
Chapter 6

Cycles I: Autoregressions and Wold’s

Chain Rule

We’ve already considered models with trend and seasonal components. In this

chapter we consider a crucial third component, cycles. When you think of a

“cycle,” you probably think of the sort of rigid up-and-down pattern depicted

in Figure 6.1. Such cycles can sometimes arise, but cyclical fluctuations in

business, finance, economics and government are typically much less rigid. In

fact, when we speak of cycles, we have in mind a much more general notion

of cyclicality: any sort of stable, mean-reverting dynamics not captured by

trends or seasonals.

Cycles, according to our broad interpretation, may display the sort of

back-and-forth movement characterized in Figure 6.1, but they need not. All

we require is that there be some stable dynamics (“covariance stationary”

dynamics, in the jargon that we’ll shortly introduce) that link the present

to the past, and hence the future to the present. Cycles are present in most

of the series that concern us, and it’s crucial that we know how to model

and forecast them, because their history conveys information regarding their

future.

Trend and seasonal dynamics are simple, so we can capture them with

simple models. Cyclical dynamics, however, are a bit more complicated, and
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Figure 6.1: A Rigid Cyclical Pattern

consequently the cycle models we need are a bit more involved. We will

emphasize autoregressive models.

Let’s jump in.

6.1 Characterizing Cycles

Here we introduce methods for characterizing cyclical dynamics in model-free

fashion.

6.1.1 Covariance Stationary Time Series

Basic Ideas

A realization of a time series is an ordered set,

{..., y−2, y−1, y0, y1, y2, ...}.

Typically the observations are ordered in time – hence the name time series

– but they don’t have to be. We could, for example, examine a spatial series,

such as office space rental rates as we move along a line from a point in
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midtown Manhattan to a point in the New York suburbs thirty miles away.

But the most important case, by far, involves observations ordered in time,

so that’s what we’ll stress.

In theory, a time series realization begins in the infinite past and continues

into the infinite future. This perspective may seem abstract and of limited

practical applicability, but it will be useful in deriving certain very important

properties of the models we’ll be using shortly. In practice, of course, the data

we observe is just a finite subset of a realization, {y1, ..., yT}, called a sample

path.

Shortly we’ll be building models for cyclical time series. If the underlying

probabilistic structure of the series were changing over time, we’d be doomed

– there would be no way to relate the future to the past, because the laws gov-

erning the future would differ from those governing the past. At a minimum

we’d like a series’ mean and its covariance structure (that is, the covariances

between current and past values) to be stable over time, in which case we

say that the series is covariance stationary. Let’s discuss covariance sta-

tionarity in greater depth. The first requirement for a series to be covariance

stationary is that the mean of the series be stable over time. The mean of

the series at time t is Eyt = µt. If the mean is stable over time, as required

by covariance stationarity, then we can write Eyt = µ, for all t. Because the

mean is constant over time, there’s no need to put a time subscript on it.

The second requirement for a series to be covariance stationary is that

its covariance structure be stable over time. Quantifying stability of the

covariance structure is a bit tricky, but tremendously important, and we do

it using the autocovariance function. The autocovariance at displacement

τ is just the covariance between yt and yt−τ . It will of course depend on τ ,

and it may also depend on t, so in general we write

γ(t, τ) = cov(yt, yt−τ) = E(yt − µ)(yt−τ − µ).
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If the covariance structure is stable over time, as required by covariance

stationarity, then the autocovariances depend only on displacement, τ , not

on time, t, and we write γ(t, τ) = γ(τ), for all t.

The autocovariance function is important because it provides a basic sum-

mary of cyclical dynamics in a covariance stationary series. By examining

the autocovariance structure of a series, we learn about its dynamic behav-

ior. We graph and examine the autocovariances as a function of τ . Note that

the autocovariance function is symmetric; that is, γ(τ) = γ(−τ), for all τ .

Typically, we’ll consider only non-negative values of τ . Symmetry reflects the

fact that the autocovariance of a covariance stationary series depends only

on displacement; it doesn’t matter whether we go forward or backward. Note

also that γ(0) = cov(yt, yt) = var(yt).

There is one more technical requirement of covariance stationarity: we

require that the variance of the series – the autocovariance at displacement

0, γ(0), be finite. It can be shown that no autocovariance can be larger

in absolute value than γ(0), so if γ(0) < ∞, then so too are all the other

autocovariances.

It may seem that the requirements for covariance stationarity are quite

stringent, which would bode poorly for our models, almost all of which in-

voke covariance stationarity in one way or another. It is certainly true that

many economic, business, financial and government series are not covariance

stationary. An upward trend, for example, corresponds to a steadily increas-

ing mean, and seasonality corresponds to means that vary with the season,

both of which are violations of covariance stationarity.

But appearances can be deceptive. Although many series are not covari-

ance stationary, it is frequently possible to work with models that give special

treatment to nonstationary components such as trend and seasonality, so that

the cyclical component that’s left over is likely to be covariance stationary.

We’ll often adopt that strategy. Alternatively, simple transformations often
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appear to transform nonstationary series to covariance stationarity. For ex-

ample, many series that are clearly nonstationary in levels appear covariance

stationary in growth rates.

In addition, note that although covariance stationarity requires means and

covariances to be stable and finite, it places no restrictions on other aspects

of the distribution of the series, such as skewness and kurtosis.1 The upshot

is simple: whether we work directly in levels and include special components

for the nonstationary elements of our models, or we work on transformed

data such as growth rates, the covariance stationarity assumption is not as

unrealistic as it may seem.

Recall that the correlation between two random variables x and y is defined

by

corr(x, y) =
cov(x, y)

σxσy
.

That is, the correlation is simply the covariance, “normalized,” or “stan-

dardized,” by the product of the standard deviations of x and y. Both the

correlation and the covariance are measures of linear association between two

random variables. The correlation is often more informative and easily inter-

preted, however, because the construction of the correlation coefficient guar-

antees that corr(x, y) ∈ [−1, 1], whereas the covariance between the same two

random variables may take any value. The correlation, moreover, does not

depend on the units in which x and y are measured, whereas the covariance

does. Thus, for example, if x and y have a covariance of ten million, they’re

not necessarily very strongly associated, whereas if they have a correlation of

.95, it is unambiguously clear that they are very strongly associated.

In light of the superior interpretability of correlations as compared to

covariances, we often work with the correlation, rather than the covariance,

between yt and yt−τ . That is, we work with the autocorrelation function,

1For that reason, covariance stationarity is sometimes called second-order stationarity or weak sta-
tionarity.
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ρ(τ), rather than the autocovariance function, γ(τ). The autocorrelation

function is obtained by dividing the autocovariance function by the variance,

ρ(τ) =
γ(τ)

γ(0)
, τ = 0, 1, 2, ....

The formula for the autocorrelation is just the usual correlation formula,

specialized to the correlation between yt and yt−τ . To see why, note that the

variance of yt is γ(0), and by covariance stationarity, the variance of y at any

other time yt−τ is also γ(0). Thus,

ρ(τ) =
cov(yt, yt−τ)√

var(yt)
√
var(yt−τ)

=
γ(τ)√

γ(0)
√
γ(0)

=
γ(τ)

γ(0)
,

as claimed. Note that we always have ρ(0) = γ(0)
γ(0) = 1 , because any series

is perfectly correlated with itself. Thus the autocorrelation at displacement

0 isn’t of interest; rather, only the autocorrelations beyond displacement 0

inform us about a series’ dynamic structure.

Finally, the partial autocorrelation function, p(τ), is sometimes use-

ful. p(τ) is just the coefficient of yt−τ in a population linear regression of

yt on yt−1, ..., yt−τ .
2 We call such regressions autoregressions, because the

variable is regressed on lagged values of itself. It’s easy to see that the

autocorrelations and partial autocorrelations, although related, differ in an

important way. The autocorrelations are just the “simple” or “regular” corre-

lations between yt and yt−τ . The partial autocorrelations, on the other hand,

measure the association between yt and yt−τ after controlling for the effects

of yt−1 , ..., yt−τ+1; that is, they measure the partial correlation between yt

and yt−τ .

As with the autocorrelations, we often graph the partial autocorrelations

2To get a feel for what we mean by “population regression,” imagine that we have an infinite sample
of data at our disposal, so that the parameter estimates in the regression are not contaminated by sampling
variation – that is, they’re the true population values. The thought experiment just described is a population
regression.
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as a function of τ and examine their qualitative shape, which we’ll do soon.

Like the autocorrelation function, the partial autocorrelation function pro-

vides a summary of a series’ dynamics, but as we’ll see, it does so in a different

way.3

All of the covariance stationary processes that we will study subsequently

have autocorrelation and partial autocorrelation functions that approach

zero, one way or another, as the displacement gets large. In Figure 6.2 we

show an autocorrelation function that displays gradual one-sided damping,

and in Figure 6.3 we show a constant autocorrelation function; the latter

could not be the autocorrelation function of a stationary process, whose au-

tocorrelation function must eventually decay. The precise decay patterns

of autocorrelations and partial autocorrelations of a covariance stationary

series, however, depend on the specifics of the series. In Figure 6.4, for ex-

ample, we show an autocorrelation function that displays damped oscillation

– the autocorrelations are positive at first, then become negative for a while,

then positive again, and so on, while continuously getting smaller in absolute

value. Finally, in Figure 6.5 we show an autocorrelation function that differs

in the way it approaches zero – the autocorrelations drop abruptly to zero

beyond a certain displacement.

3Also in parallel to the autocorrelation function, the partial autocorrelation at displacement 0 is always
one and is therefore uninformative and uninteresting. Thus, when we graph the autocorrelation and partial
autocorrelation functions, we’ll begin at displacement 1 rather than displacement 0.



148 CHAPTER 6. CYCLES I: AUTOREGRESSIONS AND WOLD’S CHAIN RULE

Figure 6.2: Autocorrelation Function: One-sided Gradual Damping

Figure 6.3: Constant Autocorrelation
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Figure 6.4: Autocorrelation Function: Gradual Damped Oscillation

Figure 6.5: Autocorrelation Function: Sharp Cutoff



150 CHAPTER 6. CYCLES I: AUTOREGRESSIONS AND WOLD’S CHAIN RULE

6.2 White Noise

6.2.1 Basic Ideas

Later in this chapter we’ll study the population properties of certain impor-

tant time series models, or time series processes. Before we estimate time

series models, we need to understand their population properties, assum-

ing that the postulated model is true. The simplest of all such time series

processes is the fundamental building block from which all others are con-

structed. In fact, it’s so important that we introduce it now. We use y to

denote the observed series of interest. Suppose that

yt = εt

εt ∼ (0, σ2),

where the “shock,” εt , is uncorrelated over time. We say that εt , and hence yt

, is serially uncorrelated. Throughout, unless explicitly stated otherwise,

we assume that σ2 <∞. Such a process, with zero mean, constant variance,

and no serial correlation, is called zero-mean white noise, or simply white

noise.4 Sometimes for short we write

εt ∼ WN(0, σ2)

and hence

yt ∼ WN(0, σ2).

Note that, although εt and hence yt are serially uncorrelated, they are

not necessarily serially independent, because they are not necessarily nor-

mally distributed.5 If in addition to being serially uncorrelated, y is serially

4It’s called white noise by analogy with white light, which is composed of all colors of the spectrum,
in equal amounts. We can think of white noise as being composed of a wide variety of cycles of differing
periodicities, in equal amounts.

5Recall that zero correlation implies independence only in the normal case.
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Figure 6.6: Realization of White Noise Process

independent, then we say that y is independent white noise.6 We write

yt ∼ iid(0, σ2),

and we say that “y is independently and identically distributed with zero

mean and constant variance.” If y is serially uncorrelated and normally dis-

tributed, then it follows that y is also serially independent, and we say that

y is normal white noise, or Gaussian white noise.7 We write

yt ∼ iidN(0, σ2).

We read “y is independently and identically distributed as normal, with zero

mean and constant variance,” or simply “y is Gaussian white noise.” In Figure

6.6 we show a sample path of Gaussian white noise, of length T = 150,

simulated on a computer. There are no patterns of any kind in the series due

to the independence over time.

You’re already familiar with white noise, although you may not realize

6Another name for independent white noise is strong white noise, in contrast to standard serially
uncorrelated weak white noise.

7Carl Friedrich Gauss, one of the greatest mathematicians of all time, discovered the normal distribution
some 200 years ago; hence the adjective “Gaussian.”
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it. Recall that the disturbance in a regression model is typically assumed

to be white noise of one sort or another. There’s a subtle difference here,

however. Regression disturbances are not observable, whereas we’re working

with an observed series. Later, however, we’ll see how all of our models for

observed series can be used to model unobserved variables such as regression

disturbances.

Let’s characterize the dynamic stochastic structure of white noise, yt ∼ WN(0, σ2).

By construction the unconditional mean of y is E(yt) = 0, and the uncondi-

tional variance of y is var(yt) = σ2. Note in particular that the unconditional

mean and variance are constant. In fact, the unconditional mean and vari-

ance must be constant for any covariance stationary process. The reason is

that constancy of the unconditional mean was our first explicit requirement

of covariance stationarity, and that constancy of the unconditional variance

follows implicitly from the second requirement of covariance stationarity, that

the autocovariances depend only on displacement, not on time.8

To understand fully the linear dynamic structure of a covariance station-

ary time series process, we need to compute and examine its mean and its

autocovariance function. For white noise, we’ve already computed the mean

and the variance, which is the autocovariance at displacement 0. We have yet

to compute the rest of the autocovariance function; fortunately, however, it’s

very simple. Because white noise is, by definition, uncorrelated over time, all

the autocovariances, and hence all the autocorrelations, are zero beyond dis-

placement 0.9 Formally, then, the autocovariance function for a white noise

process is

γ(τ) =


σ2, τ = 0

0, τ ≥ 1,

8Recall that σ2 = γ(0).
9If the autocovariances are all zero, so are the autocorrelations, because the autocorrelations are propor-

tional to the autocovariances.
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Figure 6.7: White Noise Autocorrelation Function

and the autocorrelation function for a white noise process is

ρ(τ) =


1, τ = 0

0, τ ≥ 1.

In Figure 6.7 we plot the white noise autocorrelation function.

Finally, consider the partial autocorrelation function for a white noise

series. For the same reason that the autocorrelation at displacement 0 is

always one, so too is the partial autocorrelation at displacement 0. For a

white noise process, all partial autocorrelations beyond displacement 0 are

zero, which again follows from the fact that white noise, by construction, is

serially uncorrelated. Population regressions of yt on yt−1 , or on yt−1 and

yt−2 , or on any other lags, produce nothing but zero coefficients, because the

process is serially uncorrelated. Formally, the partial autocorrelation function

of a white noise process is

p(τ) =


1, τ = 0

0, τ ≥ 1.



154 CHAPTER 6. CYCLES I: AUTOREGRESSIONS AND WOLD’S CHAIN RULE

Figure 6.8: White Noise Partial Autocorrelation Function

We show the partial autocorrelation function of a white noise process in

Figure 6.8. Again, it’s degenerate, and exactly the same as the autocorrela-

tion function!

White noise is very special, indeed degenerate in a sense, as what happens

to a white noise series at any time is uncorrelated with anything in the past,

and similarly, what happens in the future is uncorrelated with anything in the

present or past. But understanding white noise is tremendously important

for at least two reasons. First, as already mentioned, processes with much

richer dynamics are built up by taking simple transformations of white noise.

Second, the goal of all time series modeling (and 1-step-ahead forecasting)

is to reduce the data (or 1-step-ahead forecast errors) to white noise. After

all, if such forecast errors aren’t white noise, then they’re serially correlated,

which means that they’re forecastable, and if forecast errors are forecastable

then the forecast can’t be very good. Thus it’s important that we understand

and be able to recognize white noise.

Thus far we’ve characterized white noise in terms of its mean, variance,

autocorrelation function and partial autocorrelation function. Another char-

acterization of dynamics involves the mean and variance of a process, condi-

tional upon its past. In particular, we often gain insight into the dynamics in
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a process by examining its conditional mean.10 In fact, throughout our study

of time series, we’ll be interested in computing and contrasting the uncondi-

tional mean and variance and the conditional mean and variance of

various processes of interest. Means and variances, which convey information

about location and scale of random variables, are examples of what statisti-

cians call moments. For the most part, our comparisons of the conditional

and unconditional moment structure of time series processes will focus on

means and variances (they’re the most important moments), but sometimes

we’ll be interested in higher-order moments, which are related to properties

such as skewness and kurtosis.

For comparing conditional and unconditional means and variances, it will

simplify our story to consider independent white noise, yt ∼ iid(0, σ2). By

the same arguments as before, the unconditional mean of y is 0 and the un-

conditional variance is σ2. Now consider the conditional mean and variance,

where the information set Ωt−1 upon which we condition contains either the

past history of the observed series, Ωt−1 = yt−1, yt−2, ..., or the past history of

the shocks, Ωt−1 = εt−1, εt−2.... (They’re the same in the white noise case.)

In contrast to the unconditional mean and variance, which must be constant

by covariance stationarity, the conditional mean and variance need not be

constant, and in general we’d expect them not to be constant. The uncondi-

tionally expected growth of laptop computer sales next quarter may be ten

percent, but expected sales growth may be much higher, conditional upon

knowledge that sales grew this quarter by twenty percent. For the indepen-

dent white noise process, the conditional mean is

E(yt|Ωt−1) = 0,

10If you need to refresh your memory on conditional means, consult any good introductory statistics book,
such as Wonnacott and Wonnacott (1990).
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and the conditional variance is

var(yt|Ωt−1) = E[(yt − E(yt|Ωt−1))
2|Ωt−1] = σ2.

Conditional and unconditional means and variances are identical for an inde-

pendent white noise series; there are no dynamics in the process, and hence

no dynamics in the conditional moments.

6.3 Estimation and Inference for the Mean, Autocor-

relation and Partial Autocorrelation Functions

Now suppose we have a sample of data on a time series, and we don’t know

the true model that generated the data, or the mean, autocorrelation function

or partial autocorrelation function associated with that true model. Instead,

we want to use the data to estimate the mean, autocorrelation function, and

partial autocorrelation function, which we might then use to help us learn

about the underlying dynamics, and to decide upon a suitable model or set

of models to fit to the data.

6.3.1 Sample Mean

The mean of a covariance stationary series is

µ = Eyt.

A fundamental principle of estimation, called the analog principle, suggests

that we develop estimators by replacing expectations with sample averages.

Thus our estimator for the population mean, given a sample of size T , is the

sample mean,

ȳ =
1

T

T∑
t=1

yt.
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Typically we’re not directly interested in the estimate of the mean, but it’s

needed for estimation of the autocorrelation function.

6.3.2 Sample Autocorrelations

The autocorrelation at displacement τ for the covariance stationary series y

is

ρ(τ) =
E [(yt − µ)(yt−τ − µ)]

E[(yt − µ)2]
.

Application of the analog principle yields a natural estimator,

ρ̂(τ) =
1
T

∑T
t=τ+1 [(yt − ȳ)(yt−τ − ȳ)]

1
T

∑T
t=1(yt − ȳ)2

=

∑T
t=τ+1 [(yt − ȳ)(yt−τ − ȳ)]∑T

t=1(yt − ȳ)2
.

This estimator, viewed as a function of τ , is called the sample autocorre-

lation function, or correlogram. Note that some of the summations begin

at t = τ + 1, not at t = 1; this is necessary because of the appearance of yt−τ

in the sum. Note that we divide those same sums by T , even though only

T − τ terms appear in the sum. When T is large relative to τ (which is the

relevant case), division by T or by T − τ will yield approximately the same

result, so it won’t make much difference for practical purposes, and moreover

there are good mathematical reasons for preferring division by T .

It’s often of interest to assess whether a series is reasonably approximated

as white noise, which is to say whether all its autocorrelations are zero in

population. A key result, which we simply assert, is that if a series is white

noise, then the distribution of the sample autocorrelations in large samples

is

ρ̂(τ) ∼ N

(
0,

1

T

)
.

Note how simple the result is. The sample autocorrelations of a white noise

series are approximately normally distributed, and the normal is always a

convenient distribution to work with. Their mean is zero, which is to say the
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sample autocorrelations are unbiased estimators of the true autocorrelations,

which are in fact zero. Finally, the variance of the sample autocorrelations

is approximately 1/T (equivalently, the standard deviation is 1/
√
T ), which

is easy to construct and remember. Under normality, taking plus or minus

two standard errors yields an approximate 95% confidence interval. Thus, if

the series is white noise, approximately 95% of the sample autocorrelations

should fall in the interval 0 ± 2/
√
T . In practice, when we plot the sample

autocorrelations for a sample of data, we typically include the “two standard

error bands,” which are useful for making informal graphical assessments of

whether and how the series deviates from white noise.

The two-standard-error bands, although very useful, only provide 95%

bounds for the sample autocorrelations taken one at a time. Ultimately,

we’re often interested in whether a series is white noise, that is, whether all

its autocorrelations are jointly zero. A simple extension lets us test that

hypothesis. Rewrite the expression

ρ̂(τ) ∼ N

(
0,

1

T

)
as √

T ρ̂(τ) ∼ N(0, 1).

Squaring both sides yields11

T ρ̂2(τ) ∼ χ2
1.

It can be shown that, in addition to being approximately normally dis-

tributed, the sample autocorrelations at various displacements are approxi-

mately independent of one another. Recalling that the sum of independent χ2

variables is also χ2 with degrees of freedom equal to the sum of the degrees

11Recall that the square of a standard normal random variable is a χ2 random variable with one degree
of freedom. We square the sample autocorrelations ρ̂(τ) so that positive and negative values don’t cancel
when we sum across various values of τ , as we will soon do.
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of freedom of the variables summed, we have shown that the Box-Pierce

Q-statistic,

QBP = T
m∑
τ=1

ρ̂2(τ),

is approximately distributed as a χ2
m random variable under the null hypoth-

esis that y is white noise.12 A slight modification of this, designed to follow

more closely the χ2 distribution in small samples, is

QLB = T (T + 2)
m∑
τ=1

(
1

T − τ

)
ρ̂2(τ).

Under the null hypothesis that y is white noise, QLB is approximately dis-

tributed as a χ2
m random variable. Note that the Ljung-Box Q-statistic is

the same as the Box-Pierce Q statistic, except that the sum of squared auto-

correlations is replaced by a weighted sum of squared autocorrelations, where

the weights are (T + 2)/(T − τ). For moderate and large T , the weights are

approximately 1, so that the Ljung-Box statistic differs little from the Box-

Pierce statistic.

Selection of m is done to balance competing criteria. On one hand, we

don’t want m too small, because after all, we’re trying to do a joint test on

a large part of the autocorrelation function. On the other hand, as m grows

relative to T , the quality of the distributional approximations we’ve invoked

deteriorates. In practice, focusing on m in the neighborhood of
√
T is often

reasonable.

6.3.3 Sample Partial Autocorrelations

Recall that the partial autocorrelations are obtained from population linear

regressions, which correspond to a thought experiment involving linear re-

gression using an infinite sample of data. The sample partial autocorrelations

12m is a maximum displacement selected by the user. Shortly we’ll discuss how to choose it.
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correspond to the same thought experiment, except that the linear regression

is now done on the (feasible) sample of size T . If the fitted regression is

ŷt = ĉ+ β̂1yt−1 + ...+ β̂τyt−τ ,

then the sample partial autocorrelation at displacement τ is

p̂(τ) ≡ β̂τ .

Distributional results identical to those we discussed for the sample auto-

correlations hold as well for the sample partial autocorrelations. That is, if

the series is white noise, approximately 95% of the sample partial autocorre-

lations should fall in the interval ±2/
√
T . As with the sample autocorrela-

tions, we typically plot the sample partial autocorrelations along with their

two-standard-error bands.

A “correlogram analysis” simply means examination of the sample au-

tocorrelation and partial autocorrelation functions (with two standard error

bands), together with related diagnostics, such as Q statistics.

We don’t show the sample autocorrelation or partial autocorrelation at

displacement 0, because as we mentioned earlier, they equal 1.0, by construc-

tion, and therefore convey no useful information. We’ll adopt this convention

throughout.

Note that the sample autocorrelation and partial autocorrelation are iden-

tical at displacement 1. That’s because at displacement 1, there are no earlier

lags to control for when computing the sample partial autocorrelation, so it

equals the sample autocorrelation. At higher displacements, of course, the

two diverge.
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Figure 6.9: Canadian Employment Index

6.4 Canadian Employment I: Characterizing Cycles

To illustrate the ideas we’ve introduced, we examine a quarterly, seasonally-

adjusted index of Canadian employment, 1962.1 - 1993.4, which we plot in

Figure 6.9. The series displays no trend, and of course it displays no season-

ality because it’s seasonally adjusted. It does, however, appear highly serially

correlated. It evolves in a slow, persistent fashion – high in business cycle

booms and low in recessions.

To get a feel for the dynamics operating in the employment series we

perform a correlogram analysis.13 The results appear in Table 1. Consider

first the Q statistic.14 We compute the Q statistic and its p-value under the

null hypothesis of white noise for values of m (the number of terms in the

sum that underlies the Q statistic) ranging from one through twelve. The

p-value is consistently zero to four decimal places, so the null hypothesis of

white noise is decisively rejected.

Now we examine the sample autocorrelations and partial autocorrelations.

The sample autocorrelations are very large relative to their standard errors

13A “correlogram analysis” simply means examination of the sample autocorrelation and partial autocor-
relation functions (with two standard error bands), together with related diagnostics, such as Q statistics.

14We show the Ljung-Box version of the Q statistic.
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and display slow one-sided decay.15 The sample partial autocorrelations, in

contrast, are large relative to their standard errors at first (particularly for

the 1-quarter displacement) but are statistically negligible beyond displace-

ment 2.16 In Figure 6.10 we plot the sample autocorrelations and partial

autocorrelations along with their two standard error bands.

It’s clear that employment has a strong cyclical component; all diagnostics

reject the white noise hypothesis immediately. Moreover, the sample auto-

correlation and partial autocorrelation functions have particular shapes – the

autocorrelation function displays slow one-sided damping, while the partial

autocorrelation function cuts off at displacement 2. Such patterns, which

summarize the dynamics in the series, can be useful for suggesting candidate

forecasting models. Such is indeed the case.

15 We don’t show the sample autocorrelation or partial autocorrelation at displacement 0, because as we
mentioned earlier, they equal 1.0, by construction, and therefore convey no useful information. We’ll adopt
this convention throughout.

16 Note that the sample autocorrelation and partial autocorrelation are identical at displacement 1. That’s
because at displacement 1, there are no earlier lags to control for when computing the sample partial
autocorrelation, so it equals the sample autocorrelation. At higher displacements, of course, the two diverge.
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Figure 6.10: Sample Autocorrelation and Sample Partial Autocorrelation
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6.5 Modeling Cycles With Autoregressions

6.5.1 Some Preliminary Notation: The Lag Operator

The lag operator and related constructs are the natural language in which

time series models are expressed. If you want to understand and manipulate

time series models – indeed, even if you simply want to be able to read the

software manuals – you have to be comfortable with the lag operator. The

lag operator, L, is very simple: it “operates” on a series by lagging it. Hence

Lyt = yt−1. Similarly, L2yt = L(L(yt)) = L(yt−1) = yt−2, and so on. Typically

we’ll operate on a series not with the lag operator but with a polynomial

in the lag operator. A lag operator polynomial of degree m is just a linear

function of powers of L, up through the m-th power,

B(L) = b0 + b1L+ b2L
2 + ...bmL

m.

To take a very simple example of a lag operator polynomial operating on

a series, consider the m-th order lag operator polynomial Lm, for which

Lmyt = yt−m.

A well-known operator, the first-difference operator ∆, is actually a first-order

polynomial in the lag operator; you can readily verify that

∆yt = (1− L)yt = yt − yt−1.

As a final example, consider the second-order lag operator polynomial 1 +

.9L+ .6L2 operating on yt. We have

(1 + .9L+ .6L2)yt = yt + .9yt−1 + .6yt−2,

which is a weighted sum, or distributed lag, of current and past values.

All time-series models, one way or another, must contain such distributed
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lags, because they’ve got to quantify how the past evolves into the present

and future; hence lag operator notation is a useful shorthand for stating and

manipulating time-series models.

Thus far we’ve considered only finite-order polynomials in the lag operator;

it turns out that infinite-order polynomials are also of great interest. We write

the infinite-order lag operator polynomial as

B(L) = b0 + b1L+ b2L
2 + ... =

∞∑
i=0

biL
i.

Thus, for example, to denote an infinite distributed lag of current and past

shocks we might write

B(L)εt = b0εt + b1εt−1 + b2εt−2 + ... =
∞∑
i=0

biεt−i.

At first sight, infinite distributed lags may seem esoteric and of limited prac-

tical interest, because models with infinite distributed lags have infinitely

many parameters (b0, b1, b2, ...) and therefore can’t be estimated with a finite

sample of data. On the contrary, and surprisingly, it turns out that models

involving infinite distributed lags are central to time series modeling, as we

shall soon see in detail.

6.5.2 Autoregressive Processes

Here we emphasize a very important model of cycles, the autoregressive

(AR) model.

We begin by characterizing the autocorrelation function and related quan-

tities under the assumption that the AR model is the DGP.17 These charac-

terizations have nothing to do with data or estimation, but they’re crucial

for developing a basic understanding of the properties of the models, which

17Sometimes we call time series models of cycles “time series processes,” which is short for stochastic
processes.



166 CHAPTER 6. CYCLES I: AUTOREGRESSIONS AND WOLD’S CHAIN RULE

is necessary to perform intelligent modeling. They enable us to make state-

ments such as “If the data were really generated by an autoregressive process,

then we’d expect its autocorrelation function to have property x.” Armed

with that knowledge, we use the sample autocorrelations and partial auto-

correlations, in conjunction with the AIC and the SIC, to suggest candidate

models, which we then estimate.

The autoregressive process is a natural time-series model of cycles. It’s

simply a stochastic difference equation, a simple mathematical model in which

the current value of a series is linearly related to its past values, plus an ad-

ditive stochastic shock. Stochastic difference equations are a natural vehicle

for discrete-time stochastic dynamic modeling.

6.5.3 Autoregressive Disturbances and Lagged Dependent Vari-

ables

You already know the first-order autoregressive (AR(1)) model as a model

of cyclical dynamics in regression disturbances. Recall, in particular the

Durbin-Watson environment that we introduced earlier in Chapter 3:

yt = x′tβ + εt

εt = φεt−1 + vt

vt

iid

∼ N(0, σ2).

To strip things to their essentials, suppose that the only regressor is an in-

tercept.18 Then we have:

yt = µ+ εt (6.1)

εt = φεt−1 + vt
18In later chapters we’ll bring in trends, seasonals, and other standard “x variables.”
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vt ∼ iid(0, σ2).

Now let us manipulate this “regression with serially-correlated disturbances”

as follows. Because

yt = µ+ εt,

we have

yt−1 = µ+ εt−1,

so

φyt−1 = φµ+ φεt−1. (6.2)

Subtracting 6.2 from 6.1 produces

yt − φyt−1 = µ(1− φ) + (εt − φεt−1),

or

yt = µ(1− φ) + φyt−1 + vt.

Hence we have arrived at a model of “regression a lagged dependent variable

with iid disturbances.” The two models are mathematically identical. LDV

with classical disturbances does the same thing as no LDV with serially-

correlated disturbances. Each approach “mops up” serial correlation not

explained by other regressors. (And in this extreme case, there are no other

regressors.)

In this chapter we’ll focus on univariate models with LDV’s, and again, to

isolate the relevant issues we’ll focus on models with only LDV’s. Later, in

Chapter 16, we’ll add x’s as well.

The AR(1) Process for Observed Series

The first-order autoregressive process, AR(1) for short, is

yt = φyt−1 + εt
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εt ∼ WN(0, σ2).

In lag operator form, we write

(1− φL)yt = εt.

In Figure 6.11 we show simulated realizations of length 150 of two AR(1)

processes; the first is

yt = .4yt−1 + εt,

and the second is

yt = .95yt−1 + εt,

where in each case

εt ∼ iidN(0, 1),

and the same innovation sequence underlies each realization. The fluctuations

in the AR(1) with parameter φ = .95 appear much more persistent that those

of the AR(1) with parameter φ = .4. Thus the AR(1) model is capable of

capturing highly persistent dynamics.

A certain condition involving the autoregressive lag operator polynomial

must be satisfied for an autoregressive process to be covariance stationary.

The condition is that all roots of the autoregressive lag operator polynomial

must be outside the unit circle. In the AR(1) case we have

(1− φL)yt = εt,

so the autoregressive lag operator polynomial is 1−φL, with root 1/φ. Hence

the AR(1) process is covariance stationary if |φ| < 1.

Let’s investigate the moment structure of the AR(1) process. If we begin

with the AR(1) process,

yt = φyt−1 + εt,

and substitute backward for lagged y’s on the right side, we obtain the so-
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Figure 6.11: Realizations of Two AR(1) Processes

called “moving-average representation”

yt = εt + φεt−1 + φ2εt−2 + ....

The existence of a moving-average representation is very intuitive. Ulti-

mately the ε’s are the only things that move y, so it is natural that we should

be able to express y in terms of the history of ε. We will have much more to

say about that in Chapter 7. The existence of a moving-average representa-

tion is also very useful, because it facilitates some important calculations, to

which we now turn.

From the moving average representation of the covariance stationaryAR(1)
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process, we can compute the unconditional mean and variance,

E(yt) = E(εt + φεt−1 + φ2εt−2 + ...)

= E(εt) + φE(εt−1) + φ2E(εt−2) + ...

= 0

and
var(yt) = var(εt + φεt−1 + φ2εt−2 + ...)

= σ2 + φ2σ2 + φ4σ2 + ...

= σ2
∑∞

i=0 φ
2i

= σ2

1−φ2 .

The conditional moments, in contrast, are

E(yt|yt−1) = E(φyt−1 + εt|yt−1)

= φE(yt−1|yt−1) + E(εt|yt−1)

= φyt−1 + 0

= φyt−1
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and
var(yt|yt−1) = var((φyt−1 + εt)|yt−1)

= φ2var(yt−1|yt−1) + var(εt|yt−1)

= 0 + σ2

= σ2.

Note in particular that the simple way that the conditional mean adapts to

the changing information set as the process evolves.

To find the autocovariances, we proceed as follows. The process is

yt = φyt−1 + εt,

so that multiplying both sides of the equation by yt−τ we obtain

ytyt−τ = φyt−1yt−τ + εtyt−τ .

For τ ≥ 1, taking expectations of both sides gives

γ(τ) = φγ(τ − 1).

This is called the Yule-Walker equation. It is a recursive equation; that is,

given γ(τ), for any τ , the Yule-Walker equation immediately tells us how to

get γ(τ + 1). If we knew γ(0) to start things off (an “initial condition”), we

could use the Yule-Walker equation to determine the entire autocovariance

sequence. And we do know γ(0); it’s just the variance of the process, which

we already showed to be

γ(0) =
σ2

1− φ2
.
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Thus we have

γ(0) =
σ2

1− φ2

γ(1) = φ
σ2

1− φ2

γ(2) = φ2 σ2

1− φ2
,

and so on. In general, then,

γ(τ) = φτ
σ2

1− φ2
, τ = 0, 1, 2, ....

Dividing through by γ(0) gives the autocorrelations,

ρ(τ) = φτ , τ = 0, 1, 2, ....

Note the gradual autocorrelation decay, which is typical of autoregressive pro-

cesses. The autocorrelations approach zero in the limit as the displacement

approaches infinity. If φ is positive, the autocorrelation decay is one-sided.

If φ is negative, the decay involves back-and-forth oscillations. The relevant

case in business and economics is φ > 0, but either way, the autocorrela-

tions damp gradually. In Figure 6.12 and 6.13 we show the autocorrelation

functions for AR(1) processes with parameters φ = .4 and φ = .95. The

persistence is much stronger when φ = .95.

Finally, the partial autocorrelation function for the AR(1) process cuts off

abruptly; specifically,

p(τ) =


φ, τ = 1

0, τ > 1.

.

It’s easy to see why. The partial autocorrelations are just the last coeffi-

cients in a sequence of successively longer population autoregressions. If the

true process is in fact an AR(1), the first partial autocorrelation is just the
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autoregressive coefficient, and coefficients on all longer lags are zero.

In Figures 6.14 and 6.15 we show the partial autocorrelation functions for

our two AR(1) processes. At displacement 1, the partial autocorrelations are

simply the parameters of the process (.4 and .95, respectively), and at longer

displacements, the partial autocorrelations are zero.
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Figure 6.12: Population Autocorrelation Function: ρ = .4

Figure 6.13: Population Autocorrelation Function: ρ = .95
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Figure 6.14: Partial Autocorrelation Function: ρ = .4

Figure 6.15: Partial Autocorrelation Function: ρ = .95
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6.5.4 The AR(p) Process

The general p-th order autoregressive process, or AR(p) for short, is

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt

εt ∼ WN(0, σ2).

In lag operator form we write

Φ(L)yt = (1− φ1L− φ2L
2 − ...− φpLp)yt = εt.

In our discussion of the AR(p) process we dispense with mathematical

derivations and instead rely on parallels with the AR(1) case to establish

intuition for its key properties.

An AR(p) process is covariance stationary if and only if all roots of the

autoregressive lag operator polynomial Φ(L) are outside the unit circle.19

The autocorrelation function for the general AR(p) process, as with that of

the AR(1) process, decays gradually with displacement. Finally, the AR(p)

partial autocorrelation function has a sharp cutoff at displacement p, for

the same reason that the AR(1) partial autocorrelation function has a sharp

cutoff at displacement 1.

Let’s discuss the AR(p) autocorrelation function in a bit greater depth.

The key insight is that, in spite of the fact that its qualitative behavior

(gradual damping) matches that of the AR(1) autocorrelation function, it

can nevertheless display a richer variety of patterns, depending on the order

and parameters of the process. It can, for example, have damped monotonic

decay, as in the AR(1) case with a positive coefficient, but it can also have

damped oscillation in ways that AR(1) can’t have. In the AR(1) case, the

only possible oscillation occurs when the coefficient is negative, in which case

19A necessary condition for covariance stationarity, which is often useful as a quick check, is
∑p
i=1 φi < 1.

If the condition is satisfied, the process may or may not be stationary, but if the condition is violated, the
process can’t be stationary.
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Figure 6.16: Autocorrelation Function of AR(2) with Complex Roots

the autocorrelations switch signs at each successively longer displacement. In

higher-order autoregressive models, however, the autocorrelations can oscil-

late with much richer patterns reminiscent of cycles in the more traditional

sense. This occurs when some roots of the autoregressive lag operator poly-

nomial are complex.20 Consider, for example, the AR(2) process,

yt = 1.5yt−1 − .9yt−2 + εt.

The corresponding lag operator polynomial is 1− 1.5L+ .9L2, with two com-

plex conjugate roots, .83±.65i. The inverse roots are .75±.58i, both of which

are close to, but inside, the unit circle; thus the process is covariance station-

ary. It can be shown that the autocorrelation function for an AR(2) process

is

ρ(0) = 1

ρ(τ) = φ1ρ(τ − 1) + φ2ρ(τ − 2), τ = 2, 3, ...

ρ(1) =
φ1

1− φ2

Using this formula, we can evaluate the autocorrelation function for the

20Note that complex roots can’t occur in the AR(1) case.



178 CHAPTER 6. CYCLES I: AUTOREGRESSIONS AND WOLD’S CHAIN RULE

process at hand; we plot it in Figure 6.16. Because the roots are complex,

the autocorrelation function oscillates, and because the roots are close to the

unit circle, the oscillation damps slowly.

6.6 Canadian Employment II: Modeling Cycles

The sum of squares function for autoregressive processes is linear in the pa-

rameters, so that estimation is particularly stable and easy – just standard

OLS regressions. In the AR(1) case, we simply run an ordinary least squares

regression of y on one lag of y; in the AR(p) case, we regress y on p lags of y.

We estimate AR(p) models, p = 1, 2, 3, 4. Both the AIC and the SIC

suggest that the AR(2) is best. To save space, we report only the results

of AR(2) estimation in Table 6.17a. The estimation results look good, and

the residuals (Figure 6.17b) look like white noise. The residual correlogram

(Table 6.18, Figure 6.19) supports that conclusion.
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(a) Employment: AR(2) Model

(b) Employment: AR(2) Model, Residual Plot

Figure 6.17: Employment: AR(2) Model
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Figure 6.18: Employment: AR(2) Model, Residual Correlogram

Figure 6.19: Employment: AR(2) Model, Residual Sample Autocorrelation and Partial Au-
tocorrelation
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6.7 Forecasting Cycles with Autoregressions

6.7.1 On the FRV Problem

We have seen that the FRV problem arises in general, but not in cross sec-

tions, and not in deterministic-trend time-series environments, and not in

deterministic-seasonal time-series environments. The same is true in certain

other time-series environments.

In particular, forget about trends and seasonals for the moment. Still

the FRV problem does not arise if the RHS variables are lagged sufficiently

relative the the forecast horizon of interest. Suppose, for example, that an

acceptable model is

yt = β1 + β2xt−1 + εt. (6.3)

The RHS variable is lagged by one period, so model 6.3 is immediately usable

for 1-step-ahead forecasting without the FRV problem. More lags of x can of

course be included; the key for 1-step-ahead forecasting is that all variables

on the right be lagged by at least one period.

Forecasting more than one step ahead in model 6.3, however, would appear

to lead again to the FRV problem: If we want to forecast h steps ahead, then

all variables on the right must be lagged by at least h periods, not just by

1 period. Perhaps surprisingly, it actually remains easy to circumvent the

FRV problem in autoregressive models. For example, models with yt → yt−1

or yt → yt−1, xt−1 can effectively be transformed to models with yt → yt−h or

yt → yt−h, xt−h, as we will see in this section.

6.7.2 Information Sets, Conditional Expectations, and Linear Pro-

jections

By now you’ve gotten comfortable with the idea of an information set.

Here we’ll use that idea extensively. We denote the time-T information set
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by ΩT . Think of the information set as containing the available past history

of the series,

ΩT = {yT , yT−1, yT−2, ...},

where for theoretical purposes we imagine history as having begun in the

infinite past.

Based upon that information set, we want to find the optimal forecast

of y at some future time T + h. The optimal forecast is the one with the

smallest loss on average, that is, the forecast that minimizes expected loss.

It turns out that under reasonably weak conditions the optimal forecast is

the conditional mean,

E(yT+h|ΩT ),

the expected value of the future value of the series being forecast, conditional

upon available information.

In general, the conditional mean need not be a linear function of the

elements of the information set. Because linear functions are particularly

tractable, we prefer to work with linear forecasts – forecasts that are linear

in the elements of the information set – by finding the best linear approxi-

mation to the conditional mean, called the linear projection, denoted

P (yT+h|ΩT ).

This explains the common term “linear least squares forecast.” The linear

projection is often very useful and accurate, because the conditional mean is

often close to linear. In fact, in the Gaussian case the conditional expectation

is exactly linear, so that

E(yT+h|ΩT ) = P (yT+h|ΩT ).
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6.7.3 Point Forecasts for Autoregressions: Wold’s Chain Rule

A very simple recursive method for computing optimal h-step-ahead point

forecasts, for any desired h, is available for autoregressions.

The recursive method, called the chain rule of forecasting, is best

learned by example. Consider the AR(1) process,

yt = φyt−1 + εt

εt ∼ WN(0, σ2).

First we construct the optimal 1-step-ahead forecast, and then we construct

the optimal 2-step-ahead forecast, which depends on the optimal 1-step-ahead

forecast, which we’ve already constructed. Then we construct the optimal

3-step-ahead forecast, which depends on the already-computed 2-step-ahead

forecast, which we’ve already constructed, and so on.

To construct the 1-step-ahead forecast, we write out the process for time

T + 1,

yT+1 = φyT + εT+1.

Then, projecting the right-hand side on the time-T information set, we obtain

yT+1,T = φyT .

Now let’s construct the 2-step-ahead forecast. Write out the process for time

T + 2,

yT+2 = φyT+1 + εT+2.

Then project directly on the time-T information set to get

yT+2,T = φyT+1,T .

Note that the future innovation is replaced by 0, as always, and that we have

directly replaced the time T+1 value of y with its earlier-constructed optimal
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forecast. Now let’s construct the 3-step-ahead forecast. Write out the process

for time T + 3,

yT+3 = φyT+2 + εT+3.

Then project directly on the time-T information set,

yT+3,T = φyT+2,T .

The required 2-step-ahead forecast was already constructed.

Continuing in this way, we can recursively build up forecasts for any and

all future periods. Hence the name “chain rule of forecasting.” Note that,

for the AR(1) process, only the most recent value of y is needed to construct

optimal forecasts, for any horizon, and for the general AR(p) process only

the p most recent values of y are needed. In particular, for our AR(1) case,

yT+h,T = φhyT .

As usual, in truth the parameters are unknown and so must be estimated,

so we turn infeasible forecasts into feasible (“operational”) forecasts by in-

serting the usual estimates where unknown parameters appear.

It is worth noting that thanks to Wold’s chain rule we have now solved the

FRV problem for autoregressions, as we did earlier for cross sections, trends,

and seasonals! We have of course worked through the calculations in detail

only for the AR(1) case, but the approach is identical for the general AR(p)

case.

6.7.4 Density Forecasts

The chain rule is a device for simplifying the computation of point forecasts.

Density forecasts require a bit more work. Let us again work through the

AR(1) case in detail, assuming normality and ignoring parameter estimation

uncertainty.
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We know that

yT+h ∼ N(yT+h,T , σ
2
h),

where σ2
h = var(yT+h|ΩT ) and ΩT = {yT , yT−1, ...}. Using Wold’s chain rule

we already derived the formula for yT+h,T , so all we need is the h-step-ahead

forecast error variance, σ2
h.

First let us simply assert the general result. It is

σ2
h = σ2

h−1∑
i=0

φ2i.

Now let us derive the general result. First recall that the optimal forecasts

are

yT+1,T = φyT

yT+2,T = φ2 yT

yT+h,T = φh yT .

Second, note that the corresponding forecast errors are

eT+1,T = (yT+1 − yT+1,T ) = εT+1

eT+2,T = (yT+2 − yT+2,T ) = φεT+1 + εT+2

eT+h,T = (yT+h − yT+h,T ) = εT+h + φεT+h−1 + ...+ φh−1εT+1.

Third, note that the corresponding forecast error variances are

σ2
1 = σ2

σ2
2 = σ2(1 + φ2)

σ2
h = σ2

h−1∑
i=0

φ2i.

QED
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Note that the limiting h-step-ahead forecast error variance is

lim

h→∞
σ2
h =

σ2

1− φ2
,

the unconditional variance of the AR(1) process. (The conditioning informa-

tion becomes progressively less valuable as h → ∞ in covariance stationary

environments, so the conditional variance converges to the unconditional vari-

ance.)

As usual, in truth the parameters are unknown and so must be estimated,

so we turn infeasible forecasts into feasible (“operational”) forecasts by insert-

ing the usual estimates where unknown parameters appear. In addition, and

also as usual, we can account for non-normality and parameter-estimation

uncertainty using simulation methods. (Of course simulation could be used

even under normality).

Density forecasts for higher-ordered autoregressions proceed in similar

fashion. Point forecasts at any horizon come from Wold’s chain rule. Under

normality we still need the corresponding h-step forecast-error variances, we

we infer from the moving-average representation. Dropping normality and

using simulation methods does not even require the variance calculation.

6.8 Canadian Employment III: Forecasting

Now we put our forecasting technology to work to produce autoregressive

point and interval forecasts for Canadian employment. Recall that the best

autoregressive model was an AR(2). In Figure 6.20 we show the 4-quarter-

ahead extrapolation forecast, which reverts to the unconditional mean much

less quickly, as seems natural given the high persistence of employment. The

4-quarter-ahead point forecast, in fact, is still well below the mean. Sim-
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ilarly, the 95% error bands grow gradually and haven’t approached their

long-horizon values by four quarters out.

Figures 6.20 and 6.21 make clear the nature of the autoregressive forecasts.

In Figure 6.21 we show the employment history, 4-quarter-ahead AR(2) ex-

trapolation forecast, and the realization. The AR(2) forecast appears quite

accurate; the mean squared forecast error is 1.3.

Figure 6.22 presents the 12-step-ahead extrapolation forecast, and Figure

6.23 presents a much longer-horizon extrapolation forecast. Eventually the

unconditional mean is approached, and eventually the error bands do go

flat, but only for very long-horizon forecasts, due to the high persistence in

employment, which the AR(2) model captures.
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Figure 6.20: Employment History and Forecast: AR(2)

Figure 6.21: Employment History, Forecast, and Realization: AR(2)
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Figure 6.22: Employment History and Long-Horizon Forecast: AR(2)

Figure 6.23: Employment History and Very Long-Horizon Forecast: AR(2)
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6.9 Exercises, Problems and Complements

1. From FRED get Industrial Production, Total Index, 2012=100, Quar-

terly, Not Seasonally Adjusted, 1919:Q1-latest. First, hold out 2014.1-

latest. Select and estimate your preferred model (deterministic trend +

deterministic seasonal + autoregressive cyclical dynamics) using 1919:Q1-

2013:Q4, and use your estimated model to generate a path forecast

2014:Q1-latest. Second, hold out nothing. Re-select and re-estimate

using 1919:Q1-latest, and use your estimated model to generate a path

forecast for the next eight quarters.

2. More on the stability condition for AR(1) processes.

The key stability condition is |φ| < 1. Recall yt =
∑∞

j=0 φ
jεt−j. This

implies that var(yt) =
∑∞

j=0 φ
2jσ2, which is the sum of a geometric

series. Hence:

var(yt) =
σ2

1− φ2
if |φ| < 1

var(yt) =∞ otherwise

3. A more complete picture of AR(1) stability.

The following are all aspects in which covariance stationarity corresponds

to a nice, stable environment.

(a) Series yt is persistent but eventually reverts to a fixed mean.

(b) Shocks εt have persistent effects but eventually die out. Hint: Con-

sider yt = µ+
∑∞

j=0 φ
jεt−j, |φ| < 1.

(c) Autocorrelations ρ(τ) nonzero but decay to zero.

(d) Autocorrelations ρ(τ) depend on τ (of course) but not on time. Hint:

Use back substitution to relate yt and yt−2. How does it compare to

the relation between yt and yt−1 when |φ| < 1?
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(e) Series yt varies but not too extremely. Hint: Consider var(yt) =
σ2

1−φ2 , |φ| < 1.

4. Autocorrelation functions of covariance stationary series.

While interviewing at a top investment bank, your interviewer is im-

pressed by the fact that you have taken a course on forecasting. She

decides to test your knowledge of the autocovariance structure of covari-

ance stationary series and lists five autocovariance functions:

a. γ(t, τ) = α

b. γ(t, τ) = e−ατ

c. γ(t, τ) = ατ

d. γ(t, τ) = α
τ , where α is a positive constant. Which autocovariance

function(s) are consistent with covariance stationarity, and which are

not? Why?

5. Autocorrelation vs. partial autocorrelation.

Describe the difference between autocorrelations and partial autocorre-

lations. How can autocorrelations at certain displacements be positive

while the partial autocorrelations at those same displacements are neg-

ative?

6. Sample autocorrelation functions of trending series.

A tell-tale sign of the slowly-evolving nonstationarity associated with

trend is a sample autocorrelation function that damps extremely slowly.

a. Find three trending series, compute their sample autocorrelation func-

tions, and report your results. Discuss.

b. Fit appropriate trend models, obtain the model residuals, compute

their sample autocorrelation functions, and report your results. Dis-

cuss.
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7. Sample autocorrelation functions of seasonal series.

A tell-tale sign of seasonality is a sample autocorrelation function with

sharp peaks at the seasonal displacements (4, 8, 12, etc. for quarterly

data, 12, 24, 36, etc. for monthly data, and so on).

a. Find a series with both trend and seasonal variation. Compute its

sample autocorrelation function. Discuss.

b. Detrend the series. Discuss.

c. Compute the sample autocorrelation function of the detrended series.

Discuss.

d. Seasonally adjust the detrended series. Discuss.

e. Compute the sample autocorrelation function of the detrended, seasonally-

adjusted series. Discuss.

8. Lag operator expressions, I.

Rewrite the following expressions without using the lag operator.

a. (Lτ)yt = εt

b. yt =
(

2+5L+.8L2

L−.6L3

)
εt

c. yt = 2
(

1 + L3

L

)
εt.

9. Lag operator expressions, II.

Rewrite the following expressions in lag operator form.

a. yt + yt−1 + ...+ yt−N = α + εt + εt−1 + ...+ εt−N , where α is a con-

stant

b. yt = εt−2 + εt−1 + εt.

10. Simulating time series processes.
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Many cutting-edge estimation and forecasting techniques involve simula-

tion. Moreover, simulation is often a good way to get a feel for a model

and its behavior. White noise can be simulated on a computer using

random number generators, which are available in most statistics,

econometrics and forecasting packages.

(a) Simulate a Gaussian white noise realization of length 200. Call the

white noise εt. Compute the correlogram. Discuss.

(b) Form the distributed lag yt = εt + .9εt−1 , t = 2, 3, ..., 200. Com-

pute the sample autocorrelations and partial autocorrelations. Dis-

cuss.

(c) Let y1 = 1 and yt = .9yt−1 + εt , t = 2, 3, ..., 200. Compute the

sample autocorrelations and partial autocorrelations. Discuss.

11. Diagnostic checking of model residuals.

If a forecasting model has extracted all the systematic information from

the data, then what’s left – the residual – should be white noise. More

precisely, the true innovations are white noise, and if a model is a good

approximation to the DGP then its 1-step-ahead forecast errors should

be approximately white noise. The model residuals are the in-sample

analog of out-of-sample 1-step-ahead forecast errors. Hence the useful-

ness of various tests of the hypothesis that residuals are white noise.

The Durbin-Watson test is the most popular. Recall the Durbin-Watson

test statistic, discussed in Chapter 2,

DW =

∑T
t=2(et − et−1)

2∑T
t=1 e

2
t

.

Note that
T∑
t=2

(et − et−1)
2 ≈ 2

T∑
t=2

e2
t − 2

T∑
t=2

etet−1.
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Thus

DW ≈ 2(1− ρ̂(1)),

so that the Durbin-Watson test is effectively based only on the first

sample autocorrelation and really only tests whether the first autocor-

relation is zero. We say therefore that the Durbin-Watson is a test for

first-order serial correlation. In addition, the Durbin-Watson test

is not valid in the presence of lagged dependent variables.21 On both

counts, we’d like a more general and flexible framework for diagnosing

serial correlation. The residual correlogram, comprised of the residual

sample autocorrelations, the sample partial autocorrelations, and the

associated Q statistics, delivers the goods.

(a) When we discussed the correlogram in the text, we focused on the

case of an observed time series, in which case we showed that the

Q statistics are distributed as χ2
m. Now, however, we want to assess

whether unobserved model disturbances are white noise. To do so,

we use the model residuals, which are estimates of the unobserved

disturbances. Because we fit a model to get the residuals, we need

to account for the degrees of freedom used. The upshot is that

the distribution of the Q statistics under the white noise hypothesis

is better approximated by a χ2
m−K random variable, where K is

the number of parameters estimated. That’s why, for example, we

don’t report (and in fact the software doesn’t compute) the p-values

for the Q statistics associated with the residual correlogram of our

employment forecasting model until m > K.

(b) Durbin’s h test is an alternative to the Durbin-Watson test. As

21Following standard, if not strictly appropriate, practice, in this book we often report and examine the
Durbin-Watson statistic even when lagged dependent variables are included. We always supplement the
Durbin-Watson statistic, however, with other diagnostics such as the residual correlogram, which remain
valid in the presence of lagged dependent variables, and which almost always produce the same inference as
the Durbin-Watson statistic.
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with the Durbin-Watson test, it’s designed to detect first-order se-

rial correlation, but it’s valid in the presence of lagged dependent

variables. Do some background reading as well on Durbin’s h test

and report what you learned.

(c) The Breusch-Godfrey test is another alternative to the Durbin-

Watson test. It’s designed to detect pth-order serial correlation,

where p is selected by the user, and is also valid in the presence

of lagged dependent variables. Do some background reading on the

Breusch-Godfrey procedure and report what you learned.

(d) Which do you think is likely to be most useful to you in assessing

the properties of residuals from forecasting models: the residual

correlogram, Durbin’s h test, or the Breusch-Godfrey test? Why?

12. Forecast accuracy across horizons.

You are a consultant to MedTrax, a large pharmaceutical company,

which released a new ulcer drug three months ago and is concerned about

recovering research and development costs. Accordingly, MedTrax has

approached you for drug sales projections at 1- through 12-month-ahead

horizons, which it will use to guide potential sales force realignments.

In briefing you, MedTrax indicated that it expects your long-horizon

forecasts (e.g., 12-month-ahead) to be just as accurate as your short-

horizon forecasts (e.g., 1-month-ahead). Explain to MedTrax why that

is unlikely, even if you do the best forecasting job possible.

13. Forecasting an AR(1) process with known and unknown parameters.

Use the chain rule to forecast the AR(1) process,

yt = φyt−1 + εt.

For now, assume that all parameters are known.
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a. Show that the optimal forecasts are

yT+1,T = φyT

yT+2,T = φ2 yT

yT+h,T = φh yT .

b. Show that the corresponding forecast errors are

eT+1,T = (yT+1 − yT+1,T ) = εT+1

eT+2,T = (yT+2 − yT+2,T ) = φεT+1 + εT+2

eT+h,T = (yT+h − yT+h,T ) = εT+h + φεT+h−1 + ...+ φh−1εT+1.

c. Show that the forecast error variances are

σ2
1 = σ2

σ2
2 = σ2(1 + φ2)

σ2
h = σ2

h−1∑
i=0

φ2i.

d. Show that the limiting forecast error variance is

lim

h→∞
σ2
h =

σ2

1− φ2
,

the unconditional variance of the AR(1) process.

e. Now assume that the parameters are unknown and so must be esti-

mated. Make your expressions for both the forecasts and the forecast

error variances operational, by inserting least squares estimates where

unknown parameters appear, and use them to produce an operational
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point forecast and an operational 90% interval forecast for yT+2,T .

14. Forecast error variances in models with estimated parameters.

As we’ve seen, computing forecast error variances that acknowledge pa-

rameter estimation uncertainty is very difficult; that’s one reason why

we’ve ignored it. We’ve learned a number of lessons about optimal fore-

casts while ignoring parameter estimation uncertainty, such as:

a. Forecast error variance grows as the forecast horizon lengthens.

b. In covariance stationary environments, the forecast error variance ap-

proaches the (finite) unconditional variance as the horizon grows.

Such lessons provide valuable insight and intuition regarding the work-

ings of forecasting models and provide a useful benchmark for assessing

actual forecasts. They sometimes need modification, however, when pa-

rameter estimation uncertainty is acknowledged. For example, in models

with estimated parameters:

a. Forecast error variance needn’t grow monotonically with horizon. Typ-

ically we expect forecast error variance to increase monotonically with

horizon, but it doesn’t have to.

b. Even in covariance stationary environments, the forecast error vari-

ance needn’t converge to the unconditional variance as the forecast

horizon lengthens; instead, it may grow without bound. Consider, for

example, forecasting a series that’s just a stationary AR(1) process

around a linear trend. With known parameters, the point forecast

will converge to the trend as the horizon grows, and the forecast er-

ror variance will converge to the unconditional variance of the AR(1)

process. With estimated parameters, however, if the estimated trend

parameters are even the slightest bit different from the true values

(as they almost surely will be, due to sampling variation), that error
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will be magnified as the horizon grows, so the forecast error variance

will grow.

Thus, results derived under the assumption of known parameters should

be viewed as a benchmark to guide our intuition, rather than as precise

rules.

15. Direct vs. indirect autoregressive forecasts.

6.10 Notes


