum is then
circularly left shifted n positions to yield Sh (n is value of the first
two symbols in the seed) in step 4 and Sh is XORed with the sum in
step 5 to yield Ls. Since the number of symbols in each row is |;Ls is
adjusted to Ls module |.

Fig. 3. Steps for generating row shift values. jseedj denotes the seed’s size.

94 M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104
The seed is updated in step (6) by concatenating the seed with
the current sum. The seed hence grows after each iteration. If, at
any iteration, step (3) results in overflow in the sum, the procedure
reduces the seed to 32 symbols by using the middle 32 unicode
symbols as a new value for the seed. Steps (3) through (6) repeat
until the condition no longer holds. (The condition determines
the desired number of values to be generated.)

We illustrate the symbols’ ordering using an example. Suppose
a mesh’s dimension has the symbols ‘‘ABCDEFGHIJKLMNOPQRST”
and the key is ‘‘A6Bf”. Fig. 4 shows the symbol arrangement pro-
cess. The symbols are split into blocks of size, say, four. These
blocks are placed in the array’s columns as shown the figure. The
key is used by the procedure in Fig. 3 to generate four numbers
to shift the four rows. The ordering operation then uses these num-
bers to cyclically left shift each row a number of positions equals to
the corresponding number. The first row is thus left shifted four
positions, the second three positions, and so on. The operation out-
puts the new symbol’s order by reading the symbols column-wise
to obtain ‘‘QNGHARKLEBOPIFSTMJCD”.
2.2.2. Mapping operation
The mapping operation defines the functionality for mapping

plaintext’s symbols to the mesh and generating signed random
numbers. The operation selects, based on the key, one of the
mesh’s dimensions as the mapping dimension. It moves then from
current starting point to the corresponding index of the symbol
along the chosen mapping dimension and calculates the distance
of the move. The direction of the move is translated as ‘‘�” or ‘‘+”
according to whether the move to a lower or higher index.

We introduce the mapping operation KeyBasedMapping(key)
that performs three actions: key-based dimension selection, dis-
tance calculation, and direction determination. The latter two
actions are obvious and do not depend on the key. The former
action (dimension selection) depends on the key for many reasons.
First, the key should guide the switching between the two
dimensions so that we can replicate the action. Second, the key
in cryptography is ideally a random sequence of symbols; the
Fig. 4. The symbol re-ar
switches between the mesh dimensions and the moves therefore
follow this randomness.

We can correlate the dimension selection to the key in many
ways. For instance, one can do this by considering the numerical
value of the key’ symbols: if the value of the current key’s symbol
is odd select the vertical dimension; the horizontal dimension
otherwise. Another way is to find the median of the key’s symbols
and select, say, the vertical dimension if the current key digit is less
than the median value and horizontal dimension otherwise.

2.2.3. Key update operation
The key is a secret sequence of n unicode symbols k1k2 . . . kn,

which will be used to generate signed random numbers for the
random operations (discusses next). To weaken the relationship
between a key and ciphertext, the key is updated before encrypting
each block. We use a sequence of signed random numbers
r1r2 . . . rn to update the key. We add each signed random number
ri to the value of its corresponding key symbol ki. The outcome
of this is the updated key. For instance, consider the key ‘‘AB”
and the sequence of random numbers ‘‘+12-2”. Adding the symbols
of the key to their respective signed random numbers [A(65) + 12 =
77 (M), B(66)-2 = 64 (@)] yields the updated key ‘‘M@”.

Although we linearly add the key symbols to the random num-
bers, the outcome is not. In fact, adding key’s symbol to a signed
random number grows and shrinks according to the sign of the
random number. Since the distribution of the random number
sequence’s signs is random, this grow or shrink in the addition out-
come is random.

Fig. 5 shows the subsequent updates of the key ‘‘97A12ag678c
v6435”. The first row shows the original key. The rest of the rows
show the updated versions of the key. As can be seen, each new
version is largely different from the previous ones.

2.3. Random number generation process

The symbol ordering, the starting point, and the key define the
random generator state. Given a state, our random generator pro-
duces a sequence of signed random numbers as follows. First, the
generator re-arranges the symbols of each dimension using the
operation order(key). Second, the generator reads a symbol ti from
plaintext and a symbol ki from the key. It then selects the mapping
dimension based on the key symbol ki and moves along this map-
ping dimension to the index of the symbol ti. The generator calcu-
lates the distance of the move from the current starting point to
the symbol ti by subtracting their indices on the mapping dimen-
sion. The move direction—within the mapping dimension—with
respect to the current starting point is determined based on
whether we move to a lower index (‘‘�”) or a higher index (‘‘+”).
The distance of the move d in addition to the direction of this move
‘‘�” are compiled into a signed random number ‘‘�d”.

We illustrate the random generation process using an example.
Consider the plaintext ‘‘To be or Not to be.”, the key
‘‘919981237659112348”, and a starting point (9, 8). Table 1 shows
rangement process.

Fig. 5. The original key and the result of three updates of the key.

Table 1
The generated random numbers for the text To be or Not to be.

Plain Text: To be or Not to be.
Key: 919981237659112348
Random Numbers �6-1 + 5-3-0 + 3-1-6 + 6-7-5 + 2 + 2-1 + 7 + 2-1 + 2-7

Fig. 6. Mesh’s configuration during mapping the symbols.

Fig. 7. Xorshifting Random number generator equations. �� represents left shift,
�� represents right shift, and � represents Xor.

M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104 95
the generated sequence of signed random numbers for the plain-
text using the key and starting point. Fig. 6 shows the moves
within the mesh during the symbol mapping operation (partial).

Initially, the random number generator re-arranges the mesh’s
symbols using the operation order(key), yielding the symbol orga-
nization in Fig. 6. The random number generator reads the symbol
‘‘T” from the plaintext and the leftmost key’s digit ‘‘9”. Selecting the
mapping dimension depends on the value of the current key sym-
bol and the functionality of the operation KeyBasedMapping(key).
Suppose (for simplicity) that the KeyBasedMapping(key) ‘‘select the
vertical dimension if the value of the key’s digit is odd; the horizontal
dimension otherwise.” Because the value of the current key’s digit is
9, which is odd, this operation selects the vertical dimension as the
mapping dimension. The distance of the move from the initial
starting point (9, 8) to the symbol to be mapped along the vertical
dimension is 6. In addition, because the index of ‘‘T” within the
mapping dimension is at a lower index than that of the initial start-
ing point, the generator designates this by the flag ‘‘�”. The gener-
ator produces the signed random number ‘‘�6” for ‘‘T”. The
generator updates the starting point to (3, 8) and uses it to gener-
ate a random number for ‘‘o”. The value of the current key digit is 1
(odd), the mapping dimension is therefore the vertical dimension.
The distance of the move from the point (3, 8) to ‘‘o” is 1. The sign
of the random number is ‘‘�” because we moved to a lower index
in the mapping dimension. Hence, the signed random number for
the symbol ‘‘o” is ‘‘�1”.
Continuing likewise, the generator moves in the mesh as shown
in Fig. 6, producing a signed random number for each symbol and
yielding the sequence of signed random numbers listed in Table 1.
2.4. The key/plaintext noise

Ideally, a change to a key or plaintext, which we call noise, must
cause large changes to the resulting sequence of random numbers.
This is an essential property for the effectiveness of the generator
in the filed of cryptography. Relying on the mapping alone allows
the changes to the text or the key to only affect the sequence of
random numbers from the position of the change and on. To prop-
agate the change to the whole sequence not only from the point
where the change occurs, we augment our random generator with
a noise handling technique.

The noise handling technique captures and then reflects the
noise in the resulting sequence random numbers. There are many
ways to do so, ranging from the most intuitive one by adding the
amount of noise to each random number to model the noises as
random pulses. We prefer the latter, however. We use random
number generators to model the noises as random pulses because
these generators not only enable capturing the intuitive meaning
of the noise (random effect), but also enable distributing the
noise’s random effect over all the generated random numbers
sequence.

Although many random number generators (L’Ecuyer, 2012;
Shub et al., 1986), we used the register shifting random generators
(called Xorshifting) to model the noise (Marsaglia, 2003; L’Ecuyer,
2005) because they are fast, easy to use, and requires less storage.
The register shifting generator produces sequences of random
numbers by applying shift and XOR operations to a seed (an inte-
ger). Fig. 7 shows the register shifting and the XORing for the seed x
along with the amount of the shifts a, b, and c. Changes to the seed
yield changes to the random numbers sequence (i.e. causing a
noise). We exploit this idea in our noise handling by computing
the amount of the change in key/plaintext symbols and use it as
seed for the random generator. We generally sum the symbols of
the key and the symbols of the text by multiplying each symbol
value by its position in the key (or the text). The symbol value
for digits is the value of the digit itself while the value of other
symbols is the unicode index of these symbols. We add the two
sums to yield a seed. For instance, for the symbols ‘‘5A8” the
sum is ‘‘5*1 + 65*2 + 8*3 = 159”. Note that 65 is the unicode’s index
of the symbol ‘‘A”.

Given this, we describe our mechanism to propagate the noise
as follows. We compute the amount of noise and use it as a seed
for the Xorshifting generator. We then use the Xorshifting genera-
tor to produce a number of random pulses equal to the number of
random numbers in the initial sequence. Finally, we add each noise
to the corresponding random number regardless of the sign, yield-
ing a new sequence of random numbers. Clearly, the new sequence
is greatly correlated to changes of the key or text.

To illustrate, consider the key ‘‘6739” and the text ‘‘ABCDE”. To
generate noise–augmented random numbers for this text, we

Table 2
The effect of changing the key or order on the resulting random numbers.

Changing in Resulting Random Numbers

�6-1 + 14-3-0 + 4-1-6 + 15-7-5 + 12 + 10-2 + 7 + 3-1 + 2-7
KEY �3-4-4 + 11-2-1 + 1 + 5-4-3-1 + 9-2 + 11 + 3-2-2 + 1-3

�4 + 2+6-3 + 4 + 12-1-6 + 15-7-5 + 11 + 3-2 + 7 + 4-1 + 2-7

+20-10 + 3 + 4-5-2-2 + 13-3 + 16-8 + 3 + 11-2-11-6-7 + 7 + 10
Symbol

Order
+3 + 4-5-1 + 14-0-4 + 10 + 9+5-4 + 4+4 + 3-8 + 8-8 + 9+7

�1-7 + 22-11-4 + 12-3-2 + 11 + 11-13 + 10 + 20-12-11 + 13 +
5+8-4

Table 3
The effect of the noise that results from tiny changes to the key and text. The changed
symbols are underlined.

Text Oxygen necessary

9836908761534798 �16-8 + 34 + 23-11 + 25 + 32 + 27 + 5-7-10 + 15-19-
29 + 9-16

9836908761534799 �19-9 + 19 + 32-26 + 30 + 8 + 33 + 3-23-27 + 39-25-
32 + 34-32

9836928761534798 �20-14 + 37 + 10-18 + 25 + 29 + 28 + 23-16-30 + 24-
20-24 + 10-10

7836908761534798 �22-11 + 24 + 16-22 + 8 + 29 + 34 + 12-27-2 + 29-26-
18 + 23-4

Key 9836908761534798
Oxygen necessary �16-8 + 34 + 23-11 + 25 + 32 + 27 + 5-7-10 + 15-19-

29 + 9-16

Oxygei necessary �8-21-16 + 18-9 + 27-33 + 42-9 + 40-26 + 14 + 27 +
40-31 + 24

Oxygen necessarv �6-27-30 + 17-6 + 16-17 + 33-16 + 17-13 + 37 + 35-
12 + 25-17

pxygen necessarv �17-30-15 + 17-29 + 6-39 + 35-9 + 17-22 + 34 + 14-
11 + 13-21

pmygen necessary �33-14-20 + 24-14 + 19-39 + 34-28 + 17-9 + 23 + 41-
10 + 26-10

96 M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104
map the text ‘‘ABCDE” to the mesh and obtain the initial random
sequence ‘‘+18-7-3 + 12 + 24”. We then sum the symbols of the
key (6*1 + 7*2 + 3*3 + 9*4) and the symbols of the text (65*1 +
66*2 + . . . + 69*5) to yield respectively 65 and 1015. We add the
two sums (65 + 1015) to yield 1080, which is our seed. We pass
the seed (1080) to the random generator, which returns the ran-
dom pulses 27, 7, 4, 19, 20. We finally, add these random pulses
to the initial random sequence to obtain noise–augmented random
numbers ‘‘+45-14-7 + 31 + 44”.

To further discuss the effectiveness of the noise handling mech-
anism, let suppose that the text ‘‘ABCDE” changed to ‘‘ABCHE”. Our
generator maps this text to the mesh and generates the sequence
of initial random numbers ‘‘+18-7-3+22 + 12”. Observe that the
random sequence is affected from position of the change and on.
The sum of the modified text is 1031, which will be added to the
sum of the key (65) to yield 1096. This value (1096) is passed to
the noise generator, which returns the random pulses 7, 3, 13,
6,16. Adding these random pulses to the initial sequence yields
the noise-augmented random sequence ‘‘+25-10-16 + 28 + 28”. By
a simple comparison between the sequences before and after the
change, it is clear that the noise resulted from changing one symbol
in the text caused a big change to the resulting random sequence—
which exactly what we want.

2.5. Random generator properties

The output of our proposed random number generator depends
on the state of the mesh and the key. The state of the mesh is con-
trolled by the order of the symbols on the mesh dimensions and
this order depends also on the key. In addition, the generated ran-
dom numbers depend on the plaintext, allowing for relating the
random numbers to the plaintext. As a result, one can generate dif-
ferent random numbers by either changing the key, changing the
state of the mesh, plaintext, or of course all. Table 2 shows the
impact of changing a key and the order of the symbols on the
resulting random numbers. Referring to the table, the first 3
sequences of random numbers are different as a result of only
changing the key and the second three sequences are also different
as a result of changing the order of symbols, but using the same
key. Table 3 shows the effect of making tiny changes to the key
or plaintext.

Our proposed random number generator differs from other ran-
dom generators. These generators either depend on some seed—
basically an integer—to generate a sequence of pseudo-random
numbers or physical generators whose sequence of random num-
bers depends on some physical noise. Both types of generators
are unsuitable for encryption either because knowing the seed
would certainly allow to regenerate the same random numbers
(mathematical generators) or because it is not possible (or is not
easy at best) to replicate these random numbers. Furthermore,
these generators do not effectively relate the generated numbers
to the plain text—our generator does.

In contrast to these generators, our generator depends on other
information to generate random numbers in addition to a key. This
makes it perfectly suitable for cryptography. First, the generated
numbers are related to the key and plaintext. Second, knowing
the key is far from sufficient to allow regenerating the random
numbers because the random numbers depends also on the mesh
state and plaintext. Third, the random numbers that are generated
using a key K, a mesh state S, and a plain text T can be replicated
using these three pieces of information. Furthermore, the random
numbers are very sensitive to noises caused by changes to
key/plaintext.

Our random generator guarantees high confusion and diffusion.
As discussed above, any change to the text results in different ran-
dom pulses (noises) and different mapping to the mesh. This logi-
cally causes large changes to the generated random numbers
regardless whether the key change or not (high confusion). Like-
wise, any change to the key results in different random pulses
(noises) and mapping to the mesh, leading to different random
numbers. This means the relationship to the key is complex and
involved one (high confusion). In addition the noise due to text
changes spreads over all the generated random numbers (high
diffusion).
3. Random-based operations

We describe here the operations that our encryption method
requires to function. First, the method requires random mutation
for mutating symbols of plaintext (Section 3.1). Second, it requires
random shift to diffuse the symbols and mix them (Section 3.2).
Third, it requires further scattering of the plain text symbols (Sec-
tion 3.3). Finally, it requires a way for melting the boundaries
between the blocks of ciphertext (Section 3.4).
3.1. Random mutation operation

This operation takes two sequences of signed random numbers
r11; r

1
2; . . . ; r

1
t ; r

2
1; r

2
2; . . . ; r

2
t and a block b1; b2; . . . ; bt as an input and

returns a block of randomly mutated symbols m1;m2; . . . ;mt . The
operation performs double non-linear random transformations to
randomly mutate the block’s symbols. The random transformation
makes use of two one-way arrays, which we denote SBOX1 and
SBOX2. These two arrays are filled (at run time) with unicode sym-
bols and then independently shuffled using a key–based behavior
identical to that used in mesh reordering (Fig. 3). The random

Table 4
An example of SBOX1 and SBOX2 (partial).

SBOX1 ’ ó % # B > � Ê ü ˆ v : e V n 	
SBOX2 3 H % Z ý # f � ö Å A Ì Ý 3=4 * 	

Fig. 8. Row shifting. Each row is shifted randomly x positions either to left
 x or to
right � x.

M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104 97
transformation uses two random numbers r1i and r2i to respectively
index SBOX1 and SBOX2 and retrieve two unicode symbols wi and
gi. These two symbols wi and gi are then XORed with the block’s
symbol bi to yield mi. That is, mi ¼ bi � wi� gi.

2

We illustrate our random mutation operation using a simple
example. Consider the plain text ‘‘Encrypt me”. Let ‘‘�10 + 7 +
12-5-6 + 8-1 + 13-4-15” and ‘‘+4 + 11-5-6-3 + 9–2 + 14 + 3-8” be
two sequences of signed random numbers. Table 4 shows a partial
example of SBOX1 and SBOX2.

The mutation operation mutates the given text symbols using
the two sequences of random numbers as follows. It reads the first
two signed random numbers ‘‘�10” and ‘‘+4” from the sequences
and the first plain text symbol ‘‘E”. The two random numbers
‘‘10” (without the sign) and ‘‘4” are used to respectively index
SBOX1 and SBOX2 and retrieve the unicode symbols ‘‘v” and ‘‘ý”.
The retrieved symbols are XORed with the plaintext symbol ‘‘E”
to yield the symbol Î, which is the mutation of ‘‘E”. The next two
random numbers and plaintext to be read are respectively ‘‘+7”,
‘‘+11”, and ‘‘n”. These two numbers index SBOX1 and SBOX2 and
respectively retrieve the two symbols Ê and Ì. The mutation oper-
ation XORes these two retrieved symbols with the plain text sym-
bol ‘‘n” to yield the mutated symbol ‘‘h”. Proceeding likewise, the
mutation operations randomly mutates all the symbols of the
plaintext ‘‘Encrypt me” and outputs the mutated text ‘‘Îh%7]Iønud”.

The mutated text is highly correlated to changes of the key and
the text. That is because these key/text changes alter the generator
state and necessarily lead to different mappings and different ran-
dom pulses (noises). The generator responds to the change in its
state by making drastic modifications to the generated random
numbers. Different random numbers retrieve different unicode
symbols and therefore result in different mutation outcomes.
3.2. Random cyclic shift operation

This operation performs bitwise shifts to a block of symbols. We
obtain the bit representation for each symbol in the block. These
bits are placed inm� n array, wherem the number of bits that rep-
resents a symbol and n is the number of symbols in the block. The
number of bits m depends on the encoding system. Thus, m could
be 8 or 16 bits depending on the used encoding. Each symbol occu-
pies one column of the array, where the first symbol occupies the
leftmost column.

The operation performs a random cyclic shift for each row in the
array. The amount of the shift for each row and the direction of this
shift (left or right) is fully determined by a sequence of signed ran-
dom numbers r1; r2, etc. The row i is shifted a number of positions
equal to the absolute value of ri. The direction of the shift depends
on the sign of ri. Generally, the row i is left shifted if the sign of ri is
negative and is right shifted if the sign of ri is positive. Observe, we
try to capture the intuitive meaning of the sign: positive is to the
right of the zero (on the number line) and negative is to the left.

Fig. 8 shows an example of row shift, where each symbol is rep-
resented using 8 bits. Referring to the figure, the rows are shifted
by different amounts and to different directions. For instance,
row 2 is right shifted by 6 while row 3 is left shifted by 3.

It is possible to reverse the shift operation and obtain the orig-
inal block. We cyclically shift the rows of the array as before. The
2 We call the mutation, random mutation, because the unicode symbols are
randomly indexed.
only difference is that the direction of the shift must be reversed.
That is, we left shift row i if the sign of the random number ri is
positive (‘‘+”) and right shift the row if the sign is negative (‘‘�”).

The operation randomly mixes the symbols of a block at the bit
level. This fine-grained mixing of the block symbols’ bits brings a
large confusion to the encryption. It specifically further weakens
the relations between the input block and its respective ciphered
one because the arrangement of bits in the input block is signifi-
cantly (and randomly) modified in the output block.

3.3. Random permutation operation

Random permutation involves two operations: Random Cross-
over and Random Repositioning. These two operations work syner-
gistically to diffuse block’s symbols over large number of other
block symbols.

3.3.1. Random crossover
Crossover operation produces new symbols (or breeds) by

exchanging a random number of bits between pairs of randomly
selected symbols b1b2 . . . bn of a block. A sequence r1r2 . . . rn of
signed random numbers determines both the pairs of symbols to
exchange some of their bits and the number of bits to exchange.
For each two consecutive random numbers ririþ1 (i = 1,. . ., n-1),
the symbol at the position ri % n exchanges the first or the last of
its m bits with the first or the last m bits of the symbol at the index
riþ1 % n. The number of bits m is MAX (ri % s, riþ1 % s), where s is the
number of bits that represent a symbol.

98 M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104
Since the distribution of the signs in the random sequence is
random, it is logical to base whether to exchange the first or the
last m bits of a symbol bi on the signs of the sequences ririþ1

(i = 1,. . ., n-1). The first m bits of the symbol bi that is indexed by
ri are exchanged if the sign of ri is negative; the last m bits are
exchanged otherwise. Similarly, the first or the last m bits of the
symbol bj are exchanged if the random number riþ1 is respectively
negative or positive.

To illustrate, consider a block of three symbols ‘‘the” whose bin-
ary representation is ‘‘01110100 01101000 01100101” and a ran-
dom sequence ‘‘�1 + 3 + 2”. The subsequence ‘‘�1 + 3” indexes
the symbols t and e whose binary representations are respectively
‘‘01110100” and ‘‘01100101”. The maximum number in the subse-
quence is 3. Since the first random number in the subsequence
(�1) is negative, the first three bits ‘‘011” of t representation are
exchanged. Likewise, since the second random number in the sub-
sequence is positive (+3), the last three bits ‘‘101” of e representa-
tion are exchanged. This gives the new breads ‘‘10110100
01101000 01100011”. The subsequence ‘‘+3 + 2” indexes—in the
new breed—respectively ‘‘01101000” and ‘‘01100011”. The last
three bits of these two binary representations are exchanged. This
gives the new bread ‘‘01101011” and ‘‘01100000”. As a result, the
crossover between the symbols of ‘‘the” gives the new bread
‘‘10110100 01101011 01100000” (or in symbols ‘k’).

The crossover operation is reversible only if the random number
sequence r1r2 . . . rn is known. To reverse and obtain the original
block, we perform the same steps but backwards. That is, we start
from the last two random numbers rn�1rn of the sequence and let
the symbols at these indices exchange bits as describe above. We
continue likewise until the symbols at first two random numbers
r1r2 exchange bits.

The crossover operation mixes the input block’s symbols at a
coarser-grained level than the bit shifting operation. Both the con-
secutive bits to be exchanged and their number are randomly
selected. This random manipulation, therefore, to the symbols of
the input block makes drastic changes to the structure of its bits.
Consequently, the structure of the output block greatly differs from
that of the input block.
3.3.2. Random repositioning
This operation randomly reorders the symbols of a block. It does

so using a sequence of signed random numbers r1; r2; . . . ; rn. Each
two consecutive random numbers ri; riþ1 are used to swap two
symbols of the block whose positions equal to these random num-
bers. More specifically, consider the block symbols s1 s2 . . .sp . . .st
. . .sn and the random numbers r1; r2, . . ., rn. For each two consecu-
tive random numbers ri; riþ1 (i = 1, 2, . . .n-1), the process swaps the
two symbols, say sp and st whose positions in the block equal to ri,
riþ1. The result is the new sequence s1 s2. . .st . . .sp . . .sn.

To illustrate, consider the block ‘‘ABCDEFG” and the signed ran-
dom numbers ‘‘�1 + 3 + 7-4 + 2+6-5”. To reorder these symbols
using the given random numbers, we start with the first two con-
secutive numbers ‘‘�1 + 3”. The operation swaps the symbols at
the positions ‘‘1” and ‘‘3”, namely the symbols A and C, yielding
the new permutated sequence ‘‘CBADEFG”. Next the operation
takes the second and third random numbers ‘‘+3 + 7” and swaps
the symbols at these two positions (A and G), yielding ‘‘CBGDEFA”.
Continuing likewise, we obtain the randomly permutated block
‘‘CFGBAED”.

Obtaining the original block from the permutated one can be
performed using the same sequence of random numbers
r1; r2; . . . ; rn. The order in which the permutation is carried out is
different, however. The permutation operation swaps the block
symbols backwards starting from the last two random numbers
rn�1; rn. Therefore, it swaps the symbols at the positions rn and
rn�1, then the symbols at the positions rn�2; rn�1, and so on until
the symbols at r1; r2.

3.4. Dirty symbol insertion operation

This operation inserts dirty symbols in randomly chosen blocks.
We base our random choice of the blocks on the sequence of ran-
dom numbers. The idea is to consider the sequence of random
numbers r1; r2; . . . ; rn and count the number of plus and negative
signs. If the number of pluses equals to number of minuses, the
operation inserts a dirty symbol at the position ri%ðm� 1Þ, where
ri is the first non-zero random number in the sequence andm is the
block size. The dirty symbols is a unicode symbol chosen from
SBOX1 at the index r1.

Inserting dirty symbol changes the structure of blocks. It mod-
ifies the boundaries between the blocks causing them to overlap. If
the decryption process fails to correctly recognize and remove the
inserted dirty symbol from a block, the decryption of all the blocks
that follow the first unrecognized dirty byte fails. That is because
the structure of the next blocks in the ciphertext does not match
the structure of the original plaintext blocks (due to the extra sym-
bol). The decryption of this block thus yields a block with different
plaintext than that of the original one. Since the previously
decrypted block will be an input for the random generator, the ran-
dom generator responds to this wrong input by producing a wrong
sequence of random numbers. Consequently, the random opera-
tions whose functionality depends on the random numbers fail
to correctly recover the current block. This error propagates to all
of the next blocks because their correct decryption depends on
the correct decryption of their predecessors.

4. The encryption method

We discuss in this section our cipher. Section 4.3 discusses how
to encrypt plaintext using the random operations. Section 4.4 dis-
cusses the decryption process. But before we discuss the technical
details of our encryption method, we discuss how we select ran-
dom sequences.

4.1. Random blocks generation

Initially, when our method starts encrypting the first plaintext
block, there is no yet predecessor plaintext blocks to use in the
lookback technique. To enable the lookback, the encryption
method elects k blocks of 16 symbols each from the two mesh’s
dimensions. The blocks’ election is based on the key. We use the
method in Fig. 3 to generate indices for accessing the two dimen-
sions of the mesh and combine the respective symbols to create
the k blocks.

Given a set of indices i1; i2; . . . ; iu (u = 16k), our method selects
unicode symbols from the mesh by alternating between the two
dimensions starting from the horizontal one. That is, the method
selects the unicode symbol Pi1 at index i1 from the horizontal
dimension, the symbol Pi2 at index i2 from the vertical dimension,
and so on till Piu .

The encryption method uses the created k blocks to generate
sequences of random numbers for the encryption process. But as
we see next, as the encryption process progresses, these initial k
blocks will be thrown away one by one and replaced by blocks
from the plaintext to be encrypted.

4.2. Random sequence selection

Since our algorithm looks back k blocks each of size 16, the ran-
dom generator produces the sequences of random numbers

M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104 99
X1;X2; . . . ;Xk, where each sequence Xi consists of 16 signed ran-
dom numbers. In addition, our method consists of seven random-
based operations each requires one sequence for its functionality.
Therefore, the encryption process selects only seven sequences
out of k sequences Xi (i = 1, 2, . . ., k). The sequence selection mech-
anism is randomly based. Let K be a random variable whose possi-
ble values are the sequences Xi (i = 1, 2, . . ., k). We consider every
sequence Xi has the same probability pi ¼ 1=k to be selected. To
select a value Xj for K, we use the computer built-in random gen-
erator seeded with the encryption key to generated random num-
bers wi in [0, 1]. Based on outcome of the random generator, we

select K = Xi if wi <
Pi

j¼1pj.
For instance, if we assume that our method looks back j = 8

blocks, the generated sequence of random numbers is
X1;X2; . . . ;X8. Let us also suppose that the probability of selecting
any of Xi is pi ¼ 1=8 ¼ 0:125. If the generated random number is
w ¼ 0:36, the selected sequence is K ¼ X3.
4.3. Encryption process

This section discusses how our encryption process uses the ran-
dom number generator and the random operations to encrypt
plaintext. The input to the process is a 16-symbol key K and plain-
text T and the output is a ciphertext C. It splits the plaintext T into
blocks B0;B1; . . . ;Bn. Each block Bi is 16 symbols except probably
the last one, which may have fewer. Fig. 9 illustrates the encryp-
tion process.

The encryption process has two parts. The first part encrypts the
block B0 using a sequence of signed random numbers that is gen-
erated using the key and k random blocks. In the second part,
our method starts using the previous blocks of the plaintext in
the random number generation process. That is, the second part
produces a ciphertext Ci for a block Bi using a sequence of random
numbers that is generated using the key and the previous blocks
B0;B1; . . . ;Bi�1 along with random blocks if needed to complete
the input of the random generator to k blocks. Note after encrypt-
ing the first k blocks of plaintext, the method no longer needs the
Fig. 9. The encryption stages. Bi , Ci , and Ri are respectively the block
random blocks and the random generator uses only the previous k
blocks of plaintext.

In the first part, the random number generator maps the
symbols of the k blocks to the mesh and generates the
sequences X1;X2; . . . ;Xk of signed random numbers. (Each subse-
quence Xi consists of 16 signed random numbers.) Let
X1;X2;X3;X4;X5;X6;X7 be the seven sequences randomly selected
from Xi (i = 1, 2, . . ., k). Referring to Fig. 9, the encryption process
passes the sequences as an input for the random operations. It then
executes the random operations in the specified order to encrypt
the block B0 and outputs the ciphertext C0. The process first exe-
cutes the random mutation operation. The random mutation oper-
ation uses the first two sequences X1 and X2 to mutate B0 symbols
b1; b2, . . ., b16 as discussed in Section 3.1. The output is the mutated
block m1;m2, . . ., m16.

The mutated block m1;m2, . . ., m16 is passed to the random shift
operation. Since the number of rows to be shifted is 8, the shift
operation uses the first 8 random numbers of the sequence X3 to
shift the bits of the block as described in Section 3.2. The output
of the random shift operation is passed to the random permutation
operation.

The permutation operation uses the sequences X4 and X5 to
randomly cross over and scatter (reposition) the symbols of the
shifted-mutated block. Specifically, the crossover operation uses
the sequence X4 to cross over the input block. The repositioning
operation uses the sequence X5 to scatter the symbols of the input
block. The output of the permutation operation is passed to the
dirty-symbol insertion operation. This operation uses the sequence
X6 to insert a unicode symbol in a block as described in Section 3.4.
The output is the ciphertext C0 for the block B0.

For the remaining plaintext blocks B1;B2; . . .(if any), the encryp-
tion process follows the same previous steps, but with two funda-
mental modifications. Fig. 9 shows these modifications. First, the
encryption process updates key before encrypting any new block
Bi (i = 1, 2,. . .). The key is updated using the procedure in Sec-
tion 2.2.3 and the sequence X7. Second, the input to random gen-
erator changes. As Fig. 9 shows, the generator starts receiving
plaintext’s blocks B0;B1; . . . ;Bi�1 and random blocks Ri if needed
i of plaintext, the block i of ciphertext, and the random blocks.

Fig. 10. An example of text encryption.

100 M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104
in addition to the updated key as an input and creates sequences of
random numbers for encrypting the blocks Bi.

Updating the key and using plaintext blocks B0;B1; . . . ;Bi�1 to
generate random numbers for encrypting the block Bi extremely
strengthen the security. They change the state of the random gen-
erator and hence greatly correlate the resulting random numbers
to the both the plaintext and the current version of the key. The
functionality of the random operations that depends on the ran-
dom numbers changes accordingly. Because the random numbers
depend on the key and plaintext, the encryption of each block
depends on the previous blocks and the key. The relationship
between the plain text and its ciphertext becomes, therefore, com-
plicated since (1) this relationship is random (the key update is
random and encryption operations are randomly based) and (2)
it depends on both the key and plaintext itself. This greatly immu-
nizes our encryption method against differential analysis tech-
niques for identifying the key.

Fig. 10 shows an example of plaintext encryption. The leftmost
column shows the plaintext and its respective ciphertext. The sec-
ond column shows the original key ‘‘p7A12ag798cv6432” and the
updated versions. The third column shows a sample of the random
numbers sequences that were used during the encryption process.
The boldfaced sequences are the ones where the number of pluses
equal to number of minuses and therefore a dirty symbol is
inserted in the corresponding block. The dirty bytes in the cipher-
text are boldfaced and shaded.
4.4. Decryption process

The decryption process decrypts ciphertext using a key. This
process performs the same steps of the encryption process, but
the random operations are executed in a reverse order and the ran-
dom subsequences are processed backwards. The random opera-
tions are executed in this order: (1) dirty byte extraction (instead
of insertion), (2) the random permutation operation, (3) the ran-
dom shifting operation, and (4) finally the random mutation oper-
ation. The random subsequences are processed from the last
subsequence X6 to the subsequence X1. Generating the random
numbers and updating the keys follow the same steps during the
encryption.

The decryption process reads the first block (16 symbols) of the
ciphertext. For this block, the decryption process obtains a
sequence of random numbers using the key and k random blocks
as done during the encryption. It searches for the presence of the
dirty symbol in the current block by counting pluses and minuses
in the subsequence X6. If the dirty symbol is present, the process
(1) removes it at the index r%m, where r is the first non-zero ran-
dom number in X6 and (2) reads the next symbol, if any, from the
remaining ciphertext to complete the current block.

After removing the dirty symbol, the block is ready for decryp-
tion. The permutation operation uses the subsequences X4X5 to re-
order the block as described in Section 3.3. It first uses random
sequence X5 to reorder the block symbols to match their order
before the encryption. Once correctly reordered, the crossover
operation uses the random sequence X4 to reverse the effect of this
operation on the block during the encryption.

The shift operation obtains the 8-bit representation of the block
symbols and organizes them in two dimensional array as described
in the encryption section. The operation shifts each row using the
first 8 signed random numbers in the subsequence X3. The row
shift follows the same steps during the encryption, but the direc-
tion of the shift is reversed. The operation left shifts—instead of
right shifts—the row i if the sign of the random number ri is posi-
tive and right shifts this row otherwise. After shifting all the rows,
the block is reconstructed from the array by concatenating the
symbols represented by the columns staring from the leftmost
column.

Finally, the mutation operation recovers the plain symbols from
their corresponding ciphered symbols in the block. For each
ciphered symbolmi, the mutation operation uses the random num-
ber r1i ; r

2
i from the subsequences X1 and X2 to index both SBOX1

and SBOX2 and retrieve two symbols w and l. The symbol mi is
XORed with these two symbols yielding the plain text symbol bi.

After the decryption of the first block, the decryption of the rest,
if any, follows roughly the same steps. The only difference is the
input to the random generator. As discussed in the encryption pro-

M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104 101
cess, the random number generator uses the latest decrypted
blocks and random blocks if needed in addition to the key to pro-
duce sequences of signed random numbers.

5. Performance analysis

We test our approach in this section. Two major components on
which the effectiveness of the encryption depends and must there-
fore be tested. The components are the random number generator
and the encryption process.

5.1. Encryption/decryption examples

Before testing the proposed encryption method, we show some
examples of our method’s output. These examples are simple yet
give insights about the method’s capabilities. Fig. 11 shows the
keys, plaintexts, and the ciphertexts. The reader can see the impact
of modifying a single bit in the key or the plaintext on the output.
This impact is remarkably large. Consider the plaintexts in the first
and the second rows in Fig. 11, which differ in only the boldfaced

and underlined bit. Careful examination of their respective cipher-
texts shows that these ciphertexts are largely different. Consider
also the second and third rows, which contain the same plaintext
but two keys that differ in only one bit. As it could be seen, the
encryption method responded to this tiny difference in the key
by producing largely different encryptions for the plaintext. The
other rows in Fig. 11 lead to similar conclusions.

As the examples may indicate, the output of the method
appears as random sequencing of symbols. Additionally and gener-
ally speaking, the proposed encryption method seems to respond
properly to changes of plaintext or the key. These are very impor-
tant features of any secure cipher and will be thoroughly tested in
the following subsections.

5.2. Test terminologies

We want to test the following two hypotheses: H0: the output
sequence is random and H1: the output sequence is not random.
The statistical test results in accepting either H0 or H1 based on
Fig. 11. Examples of the
some calculated value called p-value. The decision of accepting
or rejecting H0 depends on comparing p-value to another specified
value called the significance level (or a). Although a can assume
any value in [0, 1], the famous choices are 0.05, 0.1, or 0.001.

Given a significance level a, we accept or reject H0 based on the
computed p-value. If p-value is greater than a, accept H0; reject it
otherwise (accept H1).
5.3. The random generator

We conducted many experiments to analyze the randomness
properties of the signed number sequences produced by the ran-
dom generator. Our experiments include files of 400–2000 symbols
collected from the web (Wikipedia). These files are grouped into 5
groups according to their sizes. Group 1 consists of 60 files of size
400 symbols, group 2 consists of 60 files of size 450 symbols, group
3 consists of 30 files of size 500 symbols, group 4 consists of 20 files
of size 1000 symbols, and group 5 consists of 20 files of size 2000
symbols. Each file is assigned a different key. We then used the
random generator to create three signed number sequences for
each file regardless of its size using the assigned key. The first
sequence is generated using the original key. To test the impact
of updating the key on randomness of the number sequences, we
generated two more sequences after updating the key. We also
confined the range of the generated signed numbers to be from 0
to 255 (8 bits for each number).

We extracted two additional sequences from each created
signed number sequence. The first sequence consists of only the
numbers without the sign. The second sequence consists of only
the signs after encoding ‘‘+” by 1 and ‘‘�” by 0, but kept their order
as in the original sequence. For instance, if we have the signed
number sequence ‘‘�12 + 254 + 97-130-9,. . .”, we obtained the
two sequences ‘‘12, 254, 97, 130, 9, . . .” and ‘‘01100. . .” for the
numbers and signs respectively.

The original signed number sequence and the two extracted
sequences are tested for randomness using three tests chosen from
the batteries of randomness tests recommended by the National
Institute for Standards and Technology (NIST) (The NIST test
suite, 2016; Nechvatal et al., 2010; Vladescu et al., 2014Sys and
output of our cipher.

Table 5
The results of randomness test for number sequences (without signs).

Sequence (bits) Runs Test Monobits Spectral

P-value Min Max P-value Min Max P-value Min Max

3200 0.37 0.094 0.87 0.45 0.14 0.45 0.02 0.013 0.056
3600 0.15 0.10 0.18 0.34 0.27 0.43 0.38 0.23 0.51
4000 0.38 0.25 0.56 0.18 0.14 0.29 0.19 0.0006 0.23
8000 0.17 0.09 0.31 0.37 0.34 0.40 0.09 0.05 0.16
16,000 0.21 0.1 0.46 0.40 0.24 0.55 0.18 0.12 0.23

Table 6
The results of randomness test for sign sequences.

Sequence (bits) Runs Test Monobits Spectral

P-value Min Max P-value Min Max P-value Min Max

400 0.87 0.56 0.98 0.74 0.61 0.76 0.35 0.34 0.41
450 0.86 0.56 0.96 0.91 0.78 0.98 0.19 0.09 0.51
500 0.13 0.09 0.28 0.31 0.24 0.37 0.31 0.17 0.50
1000 0.94 0.97 0.92 0.14 0.11 0.22 0.36 0.014 0.62
2000 0.21 0.11 0.45 0.39 0.22 0.48 0.12 0.06 0.20

Table 7
The results of Runs test for signed number sequences.

Sequence (number of signed numbers) P-Value

Average Min Max

400 0.2 0.11 0.68
450 0.49 0.23 0.76
500 0.38 0.015 0.81
1000 0.39 0.30 0.50
2000 0.26 0.15 0.61

102 M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104
Riha, 2014). The tests are Frequency Test (orMonobit), Runs Test,
and Discrete Fourier Test (Spectral). We additionally applied the
Runs test to the signed number sequences using MINITAB software
package (MiniTable 17 Statistical Software, 2016).

To apply the NIST’s randomness tests, we obtained the 8-bit
binary representation for each number. Because every number cre-
ated by the random generator is an integer between 0 and 255, the
binary representation of each number is its binary equivalence.
Additional zeros are appended to the most significant positions if
the binary representation is fewer than 8 bits. For instance, the bin-
ary representations for 192 and 19 are ‘‘11000110” and
‘‘00010011” respectively. (The three zeros appended to the binary
representation of 19 appear in bold.) The sign sequences need no
further manipulations because they are already in binary
representation.

We fed the binary sequences (for the numbers and signs) to
each of the three NIST’s tests and recorded the significance level
of the test in terms of p-values. We computed the average of the
p-values for all the number sequences and the sign sequences.
We also recorded the minimum and maximum p-values.

Table 5 shows the results of randomness test for number
sequences. The results are shown in terms of average p-value, min-
imum, and maximum p-value. Assuming the level of significance is
0.01, the average p-values show no deviation from randomness
because all of them are greater than 0.01. The minimum p-values
show that one sequence of size 4000 bits failed Spectral test
because the corresponding minimum p-value is 0.0006<0.01.
Although this sequence failed Spectral test, all of the sequences
of this size passed the other two randomness tests. As a result,
according to average p-values there is no sufficient evidence that
produced number sequences deviate from random.

Table 6 shows the results of randomness test for the signs’
sequences. The signs’ distribution in signed number sequences
does not deviate from randomness because all the average p-
values are >0.01. Although some of the minimum p-values (espe-
cially in Spectral test) are slightly greater than the significance
level, the sign sequences are still statistically random.

We further tested the randomness of the signed number
sequences. The number of sequences are 60, 60, 30, 20, 20 for
respectively the files of size 400, 450, 500, 1000, 2000. Rather than
transforming the numbers in a sequence into binary, we used the
signed numbers themselves. The objective is to check if the appear-
ance of the signed numbers in a sequence is random. Table 7 shows
the results of running the Runs test using MINITAB software pack-
age (MiniTable 17 Statistical Software, 2016). According to the
average of p-values and the significance level (0.01), all the
sequences passed the Runs test.

Although the test cases may not be sufficiently large, the test
results are indicative. They show that generator’s outputs do not
deviate from randomness for these test cases. Since the test cases
are randomly selected, we believe that our conclusions are valid.
5.4. The encryption security

Our encryption method does not directly use keys in the
encryption. It encrypts plaintexts using the random numbers gen-
erated using the keys. The relation between keys and ciphertexts is
hence weak and intractable. This ‘‘tiny trace” of keys in ciphertexts
makes it infeasible for adversaries to predict keys. Thus techniques
that involve ciphertexts analysis are not effective since these
ciphertexts involve very limited knowledge about keys. In crypto-
graphical terminologies, our encryption method guarantees a high
confusion.

We attribute the high diffusion of our method to the random
number generator. The random generator highly depends on keys
and plain texts and is thus greatly sensitive to their variations.
As discussed in Section 2, variations of keys or plaintexts largely
modify the random number sequences and consequently largely
influence the functionality of the random operations. The random
mutation operation, for instance, is greatly influenced by random
numbers; different random numbers index different unicode sym-
bols and hence this operation produces different mutated symbols.
The rest of the operations follow suit. The shift and permutation
operations use the random numbers to re-position the block sym-
bols. They reposition the symbols differently based on the changes

Table 8
Key avalanche test results.

Test Successes Failures Rate of success

Runs Test 612 68 90%
Monobits 607 73 89.3%
Spectral 584 96 85.8%

Table 9
Plaintext avalanche test results.

Test Successes Failures Rate of Success

Runs Test 560 120 82.4%

M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104 103
to the random numbers. Likewise, the functionality of the dirty
symbol insertion relies on the random numbers.

Known effective attack methods such as Differential Cryptanal-
ysis (Biham and Shamir, 1991; Biham and Shamir, 1993), Linear
Cryptanalysis (Matsui, 1994), Truncated Differentials (Knudsen,
1994), Boomerang Attacks (Wagner, 1999), Impossible Differen-
tials (Sung et al., 2904) and others (Dewu and Wei, 2010; Biham
and Dunkelman, 2017) use analytical techniques that involve
ciphertexts to predict keys. However, our ciphertexts have too lim-
ited trace of keys to help predict these key. Furthermore, identify-
ing random numbers provides no help to predict the key because
the random number generation process is irreversible.
Monobits 581 99 85.4%
Spectral 541 139 79.6%

Table 10
Plaintex-ciphertext correlation test results.

Test Successes Failures Rate of Success

Runs Test 633 47 93.09%
Monobits 647 33 95.1%
Spectral 604 76 88.8%

Table 11
The results of Runs test for ciphertext symbols.

Files P-Value

Size number Average Min Max

48 30 0.88 0.80 0.97
437 60 0.61 0.52 0.69
524 60 0.72 0.64 0.78
1000 50 0.54 0.49 0.62
2000 30 0.77 0.72 0.81
2859 10 0.66 0.62 0.72
3000 30 0.71 0.70 0.76
10000 30 0.81 0.74 0.87
20000 12 0.89 0.79 0.95
5.4.1. Bit-level randomness test
We conducted many experiments to test the randomness prop-

erties of the output of our encryption method. Without losing the
generality of the test, we confined the SBOX’s contents to only 256
unicode symbols. This allows for representing the output symbols
in 8 bits. Given this confine, we tested the output at the bit level.

We used the following three sets of data to test the randomness
at the bit level (Vladescu et al., 2014; Soto, 2017).

� Key Avalanche Test. The objective of this data set is to examine
the sensitivity of our algorithm to changes in the key.

� Plaintext Avalanche Test. The objective of this data set is to
examine the sensitivity of our algorithm to changes in the
plaintext.

� Plaintext/Ciphertext Correlation. The objective is to study the cor-
relation between plaintext-ciphertext pairs.

We prepared these sets of data as described in Soto (2017).
Firstly, to study the sensitively of our algorithm to the key change,
we created and analyzed 680 sequences of size 16,000 bits each.
We used a 128-bit plaintext of all zeros and 20 random keys each
of size 128 bits (16 bytes). Each sequence was created by concate-
nating 125 derived blocks constructed as follows. Each derived
block is created by XORing the ciphertext created using the fixed
plaintext and the 128-bit key with the ciphertext created using
the fixed plaintext and the perturbed random 128-bit key with
the ith bit changed, for 1 6 i 6 128.

Secondly, to analyze the sensitivity to the plaintext changes, we
created and analyzed 680 sequences of size 16,000 bits each. Each
sequence was created by concatenating 125 derived blocks con-
structed as before. Each derived block is created by XORing the
ciphertext created using the 128-bit key and the plaintext with
the ciphertext created using the 128-bit key and the perturbed ran-
dom 128-bit plaintext with the ith bit changed, for 1 6 i 6 128.

Thirdly, to study the correlation of plaintext-ciphertext pairs,
we constructed 680 sequences of size 64,000 bits per a sequence.
Each sequence is created as follows. Given a random 128-bit key
and 500 random plaintext blocks, a binary sequence was con-
structed by concatenating 500 derived blocks. A derived block is
created by XORing the plaintext block and its corresponding
ciphertext block.

Tables 8 and 9 show the randomness test results for key ava-
lanche, plaintext avalanche, and plaintext-ciphertext correlation.
The results are presented in terms of number of successes, failures,
and the rate of success. A sequence passes the randomness test if
its corresponding p-value is greater than 0.01. The success rate is
the percentage of the passed sequences to the total number of
sequences (680). Table 8 shows that the sequences have passed
the Runs Test, Monobits, and Spectral with success rate of 90%,
89.3%, and 85.8% respectively. Table 9 shows that the sequences
have passed the Runs Test, Monobits, and Spectral with success
rate of 82.4%, 85.4%, and 79.6% respectively. Table 10 shows that
the sequences have passed the Runs Test, Monobits, and Spectra
with success rate of 93.09%, 95.1%, and 88.8% respectively.

Although the input sequences are not sufficiently large, the test
results are promising. More than 80% of the sequences passed the
randomness test for all of the three sets of data except Spectral test
fell under 80% for plaintext avalanche. For some tests, even more
than 90% of the sequences passed the randomness test. Most of
the failures happened when the input blocks contain large subse-
quences of identical symbols. As a future work, we will consider
different ways to enhance the randomness properties of the
method (e.g. making the encryption process iterative).
5.4.2. Symbol-level randomness test
We tested the output of our method at the symbol level. We

selected 112 files of different sizes from the Wikipedia. We in addi-
tion created 200 random files of different sizes. The random files
are created by using the computer random generator to generate
random integers in the range [0, 255] and concatenate their
respective unicode symbols. All the random files of sizes P1000.
We encrypted the 312 files using our method and tested the ran-
domness of the resulting ciphertexts. For each ciphertext, we cre-
ated a sequence of integers by finding the unicode index of each
symbol. For instance, the unicode index for the symbol ‘‘A” is 65.
We then applied Runs test to each sequence using MINITAB statis-
tical package. Table 11 shows the results of Runs test.

As Table 11 shows, all the p-values are significant ð> 0:01Þ. This
outcome indicates that all of the ciphertexts do not deviate from

104 M.J. Al-Muhammed, R.A. Zitar / Journal of King Saud University – Computer and Information Sciences 31 (2019) 92–104
the randomness regardless of whether the plaintext file is random
or not.

6. Conclusions and future work

We are presenting a very illusive encryption technique. The key
is used in random number generation greatly isolating the key
from the encryption process. The key is also continuously updated.
Random mutation provides radical departure from the current
state of the code. Shifting, permutations and crossover provide ran-
dom but limited alterations on the coded pattern. Their alterations
are more local and they still keep the code within the vicinity of its
previous state. Mutations make big and radical changes on the
structure of the encrypted text. The continuous updating of the
key makes it very difficult for analytical methods to discover a hid-
den pattern and connect it with some key.

The randomness tests conducted on the ciphertext are of sev-
eral different natures; with or without sign; bit level or symbol
level. The samples of text are diverse and come from different
resources. Some of these test are in time domain, others are in fre-
quency domain. The time domain behaviors along with transfor-
mations for the frequency domain behaviors are contributing to a
comprehensive test. The randomness and the non-cyclic behavior
are mostly desired behaviors. The zero crossing and the uniformity
of the random generated numbers are tested.

On the other hand, the encryption process itself was tested in
terms of sensitivity to changes in key, plaintext, and plaintext/
ciphertext correlation. From the results it is clear that the results
of Spectral test are the weakest. This is a general problem since
our random number generators depend a lot on the LCG generator
that has the problem of generating numbers that are organized in
clear successive two dimensional planes for x(t) and x(t � 1). This
problem can be overcome if our original random numbers genera-
tors RNG change its dependence on the mod() function and start
introducing more complex function. Of course, that would intro-
duce more complexity and cost.

Furthermore, the testing for sensitivity to keys’ change and
plaintext’s change preserved the needed randomness in almost
all the three tests we applied. The tests passed the preset p-
values of 0.01 in about 90% of the cases except in the spectral test.
Despite the minor alterations in the key and in the plaintext, the
ciphertexts were still maintaining its randomness characteristics.
The tests on the bit level and on the symbol level showed high suc-
cess rates. However, as mentioned earlier, longer sequences of bits/
symbols would reflect more reliable evidences about the perfor-
mances of the random number generator we have.

Using other sources of random number generators such as using
the natural noise or input from physical phenomena could be a
more realistic source of random numbers. Random.org uses radio
receivers to collect random radio signals from the space and use
them as source of randomness. It would be very interesting, as
future work, to use these sources and repeat the simulation we
had in this work.

In general, a new elusive random number generation technique
has been used. The direct influence of the encryption key on the
ciphertext was minimized. It would be very hard to analyze the
encryption patterns and figure out the key pattern. We still hope
for further improvement on the performance by trying alternative
resources for the RNG other than the original PRNG we are depend-
ing on. This will be the topic of future work and hopefully much
better results will be achieved.
References

Biham, E., Dunkelman, O., 2017. Techniques for Cryptanalysis of Block Ciphers.
Information Security and Cryptography. Springer-Verlag, Berlin Heidelberg.

Biham, E., Shamir, A., 1991. Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4, 3–72.

Biham, E., Shamir, A., 1993. Differential Cryptanalysis of the Data Encryption
Standard. Springer-Verlag.

Biham, E., Anderson, R., Knudsen, L., 2000. Serpent: A Proposal for the Advanced
Encryption Standard.http://cryptosoft.net/docs/Serpent.pdf. Porposal for the
Advanced Encryption Standard

Burnwick, C., et al. 1999. The Mars Encryption Algorithm. IBM.
Daemen, J., Rijmen, V., 2001. Advanced Encryption Standard(AES).http://csrc.

nist.gov/publications/fips/fips197/fips-197.pdf/, November 2001.
Dewu, X., Wei, C., 2010. A Survey on Cryptanalysis of Block Ciphers. In 2010

International Conference on Computer Application and System Modeling
(ICCASM 2010), volume 8, pages 218–220, Oct 2010.

Kamalakannan, V., Tamilselvan, S., 2015. Security enhancement of text message
based on matrix approach using elliptical curve cryptosystem. Procedia Mater.
Sci. 10, 489–496.

Knudsen, L., 1994. Truncated and Higher Order Differentials. Fast Software
Encryption, Springer LNCS 1008, 196–211.

L’Ecuyer, Pierre, 2005. On the Xorshift random number generators. ACM Trans.
Model. Comput. Simul. (TOMACS) 15 (4), 346–361.

L’Ecuyer, Pierre, 2012. Random Number Generation. In: Gentle, James E., Karl
Härdle, Wolfgang, Mori, Yuichi (Eds.), Handbook of Computational Statistics,
Springer Handbooks, chapter 3. Springer, Berlin Heidelberg, pp. 35–71.

Marsaglia, G., 2003. Xorshift random number generators. J. Stat. Softw. 14 (8), 1–6.
Matsui, M., 1994. Linear Cryptanalysis Method for DES Cipher. In: Advances in

Cryptology-EuroCrypt’93. In: Helleseth, Tor (Ed.), . Lecture Notesin Computer
Science, vol. 765. Springer-Verlag, Berlin, pp. 386–397.

MiniTable 17 Statistical Software. Website, 2016.www.minitab.com.
Nagaraj, S., Raju, D.S.V.P., Bhamidipati, K., 2013. Randomized approach for block

cipher encryption. In: Satapathy, S.C. et al. (Eds.), Proceedings of the
International Conference on Frontiers of Intelligent Computing: Theory and
Applications (FICTA). Springer-Verlag, Berlin Heidelberg, pp. 551–558.

Nechvatal, J., Rukhin, A., Soto, J., et al. 2010. A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications. Special
publication 800-22, National Institute of Standards and Technology (NIST).

Preneel, B. De Canniére, C., 2006. Trivium – A Stream Cipher Construction Inspired
by Block Cipher Design Principles. In: Proceedings of the 9th International
Conference on Information Security – ISC, pages 171–186, Samos Island, Greece,
August 2006.

Rose, Greg, 1998. A stream cipher based on linear feedback over GF(28). In: Boyd,
Colin, Dawson, Ed. (Eds.), Information Security and Privacy, vol. 1438. Springer,
Berlin Heidelberg, pp. 146–155.

Shub, M., Blum, L., Blum, M., 1986. A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15 (2), 364–383.

Sidney, R. Rivest, R., Robshaw, M. Yin, Y. 1998. The RC6 Block Cipher.http://people.
csail.mit.edu/rivest/pubs/RRSY98.pdf.

Singh, L.D., Singh, K.M., 2015. Implementation of text encryption using elliptic curve
cryptography. Procedia Comput. Sci. 54, 73–82.

Soto, Juan Jr. 2017. Randomness Testing of the AES Candidate Algorithms.http://
csrc.nist.gov/archive/aes/round1/r1-rand.pdf, Accessed 2017.

Stalling, W., 2016. Cryptography and Network Security: Principles and Practices.
Pearson.

Steef, A., Shamma, M.N., Alkhatib, A., 2015. RSA algorithm with a new approach
encryption and decryption message text by ASCII. Int. J. Cryptography Inf.
Security (IJCIS) 5 (3), 23–32.

Sung, J., Kim, J., Hong, S., et al., 2904. Impossible Differential Cryptanalysis for Block
Cipher Structures, volume 2904 of Lecture Notes in Computer Science. Springer,
Berlin Heidelberg, pp. 82–96.

Sỳs, M., Rïha, Z., 2014. Faster Randomness Testing with the NIST Statistical Test
Suite. In: Schaumont, P., Chakraborty, R.S., Matyas, V. (Eds.), Security, Privacy,
and Applied Cryptography Engineering, volume 8804 of Lecture Notes in
Computer Science. Springer, Cham, pp. 272–284.

The NIST test suite. Website, 2016.http://csrc.nist.gov/groups/st/toolkit/rng.
Vladescu, F., Gheorghe, L., Duta, C., Mocanu, B., 2014. Randomness evaluation

framework of crypotographic algorithms. Int. J. Cryptography Inf. Security
(IJCIS) 4 (1), 31–49.

Wagner, D., 1999. The boomerang attack. Fast Software Encryption, Springer LNCS
1636, 156–170.

Whiting, D., Schneier, B., Kelsey, J., et al. 1998. Twofish: A 128-Bit Block Cipher.
Technical report,https://www.schneier.com/academic/paperfiles/paper-
twofish-paper.pdf.

http://refhub.elsevier.com/S1319-1578(17)30236-7/h0005
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0005
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0010
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0010
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0015
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0015
http://cryptosoft.net/docs/Serpent.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf/
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0040
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0040
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0040
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0045
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0045
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0050
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0050
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0055
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0055
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0055
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0060
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0065
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0065
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0065
http://www.minitab.com
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0075
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0075
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0075
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0075
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0090
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0090
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0090
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0090
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0095
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0095
http://people.csail.mit.edu/rivest/pubs/RRSY98.pdf
http://people.csail.mit.edu/rivest/pubs/RRSY98.pdf
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0105
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0105
http://csrc.nist.gov/archive/aes/round1/r1-rand.pdf
http://csrc.nist.gov/archive/aes/round1/r1-rand.pdf
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0115
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0115
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0120
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0120
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0120
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0125
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0125
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0125
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0130
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0130
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0130
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0130
http://csrc.nist.gov/groups/st/toolkit/rng
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0140
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0140
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0140
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0145
http://refhub.elsevier.com/S1319-1578(17)30236-7/h0145
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf

	[$] \kappa [$]-Lookback random-based text encryption technique
	1 Introduction
	2 Random numbers generator
	2.1 The mesh
	2.2 Operations
	2.2.1 Ordering operation
	2.2.2 Mapping operation
	2.2.3 Key update operation

	2.3 Random number generation process
	2.4 The key/plaintext noise
	2.5 Random generator properties

	3 Random-based operations
	3.1 Random mutation operation
	3.2 Random cyclic shift operation
	3.3 Random permutation operation
	3.3.1 Random crossover
	3.3.2 Random repositioning

	3.4 Dirty symbol insertion operation

	4 The encryption method
	4.1 Random blocks generation
	4.2 Random sequence selection
	4.3 Encryption process
	4.4 Decryption process

	5 Performance analysis
	5.1 Encryption/decryption examples
	5.2 Test terminologies
	5.3 The random generator
	5.4 The encryption security
	5.4.1 Bit-level randomness test
	5.4.2 Symbol-level randomness test

	6 Conclusions and future work
	References

